Math 213 - Line Integrals

Peter Perry

November 6, 2023

Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review

Work

In Physics, the work done by a constant force \mathbf{F} over a distance \mathbf{d} is given by

$$
W=\mathbf{F} \cdot \mathbf{d}
$$

What if the force varies with position and works over a path $\mathbf{r}(t)$ for $a \leq t \leq b$?

Over an interval Δt, the force $\mathbf{F}(\mathbf{r}(t))$ does work

$$
\begin{aligned}
\Delta W & =\mathbf{F}(\mathbf{r}(t)) \cdot(\Delta \mathbf{r}) \\
& =\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \Delta t
\end{aligned}
$$

So the work done between $t=a$ and $t=b$ is

$$
W=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

This integral is an example of the line integral of a vector field.
The line integral of a vector field \mathbf{F} around a curve \mathcal{C} is denoted

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}
$$

Puzzler \# 1

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Let

$$
\mathbf{F}(x, y)=2 y \mathbf{i}+3 x \mathbf{j} .
$$

Find $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ if \mathcal{C} is the circle of radius 1 with center $(0,0)$ oriented counterclockwise.

Line Integrals

If \mathcal{C} is the parametrized path $\mathbf{r}(t)$ with $a \leq t \leq b$ and

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

then

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r} & =\int_{\mathcal{C}} P d x+Q d y+R d z \\
& =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t}(t) d t
\end{aligned}
$$

For vector fields

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}
$$

and paths in the $x y$ plane,

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r} & =\int_{\mathcal{C}} P d x+Q d y \\
& =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t}(t) d t .
\end{aligned}
$$

Puzzler \# 2

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}} P d x+Q d y=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t}(t) d t
$$

Find

$$
\int_{\mathcal{C}}\left(-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y\right)
$$

if \mathcal{C} is the circle of radius 1 with center $(0,0)$, oriented counterclockwise. Remember to:

- Parameterize the path
- Identify the vector field
- Use the formula above

Conservative Vector Fields

Recall that a vector field $\mathbf{F}(x, y)$ is called conservative if there is a function $\varphi(x, y)$ so that

$$
\mathbf{F}(x, y)=(\nabla \varphi)(x, y)=\frac{\partial \varphi}{\partial x}(x, y) \mathbf{i}+\frac{\partial \varphi}{\partial y}(x, y) \mathbf{j}
$$

What is the line integral of a conservative vector field?
Suppose that $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, a \leq t \leq b$ is a path from $\mathbf{r}(a)=P_{0}$ to $\mathbf{r}(b)=P_{1}$ Then

$$
\mathbf{F}(\mathbf{r}(t))=\frac{\partial \varphi}{\partial x}(x(t), y(t)) \mathbf{i}+\frac{\partial \varphi}{\partial y}(x(t), y(t) \mathbf{j}
$$

So

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t} & =\frac{\partial \varphi}{\partial x}(x(t), y(t)) x^{\prime}(t)+\frac{\partial \varphi}{\partial y}(x(t), y(t)) y^{\prime}(t) \\
& =\frac{d}{d t}(\varphi(x(t), y(t), z(t)))
\end{aligned}
$$

Conservative Vector Fields

If $\mathbf{F}(x, y)$ is conservative and $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ is a path from P_{0} to P_{1} :

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t} & =\frac{\partial \varphi}{\partial x}(x(t), y(t)) x^{\prime}(t)+\frac{\partial \varphi}{\partial y}(x(t), y(t)) y^{\prime}(t) \\
& =\frac{d}{d t}(\varphi(x(t), y(t)))
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r} & =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t} d t \\
& =\int_{a}^{b} \frac{d}{d t}(\varphi(x(t), y(t))) d t \\
& =\varphi\left(P_{1}\right)-\varphi\left(P_{0}\right)
\end{aligned}
$$

The result is the same for any path from P_{0} to P_{1}

Conservative Vector Fields

If $\mathbf{F}=\nabla \varphi$ is a conservative vector field, then
$\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}=\varphi\left(P_{1}\right)-\varphi\left(P_{0}\right)$
We also get the same result for any path beginning at P_{0} and ending at P_{1}.

