Math 213 - Vector Fields

Peter Perry

November 1, 2023

Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review

A New Kind of Function

A vector field $\mathbf{v}(x, y)$ is a function

$$
\mathbf{v}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}
$$

that associates to each point in the $x y$-plane a two-dimensional vector.

At left is a plot of the vector field

$$
\mathbf{v}(x, y)=2 x \mathbf{i}+2 y \mathbf{j}
$$

A New Kind of Function

A vector field $\mathbf{v}(x, y, z)$ is a function
$P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$
that associates to each point in $x y z$ space a three-dimensional vector

At left is a plot of the vector field

$$
\mathbf{v}(x, y, z)=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}
$$

Why Vector Fields?

If $\mathbf{v}(x, y, z)$ is the velocity of a moving fluid at (x, y, z), then $\mathbf{v}(x, y, z)$ is called the velocity field
If $\mathbf{F}(x, y, z)$ is the force at position (x, y, z), then $\mathbf{F}(x, y, z)$ is called a Force field
For example,
$\mathbf{E}(x, y, z)$ is the electric field at a point (x, y, z) in space
$\mathbf{B}(x, y, z)$ is the magnetic field at a point (x, y, z) in space

Gravitational Fields

If M is the mass of the sun, then at a point (x, y, z), the sun's gravitational force on an object of mass m is

$$
\mathbf{F}(x, y, z)=-\frac{G M m}{r^{2}}\left(\frac{x}{r} \mathbf{i}+\frac{y}{r} \mathbf{j}+\frac{z}{r} \mathbf{k}\right)
$$

where G is Newton's gravitational constant and

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Puzzler - The Vortex

At left is a plot of the vector field

$$
\mathbf{v}(x, y)=-y \mathbf{i}+x \mathbf{j}
$$

representing the velocity field of flow around a vortex.

Notice that

$$
\begin{aligned}
& \mathbf{v}(x, y) \cdot \mathbf{i}=-y \\
& \mathbf{v}(x, y) \cdot \mathbf{j}=x
\end{aligned}
$$

Check that the direction of arrows is correct in each of the four quadrants!

Puzzler - The Twig

Imagine that $\mathbf{v}(x, y)=x \mathbf{i}+y \mathbf{j}$ is the velocity field of a fluid.

(1) At time $t=0$ you drop the twig at the point $(1,1)$.
Approximately where is the twig at $t=0.01$?
(2) At time $t=0$ you drop the twig at the point $(0,0)$. Where is the twig at $t=0.01$?
(3) At time $t=0$ you drop the twig at the point $(0,0)$. Where is the twig at $t=10$?

From CLP 4-2.1, Problem 5

Puzzler - Mix and Match

Can you match these vector fields with their field plots?

$$
\mathbf{v}(x, y)=-x \mathbf{i}-y \mathbf{j}
$$

$$
\mathbf{v}(x, y)=2 x \mathbf{i}+3 y \mathbf{j}
$$

$$
\mathbf{v}(x, y)=-x \mathbf{i}+y \mathbf{j}
$$

Culture Break - Differential Equations and Vector Fields

The motion of a pendulum of length l is described by the equation

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \sin \theta
$$

To study this equation, it is helpful to introduce the variables

$$
\begin{aligned}
& x(t)=\theta(t) \\
& y(t)=\theta^{\prime}(t)
\end{aligned}
$$

The equation of motion for the new variables is

$$
\begin{aligned}
x^{\prime}(t) & =y(t) \\
y^{\prime}(t) & =-\frac{g}{l} \sin (x(t))
\end{aligned}
$$

Culture Break, Continued

The right-hand side of the equations

$$
\begin{aligned}
& x^{\prime}(t)=y(t) \\
& y^{\prime}(t)=-\frac{g}{l} \sin (x(t))
\end{aligned}
$$

define a vector field (setting $g / l=1$)

$$
\mathbf{v}(x, y)=y \mathbf{i}-\sin (x) \mathbf{j}
$$

Solution curves "follow the arrows."

Reminders for the Week of October 30-November 3

- Homework C2 (cylindrical coordinates) due November 1, 11:59 PM
- Quiz 8 on triple integrals in Cartesian and cylindrical coordinates due November 2, 11:59 PM
- Homework C3 on triple integrals in spherical coordinates due at 11:59 PM

