Math 213 - General Coordinates

Peter Perry

October 30, 2023

Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review

Change of Variables

One variable: If

$$
x=f(u), \quad d x=f^{\prime}(u) d u
$$

then
$\int_{a}^{b} g(x) d x=\int_{c}^{d} g(f(u)) f^{\prime}(u) d u$
where $f(c)=a, f(d)=b$
The factor $f^{\prime}(u)$ measures how lengths are stretched under the map

$$
u \mapsto f(u)
$$

This transformation is a map from \mathbb{R} to \mathbb{R}

Two Variables: (polar coordinates) If \mathcal{R} is a region described by a polar rectangle $a \leq r \leq b, \alpha \leq \theta \leq \beta$, then

$$
\begin{aligned}
& \iint_{\mathcal{R}} f(x, y) d A= \\
& \quad \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

The factor r measures how areas are stretched under the map

$$
(r, \theta) \mapsto(r \cos \theta, r \sin \theta)
$$

This transformation is a map from \mathbb{R}^{2} to \mathbb{R}^{2}

Interlude - Area of a Parallelogram

The area of the parallelogram is
 the magnitude of

$$
\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{3}}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a & b & 0 \\
c & d & 0
\end{array}\right|
$$

which is the absolute value of

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Change of Variables

Let's consider a change of variables

$$
\begin{aligned}
& x=x(u, v) \\
& y=y(u, v)
\end{aligned}
$$

Change of Variables

$P_{0}=(x(u, v), y(u, v))$
$P_{1}=(x(u+\Delta u, v), y(u+\Delta u, v))$
$P_{2}=(x(u, v+\Delta v), y(u, v+\Delta v))$
$P_{3}=(x(u+\Delta u, v+\Delta v), y(u+\Delta u, v+\Delta v))$

The small region in the $x y$ plane is (approximately) a parallelogram with sides $\overrightarrow{P_{0} P_{1}}$ and $\overrightarrow{P_{0} P_{2}}$:

$$
\begin{aligned}
& \overrightarrow{P_{0} P_{1}} \simeq\left\langle\frac{\partial x}{\partial u}(u, v), \frac{\partial y}{\partial u}(u, v)\right\rangle \Delta u \\
& \overrightarrow{P_{0} P_{2}} \simeq\left\langle\frac{\partial x}{\partial v}(u, v), \frac{\partial y}{\partial v}(u, v)\right\rangle \Delta v
\end{aligned}
$$

From the earlier determinant formula, this area is

$$
\left|\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u}(u, v) & \frac{\partial y}{\partial u}(u, v) \\
\frac{\partial x}{\partial v}(u, v) & \frac{\partial y}{\partial v}(u, v)
\end{array}\right)\right| \Delta u \Delta v
$$

Area Element

The matrix

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left(\begin{array}{ll}
\frac{\partial x}{\partial u}(u, v) & \frac{\partial x}{\partial v}(u, v) \\
\frac{\partial y}{\partial u}(u, v) & \frac{\partial y}{\partial v}(u, v)
\end{array}\right)
$$

is called the Jacobian matrix of the transformation.
For the change of variables

$$
x=x(u, v), \quad y=y(u, v)
$$

we have shown that

$$
d A=\left|\operatorname{det} \frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Integration with General Coordinates

Suppose that \mathcal{U} is a region in the $u v$ plane and that the transformation $x=x(u, v), y=y(u, v) \operatorname{maps} \mathcal{U}$ to a region \mathcal{R} in the $x y$ plane. Then

$$
\int_{\mathcal{R}} f(x, y) d A=\int_{\mathcal{U}} f(x(u, v), y(u, v))\left|\operatorname{det} \frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Coordinate Change Examples - Polar Coordinates

If $x(u, v)=u \cos v, y(u, v)=u \sin v$

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right) \\
& =\left|\begin{array}{ll}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right| \\
& =u
\end{aligned}
$$

SO

$$
d A=u d u d v
$$

Puzzler \#1 - Parabolic Coordinates

Parabolic coordinates are defined by

$$
x(u, v)=\frac{u^{2}-v^{2}}{2}, \quad y(u, v)=u v
$$

Find $\frac{\partial(x, y)}{\partial(u, v)}$ and find $d A$

Puzzler \#2 - Scaled Coordinates

Suppose that $x=a u$ and $y=b v$. What curve in the $u v$ plane is mapped to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$?

Using Coordinate Transformations

Using the transformation $x=a u, y=b v$, find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Using Coordinate Transformations - Parallelogram

Find $\iint_{\mathcal{R}}(6 x-3 y) d A$ if \mathcal{R} is the parallelogram $(2,0),(5,3),(6,7),(3,4)$. Use the transformation

$$
x=\frac{1}{3}(v-u), \quad y=\frac{1}{3}(4 v-u)
$$

$$
4 x-y=17
$$

The figure at left shows why this change of variables works. If we pick

$$
\begin{aligned}
& u=x-y \\
& v=4 x-y
\end{aligned}
$$

then the parallelogram is described by

$$
-1 \leq u \leq 2, \quad 8 \leq v \leq 17
$$

Using Coordinate Transformations - Parallelogram

Find $\iint_{\mathcal{R}}(6 x-3 y) d A$ if \mathcal{R} is the parallelogram $(2,0),(5,3),(6,7),(3,4)$. Use the transformation

$$
x=\frac{1}{3}(v-u), \quad y=\frac{1}{3}(4 v-u)
$$

If we solve

$$
\begin{aligned}
u & =x-y \\
v & =4 x-y
\end{aligned}
$$

for x and y, we get the transformation above.

Now find the Jacobian of the coordinate transformation and compute the double integral!

From Paul's Online Math Notes, Problem 8 of Section 15.8

Puzzler \#2 - Integrating over a Triangle

Evaluate $\iint_{\mathcal{R}}(6 x-3 y) d A$ if R is the triangle with vertices $(2,0),(5,3),(6,7)$. Use the transformation

$$
x=\frac{1}{3}(v-u), y=\frac{1}{3}(4 v-u)
$$

and recall that

$$
u=x-y, \quad v=4 x-y
$$

From Paul's Online Math Notes, Problem 9 of Section 15.8

Three Dimensions

For transformations

$$
x=x(u, v, w), \quad y=y(u, v, w), \quad z=z(u, v, w)
$$

the Jacobian is

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left(\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w}
\end{array}\right)
$$

and the volume element is

$$
d V=\left|\operatorname{det}\left(\frac{\partial(x, y, z)}{\partial(u, v, w)}\right)\right| d u d v d w
$$

Three Dimensions

Suppose that \mathcal{U} is a region in $u v w$ space and that the transformation

$$
x=x(u, v, w), \quad y=y(u, v, w), \quad z=z(u, v, w)
$$

maps \mathcal{U} to a region \mathcal{R} in $x y z$ space. Then

$$
\begin{aligned}
& \int_{\mathcal{R}} f(x, y, z) d V= \\
& \quad \int_{\mathcal{U}} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\operatorname{det} \frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
\end{aligned}
$$

Reminders for the Week of October 30-November 3

- Homework C1 (triple Integrals) due October 30, 11:59 PM
- Homework C2 (cylindrical coordinates) due November 1, 11:59 PM
- Quiz 8 on triple integrals in Cartesian and cylindrical coordinates due November 2, 11:59 PM
- Homework C3 on triple integrals in spherical coordinates due at 11:59 PM

