Math 213 - Triple Integrals

Peter Perry

October 20, 2023

Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review

Just Like Double Integrals, Only More So

The triple integral of a function $f(x, y, z)$ over a region \mathcal{R} of three-dimensional space is

$$
\iiint_{\mathcal{R}} f(x, y, z) d V
$$

Simplest case: \mathcal{R} is a box $[a, b] \times[c, d] \times[e, f]$

$$
\begin{aligned}
& \iiint_{\mathcal{R}} f(x, y, z) d V= \\
& \quad \int_{a}^{b} \int_{c}^{d} \int_{e}^{f} f(x, y, z) d z d y d x
\end{aligned}
$$

That is, a triple integral can be written as a "triple iterated integral" and evaluated from the inside out.

Puzzler \#1

$$
\begin{aligned}
& \iiint_{\mathcal{R}} f(x, y, z) d V= \\
& \int_{a}^{b} \int_{c}^{d} \int_{e}^{f} f(x, y, z) d z d y d x
\end{aligned}
$$

Find $\iiint_{\mathcal{R}} x y z d V$ if \mathcal{R} is the region

$$
1 \leq x \leq 3,2 \leq y \leq 4,0 \leq z \leq 2
$$

More So

For triple integrals, there are (at least) three ways to set up a triple integral over a domain in $x y z$ space:

Bottom to Top:

$$
0 \leq z \leq h(x, y)
$$

Back to Front:

$$
0 \leq x \leq f(y, z)
$$

Left to Right:

$0 \leq y \leq r(x, z)$

Another Triple Integral

Find $\iiint_{\mathcal{R}} 6 z^{2} d V$ if \mathcal{R} is the region below the plane $4 x+y+2 z=10$ and in the first octant.

See Paul's Online Math Notes, $\S 15.5$ Practice Problems

Puzzler \#2

Evaluate $\iiint_{\mathcal{R}} 5 x^{2} d V$ where \mathcal{R} is the region below $x+2 y+4 z=8$ in the first octant.

Puzzler \#3

Evaluate $\iiint_{\mathcal{R}} 20 x^{3} d V$ if \mathcal{R} is the region between $x=2-y^{2}-z^{2}$ and $x=5 y^{2}+5 z^{2}-6$.

Hint: These two bounding surfaces are paraboloids which intersect in a circle.

$$
\begin{array}{lr}
x=2-y^{2}-z^{2} & \text { is in red } \\
x=5 y^{2}+5 z^{2}-6 & \text { is in blue }
\end{array}
$$

See Paul's Online Math Notes, §15.5, problem 10

Puzzler \#4

Write $\iiint_{\mathcal{R}} f(x, y, z) d V$ as a triple iterated integral if \mathcal{R} is the region bounded by the planes $x=0, y=0, z=0, y=4-x$ and $z=4-x^{2}$

$$
x=0 \text { (cyan) }
$$

See CLP-3, section 3.5 Example 3.5.2

Puzzler \#4

Write $\iiint_{\mathcal{R}} f(x, y, z) d V$ as a triple iterated integral if \mathcal{R} is the region bounded by the planes $x=0, y=0, z=0, y=4-x$ and $z=4-x^{2}$

$$
\begin{aligned}
& x=0(\text { cyan }) \\
& y=0(\text { yellow })
\end{aligned}
$$

See CLP-3, section 3.5 Example 3.5.2

Puzzler \#4

Write $\iiint_{\mathcal{R}} f(x, y, z) d V$ as a triple iterated integral if \mathcal{R} is the region bounded by the planes $x=0, y=0, z=0, y=4-x$ and $z=4-x^{2}$

$$
\begin{aligned}
& x=0(\text { cyan }) \\
& y=0(\text { yellow })
\end{aligned}
$$

See CLP-3, section 3.5 Example 3.5.2

Puzzler \#4

Write $\iiint_{\mathcal{R}} f(x, y, z) d V$ as a triple iterated integral if \mathcal{R} is the region bounded by the planes $x=0, y=0, z=0, y=4-x$ and $z=4-x^{2}$

$$
z=4-x^{2}
$$

Puzzler \#4

Write $\iiint_{\mathcal{R}} f(x, y, z) d V$ as a triple iterated integral if \mathcal{R} is the region bounded by the planes $x=0, y=0, z=0, y=4-x$ and $z=4-x^{2}$

The plane $y=4-x$ and the surface $z=4-x^{2}$ intersect in the curve $\left(x, 4-x, 4-x^{2}\right)$

Puzzler \#4

Write $\iiint_{\mathcal{R}} f(x, y, z) d V$ as a triple iterated integral if \mathcal{R} is the region bounded by the planes $x=0, y=0, z=0, y=4-x$ and $z=4-x^{2}$

See CLP-3, section 3.5 Example 3.5.2

Reminders for the Week of October 22-26

- Fall Break, October 23-24
- Webwork B7 on Double Integrals due October 25
- Quiz \#7 on Double Integrals due October 26
- Webwork B8 on Double Integrals in Polar Coordinates due October 27

