Math 213 - Dot Products

Peter Perry

August 25, 2023

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13 - Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces

The Dot Product, Two Dimensions

If $\mathbf{v}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{w}=\left\langle b_{1}, b_{2}\right\rangle$ are vectors, the dot product of \mathbf{v} and \mathbf{w} is given either by

$$
\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos \theta
$$

or by

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} b_{1}+a_{2} b_{2}
$$

Find $\mathbf{v} \cdot \mathbf{w}$ if:

- $\mathbf{v}=\langle 3,5\rangle$ and $\mathbf{w}=\langle-1,2\rangle$ Answer: $-3+10=7$
- $\mathbf{v}=\langle 1,0\rangle$ and $\mathbf{w}=\langle 3,1\rangle$ Answer: $3+0=3$
- $\mathbf{v}=\langle 1,1\rangle$ and $\mathbf{w}=\langle 2,-2\rangle$ Answer: $2+(-2)=0$
- $|\mathbf{v}|=3,|\mathbf{w}|=5$ and $\theta=\pi / 4$ Answer: $3 \cdot 5 \cdot \cos (\pi / 4)=15 \cdot(\sqrt{2} / 2)$

The Dot Product, Three Dimensions

If

$$
\begin{aligned}
\mathbf{v} & =\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
\mathbf{w} & =\left\langle b_{1}, b_{2}, b_{3}\right\rangle
\end{aligned}
$$

then the dot product of \mathbf{v} and \mathbf{w} is given either by

$$
\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos \theta
$$

or

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Find $\mathbf{v} \cdot \mathbf{w}$ if:

- $\mathbf{v}=\langle 1,-2,1\rangle$ and $\mathbf{w}=\langle 1,1,1\rangle$ Answer: $1-2+2=1$
- $|\mathbf{v}|=2,|\mathbf{w}|=5$, and $\theta=\pi / 3$ Answer: $2 \cdot 5 \cdot \cos (\pi / 3)=5$

The Why of Dot Products

Why is $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$?

Here a points along the x-axis and \mathbf{b} makes an angle θ with the x-axis

Use the "component" definition to find $\mathbf{a} \cdot \mathbf{b}$

Definition Break

Two vectors \mathbf{a} and \mathbf{b} are perpendicular if the angle between them is $\pi / 2$

In other words, two vectors are perpendicular if they form a right angle.

If \mathbf{a} and \mathbf{b} are perpendicular we can also say that \mathbf{a} and \mathbf{b} are orthogonal.

Dot Product Properties

(1) The dot product is a scalar
(2) $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
(3) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
(4) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(5) $s(\mathbf{a}) \cdot \mathbf{b}=s(\mathbf{a} \cdot \mathbf{b})$
(6) $\mathbf{0} \cdot \mathbf{a}=0$
(7) $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$

8 If $\mathbf{a} \cdot \mathbf{b}=0$ then either $\mathbf{a}=0, \mathbf{b}=0$ or \mathbf{a} and \mathbf{b} are perpendicular

Puzzler \# 1 - Orthogonal Vectors

Which of the following vectors are orthogonal?

$$
\begin{aligned}
\mathbf{a} & =\langle 3,3,3\rangle \\
\mathbf{b} & =\langle 1,0,-1\rangle \\
\mathbf{c} & =\langle 2,0,2\rangle
\end{aligned}
$$

Compute the dot products of pairs:

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=3-3=0 \\
& \mathbf{b} \cdot \mathbf{c}=2-2=0 \\
& \mathbf{c} \cdot \mathbf{a}=6+6=0
\end{aligned}
$$

The Angle Between Two Vectors

Since

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

we can use the dot product to find the angle between two vectors:

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

Find the angle between the vectors

$$
\mathbf{a}=\langle 2,0\rangle \text { and } \mathbf{b}=\langle 3,3\rangle
$$

Since

$$
\mathbf{a} \cdot \mathbf{b}=6, \quad|\mathbf{a}|=2, \quad|\mathbf{b}|=3 \sqrt{2}
$$

we get

$$
\cos \theta=\frac{6}{2 \cdot 3 \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

so $\theta=\pi / 4$.

Puzzler \#2 - Right Angles

Does the triangle with vertices

$$
\begin{aligned}
& P_{1}=(0,0,1) \\
& P_{2}=(1,3,1) \\
& P_{3}=(3,0,1)
\end{aligned}
$$

have a right angle?

The sides of the triangle are given by vectors

$$
\overrightarrow{P_{1} P_{2}}=\langle 1,3,0\rangle, \quad \overrightarrow{P_{2} P_{3}}=\langle 2,-3,0\rangle, \quad \overrightarrow{P_{3} P_{1}}=\langle-3,0,0\rangle
$$

Compute the dot products:

$$
\overrightarrow{P_{1} P_{2}} \cdot \overrightarrow{P_{2} P_{3}}=2-9=-7, \quad \overrightarrow{P_{2} P_{3}} \cdot \overrightarrow{P_{3} P_{1}}=-6, \quad \overrightarrow{P_{3} P_{1}} \cdot \overrightarrow{P_{1} P_{2}}=-3
$$

Since no dot product is zero, the triangle has no right angles.

Projections

Suppose that \mathbf{a} and \mathbf{b} are two vectors.
 Drop a perpendicular from the head of \mathbf{a} to the line that contains \mathbf{b}

Projections

Suppose that \mathbf{a} and \mathbf{b} are two vectors.
 Drop a perpendicular from the head of \mathbf{a} to the line that contains \mathbf{b}

The projection of \mathbf{a} onto \mathbf{b} is the vector from the tail of \mathbf{b} to the point where the perpendicular hits. It is denoted

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}
$$

Projections

Suppose that \mathbf{a} and \mathbf{b} are two vectors.