Interlude

If C_{1} is a path from P_{0} to P_{1} and C_{2} is a path from P_{1} to P_{0} obtained by reversing \mathcal{C}_{1}, then

$$
\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=-\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

$$
\begin{aligned}
& \mathcal{C}_{1}: \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad a \leq t \leq b \\
& \begin{aligned}
\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r} & =\int_{b}^{a} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t} d t \\
& =-\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t} d t \\
& =-\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}
\end{aligned}
\end{aligned}
$$

Integrating along a Closed Curve

If a path \mathcal{C} is parametrized by $\mathbf{r}(t), a \leq t \leq b$ and $\mathbf{r}(a)=\mathbf{r}(b)$, then the path is a closed path, and $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ is sometimes denoted $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.

Suppose that \mathcal{C} is a closed path and that \mathbf{F} is a conservative vector field. Find

$$
\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}
$$

where \mathcal{C} is the closed path consisting of \mathcal{C}_{1} from P_{0} to P_{1} and \mathcal{C}_{2} from P_{1} back to P_{0}

Path Independence

A line integral is path independent between points P_{0} and P_{1} if $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ is the same for any path connecting beginning at P_{0} and ending at P_{1}.

Conservative vector fields are path independent since, for any path \mathcal{C} between P_{0} and P_{1},

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\varphi\left(P_{1}\right)-\varphi\left(P_{0}\right)
$$

Theorem If the vector field \mathbf{F} is defined and continuous over all of $\mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{3}\right)$ and $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ is independent of path between P_{0} and P_{1}, then for any other point P_{0}^{\prime}, and $P_{1}^{\prime}, \int_{\mathcal{C}^{\prime}} \mathbf{F} \cdot d \mathbf{r}$ is path independent for any path \mathcal{C}^{\prime} connecting P_{0}^{\prime} and P_{1}^{\prime}.

Path Independence

Theorem Suppose that \mathbf{F} is a vector field defined and continuous over all of \mathbb{R}^{2} (or \mathbb{R}^{3}). The following are equivalent:
(a) \mathbf{F} is conservative. That is, there is a function φ so that $\mathbf{F}=\nabla \varphi$.
(b) $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=0$ for any closed path \mathcal{C}.
(c) The integral $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ is path-independent. That is, for any points P_{0} and $P_{1}, \int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}^{\prime}} \mathbf{F} \cdot d \mathbf{r}$ for any paths \mathcal{C} and \mathcal{C}^{\prime} from P_{0} to P_{1}.

Proof:
(a) \Rightarrow (b): we showed this two slides ago!
(b) \Rightarrow (c): we'll show this in class
(c) \Rightarrow (a): we'll show how to get the function φ in class

Puzzler \#3

Find a potential for the vector field

$$
\mathbf{F}(x, y, z)=\left(z+e^{y}\right) \mathbf{i}+\left(x e^{y}-e^{z} \sin y\right) \mathbf{j}+\left(x+e^{z} \cos y\right) \mathbf{k}
$$

and evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ for any path \mathcal{C} between $P_{0}=(0,0,0)$ and $P_{1}=(1, \pi, 0)$.

Reminders for the Week of November 6-10

- Homework C4 is due tonight at 11:59 PM
- Homework C5 is due Wednesday night at 11:59 PM
- Quiz \#9 is due Thursday at 11:59 PM
- Homework C6 is due Friday night at 11:59 PM
- Exam 3, covering Webworks B7-B8 and C1-C6, takes place on Wednesday, November 15
- Apply no later than 5 PM on Friday, November 10 if you need to take an alternate exam and are not working with the DRC

