# Math 213 - Triple Integrals 

Peter Perry

October 20, 2023

## Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review


## Review of Triple Integrals

So far, we've considered triple integrals

$$
\iiint_{\mathcal{R}} f(x, y, z) d V
$$

expressed as iterated integrals with respect to $x, y$, and $z$. We studied

- Triple integrals when $\mathcal{R}$ is a rectangular box

$$
a \leq x \leq b, \quad c \leq y \leq d, \quad e \leq z \leq f
$$

- Triple integrals where $\mathcal{R}$ is a region ("bottom to top") over the $x y$ plane
- Triple integrals where $\mathcal{R}$ is a region ("front to back") over the $y z$ plane

Today we'll introduce a new coordinate system, cylindrical coordinates, useful for finding triple integrals over regions with cylindrical symmetry

## Cylindrical Coordinates



To find cylindrical coordinates for a point $P(x, y, z)$ :

- Find the projection of $P$ onto the $x y$-plane
- Find the polar coordinates $(r, \theta)$ of $Q$
- The cylindrical coordinates of $P$ are $(r, \theta, z)$


## Cylindrical Coordinates

Cartesian $\Rightarrow$ Cylindrical:


$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} \\
\theta & =\arctan \frac{y}{x} \\
z & =z
\end{aligned}
$$

Cylindrical $\Rightarrow$ Cartesian:

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta) \\
& z=z
\end{aligned}
$$

## Puzzler \#1

$$
\begin{array}{rlrl}
r & =\sqrt{x^{2}+y^{2}} & & x=r \cos \theta \\
\tan \theta & =y / x & y & =r \sin \theta
\end{array}
$$

- Find the cylindrical coordinates of the point $(x, y, z)=(2,2,3)$
- Find the Cartesian coordinates of the point $(r, \theta, z)=(3, \pi / 6,-4)$


## Understanding Cylindrical Coordinates

Match each of the following surfaces with their graphs.
$r=$ constant
$\theta=$ constant
$z=$ constant



## Puzzler \#2

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} & & x
\end{aligned}=r \cos \theta\left\{\begin{array}{lrl}
\tan \theta & =y / x & y
\end{array}\right)=r \sin \theta
$$

Rewrite the following equations in cylindrical coordinates:

$$
\begin{aligned}
x^{2}+(y-2)^{2} & =4 \\
z & =2-\left(x^{2}+y^{2}\right) \\
z & =2 x y
\end{aligned}
$$

## The Cylindrical Volume Element

What happens when we divide a region into "cylindrical coordinate boxes"?


In the $x y$ plane, $\Delta A=r \Delta r \Delta \theta$

## The Cylindrical Volume Element

What happens when we divide a region into "cylindrical coordinate boxes"?


In the $x y$ plane, $\Delta A=r \Delta r \Delta \theta$


$$
\begin{aligned}
\Delta V & =\Delta A \Delta z \\
& =r \Delta r \Delta \theta \Delta z
\end{aligned}
$$

or

$$
d V=r d r d \theta d z
$$

## Volumes

Find the volume of the solid above the $x y$ plane, under the paraboloid $z=1-x^{2}-y^{2}$, and in the wedge $-x \leq y \leq \sqrt{3} x$.



## Switcheroo

Find $\int_{\mathcal{R}} e^{-\left(x^{2}+z^{2}\right)} d V$ if $\mathcal{R}$ is the region between the cylinders $x^{2}+z^{2}=4$ and $x^{2}+z^{2}=9$ with $1 \leq y \leq 5$ and $z \leq 0$.


## Puzzler \#3

Evaluate $\iiint_{\mathcal{R}} z d V$ if $\mathcal{R}$ is the region between the planes $x+y+z=2$ and $x=0$, and inside the cylinder $y^{2}+z^{2}=1$.


## Puzzler \#4

Evaluate the integral $\iiint(x+2) d V$ where $\mathcal{R}$ is the region bounded by $x=2$ and $x=18-4 y^{2}-4 z^{2}$ with $z \geq 0$.


Courtesy of Paul's Online Math Notes, Section 15.6, Problem 4

## From Hard to Eas(ier)

Convert the integral

$$
\int_{0}^{\sqrt{5}} \int_{-\sqrt{5-x^{2}}}^{0} \int_{x^{2}+y^{2}-11}^{9-3 x^{2}-3 y^{2}}(2 x-3 y) d z d y d x
$$

to an integral in cylindrical coordinates.


## Reminders for the Week of October 22-26

- Webwork B7 on Double Integrals due October 25 (tonight!)
- Quiz \#7 on Double Integrals due October 26
- Webwork B8 on Double Integrals in Polar Coordinates due October 27