Drop a perpendicular from the head of \mathbf{a} to the line that contains \mathbf{b}

The projection of \mathbf{a} onto \mathbf{b} is the vector from the tail of \mathbf{b} to the point where the perpendicular hits. It is denoted

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}
$$

The direction of $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$ is given by the unit vector $\mathbf{b} /|\mathbf{b}|$
The signed length of $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$ is given by $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$

Projections

Suppose that \mathbf{a} and \mathbf{b} are two vectors.

Drop a perpendicular from the head of \mathbf{a} to the line that contains \mathbf{b}

The projection of \mathbf{a} onto \mathbf{b} is the vector from the tail of \mathbf{b} to the point where the perpendicular hits. It is denoted

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}
$$

The direction of $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$ is given by the unit vector $\mathbf{b} /|\mathbf{b}|$
The signed length of $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$ is given by $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$
From these two facts we get the formula

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\underbrace{\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}}_{\text {length }} \underbrace{\frac{\mathbf{b}}{|\mathbf{b}|}}_{\text {direction }}
$$

Projections

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\underbrace{\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}}_{\text {length }} \underbrace{\frac{\mathbf{b}}{|\mathbf{b}|}}_{\text {direction }}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^{2}}\right) \mathbf{b}
$$

Find the projection of $\mathbf{a}=\mathbf{i}+2 \mathbf{j}$ onto $\mathbf{b}=\mathbf{i}+\mathbf{j}$

Since

$$
\mathbf{a} \cdot \mathbf{b}=3, \quad|\mathbf{b}|=\sqrt{2}
$$

and

$$
\frac{\mathbf{b}}{|\mathbf{b}|}=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}
$$

we get

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\frac{3}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}\right)
$$

Projections

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\underbrace{\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}}_{\text {length }} \underbrace{\frac{\mathbf{b}}{|\mathbf{b}|}}_{\text {direction }}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^{2}}\right) \mathbf{b}
$$

Find the projection of $\mathbf{a}=2 \mathbf{i}+2 \mathbf{j}$ onto $\mathbf{b}=-2 \mathbf{i}+\mathbf{j}$

Since

$$
\mathbf{a} \cdot \mathbf{b}=-2, \quad|\mathbf{b}|=\sqrt{5}
$$

and

$$
\frac{\mathbf{b}}{|\mathbf{b}|}=-\frac{2}{\sqrt{5}} \mathbf{i}+\frac{1}{\sqrt{5}} \mathbf{j}
$$

we get

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}=-\frac{2}{\sqrt{5}}\left(-\frac{2}{\sqrt{5}} \mathbf{i}+\frac{1}{\sqrt{5}} \mathbf{j}\right)
$$

Determinant Rules

Next time, we'll introduce another multiplication of vectors, the cross product $\mathbf{v} \times \mathbf{w}$, which will be a vector.

We'll need some facts about 2×2 and 3×3 determinants.
The determinant of a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

is given by

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

This can be visualized as

$$
\left|\begin{array}{ll}
a_{11}- & a_{12} \\
a_{21}^{\prime}- & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21} .
$$

Determinant Rules

We'll also need to compute 3×3 determinants.

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

You can find some nice videos about 3×3 determinants from the Kahn Academy:

- Part 1: Standard method
- Part 2: Alternate Method (many students like this)

Determinant Practice

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Find the 2×2 determinant

$$
\left|\begin{array}{cc}
1 & -3 \\
4 & 5
\end{array}\right|
$$

Find the 3×3 determinant

$$
\left|\begin{array}{ccc}
1 & 3 & 0 \\
2 & -1 & 2 \\
-3 & 2 & 0
\end{array}\right|
$$

The Cross Product - What it Is

The cross product of

$$
\begin{array}{r}
\mathbf{v}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \\
\mathbf{w}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}
\end{array}
$$

is a new vector given by

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Example: Find the cross product of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=2 \mathbf{i}+3 \mathbf{j}$ by evaluating

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & 1 \\
2 & 3 & 0
\end{array}\right|
$$

The Cross Product - What it Does

The cross product of two vectors \mathbf{v} and \mathbf{w} is a new vector which is perpendicular to both \mathbf{v} and \mathbf{w} and points in a direction specified by the "right-hand rule"

In this example,

$$
\begin{aligned}
\mathbf{v} & =\mathbf{i}-\mathbf{j}+\mathbf{k} \\
\mathbf{w} & =2 \mathbf{i}+1 \mathbf{j}
\end{aligned}
$$

and

$$
\mathbf{v} \times \mathbf{w}=-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}
$$

The Right-Hand Rule

The right-hand rule (see left) determines the direction of $\mathbf{a} \times \mathbf{b}$ from the directions of \mathbf{a} and \mathbf{b}

Reminders for August 21-25 and August 28-September 1

- Friday 8/25 - Webwork A1 due at 11:59 PM
- Monday 8/28 - Read CLP 3.1.2 on Cross Products before class
- Wednesday 8/30 - Read CLP 3.1.4 on Equations of Planes before class
- Wednesday 8/30 - Webwork A2 due at 11:59 PM
- Quiz \#1 due Thursday, August 31 at 11:59 PM
- Friday 9/1 - Read CLP 3.1.5 on Equations of Lines before class

