THE CORED APPLE PROBLEM

PETER PERRY

FIGURE 1. The Cored Apple

Problem: A sphere of radius a has a cylindrical hole of radius b drilled out.
What is the remaining volume?

We can compute the volume as

[l

if we can describe the region R in spherical coordinates. To simplify the
problem we’ll only consider the top half of the cylinder, and at the end
multiply by 2 to answer the original question.
To help with this consider the projection of the solid onto the yz plane:
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FIGURE 2. Cross Section of the Cored Apple
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From the figure we see that the remaining region begins at

b
a1
o=t (m)
Next, we need to figure out, for each ¢ and 6, the allowed values of p,
beginning at the cylinder and ending at p = a.
Substitute x = psinpcosf and y = psinpsinf into the equation of the
cylinder:

p? sin? pcos® 0 + p*sin? psin? 0 = b?

and solve for p in terms of ¢:

p*sin? p = b?
b
p= =
sin ¢
We now can describe the region R:
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and compute the triple integral:
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where we used the triangle in Figure 2 to find the trig functions of ¢ =

tan~!(b/va% — b2). Recalling that we computed the volume of the solid
above the zy plane, we finally get
V= AT @2 )i,
As a “reality check,” notice that if b — 0 (no cylindrical hole) we get V' =

45’ , the usual formula for the volume of a sphere.



