Math 213 - Parametrized Surfaces

Peter Perry

November 8, 2023

Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review

Important Notice

The material we cover today, November 10, and November 13 will not be covered on Exam 3. Exam 3 covers Double and Triple integrals, vector fields, conservative vector fields, and line integrals.

Now is a good time to begin reviewing for Exam 3!

Parametrized Surfaces

So far we've seen surfaces in three dimensions as:

- Graphs of functions $z=f(x, y)$
- Solution sets of equations like $x^{2}+y^{2}+z^{2}=1$ or $x^{2}-y^{2}+z^{2}=1$
- Level sets of functions of three variables

We're going to introduce a new way of describing surfaces through parametrization

Preview

A curve is described by a vector function with one parameter, t, like:

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle
$$

for $0 \leq t \leq 4 \pi$

A surface can be described by a vector function with two parameters, like
$\mathbf{r}(u, v)=\langle\sin (u) \cos (v), \sin (u) \sin (v), \cos (u)\rangle$

Parametrizing the Sphere

If P is a point on the sphere $x^{2}+y^{2}+z^{2}=1$:

- Let Q be the projection of P onto the $x y$ plane
- Let v be the angle between $\overrightarrow{O P}$ and the z axis
- Let u be the angle between $\overrightarrow{O Q}$ and the x axis

In terms of u and v :

$$
\begin{aligned}
& x=\sin v \cos u \\
& y=\sin v \sin u \\
& z=\cos v
\end{aligned}
$$

Parametrizing the Sphere

$$
\begin{aligned}
& 0 \leq u \leq 2 \pi \\
& 0 \leq v \leq \pi
\end{aligned}
$$

$$
\begin{aligned}
& x=\sin v \cos u \\
& y=\sin v \sin u \\
& z=\cos v
\end{aligned}
$$

Parametrizing the Sphere

Let's look at this parametrization in detail:

$$
\begin{aligned}
& x=\sin v \cos u \\
& y=\sin v \sin u \\
& z=\cos v
\end{aligned}
$$

Parametrizing the Sphere

Let's look at this parametrization in detail:

$$
\begin{aligned}
& x=\sin v \cos u \\
& y=\sin v \sin u \\
& z=\cos v
\end{aligned}
$$

For $0 \leq u, v \leq \pi / 2$ we get the part of the sphere in the first octant

Lines of constant u are parallels of longitude:
$u=0, \pi / 12, \pi / 6, \pi / 4, \pi / 3,5 \pi / 12, \pi / 2$

Puzzler \# 1

Find a parametrization for the cylinder

$$
y^{2}+z^{2}=1
$$

- Choose two parameters
- Find a vector function of the two parameters that traces out the cylinder

$$
\mathbf{r}(x, \theta)=\langle x, \cos \theta, \sin \theta\rangle
$$

where

$$
-\infty<x<\infty
$$

$$
0 \leq \theta<2 \pi
$$

Puzzler \#2

Find a parametrization for the part of the sphere

$$
x^{2}+y^{2}+z^{2}=2
$$

that lies inside the cylinder

$$
x^{2}+y^{2}=1
$$

and above the $x y$ plane.

- Choose two parameters
- Find a vector function of the two parameters that traces out the surface
$\mathbf{r}(r, \theta)=\left\langle r \cos \theta, r \sin \theta, \sqrt{2-r^{2}}\right\rangle$ where $0 \leq r<1$ and $0 \leq \theta \leq 2 \pi$

Parametrizing the Torus

A torus is a circle of radius r revolved the origin in a circle of radius R

Strategy:

- Parametrize the intersection of the surface with the $x z$ plane
- Obtain the torus by rotation

In the $x z$-plane:

$$
\begin{aligned}
& x=R+r \cos \theta \\
& z=r \sin \theta
\end{aligned}
$$

where $0 \leq \theta \leq 2 \pi$

Parametrizing the Torus

In the $x z$ plane we found

$$
\begin{aligned}
& x=R+r \cos \theta \\
& y=0 \\
& z=r \sin \theta
\end{aligned}
$$

Now rotate by an angle ψ in the $x y$ plane:

$$
\begin{aligned}
& x=(R+r \cos \theta) \cos \psi \\
& y=(R+r \cos \theta) \sin \psi \\
& z=r \sin \theta
\end{aligned}
$$

where $0 \leq \psi \leq 2 \pi$.

Parametrizing the Torus

$$
\begin{aligned}
& x=(R+r \cos \theta) \cos \psi \\
& y=(R+r \cos \theta) \sin \psi \\
& z=r \sin \theta
\end{aligned}
$$

Tangent Planes: Preview

Next time we'll see how to find the tangent plane to a parameterized surface. Given a parametrization

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

we can find two tangent vectors to the surface at $\mathbf{r}(a, b)$ by finding

$$
\begin{aligned}
\mathbf{T}_{u}(a, b) & =\frac{\partial x}{\partial u}(a, b) \mathbf{i}+\frac{\partial y}{\partial u}(a, b) \mathbf{j}+\frac{\partial z}{\partial u}(a, b) \mathbf{k} \\
\mathbf{T}_{v}(a, b) & =\frac{\partial x}{\partial v}(a, b) \mathbf{i}+\frac{\partial y}{\partial v}(a, b) \mathbf{j}+\frac{\partial z}{\partial v}(a, b) \mathbf{k}
\end{aligned}
$$

From these tangent vectors we can get a normal vector to the tangent plane

$$
\mathbf{n}(a, b)=\mathbf{T}_{u}(a, b) \times \mathbf{T}_{v}(a, b)
$$

Tangent Planes: Preview

Here's how it works for the sphere, visually:

The vectors \mathbf{T}_{u} and \mathbf{T}_{v} are tangent to the surface, and their cross product is normal to the surface

Reminders for the Week of November 6-10

- Homework C5 is due tonight at 11:59 PM
- Quiz \#9 is due Thursday at 11:59 PM
- Homework C6 is due Friday night at 11:59 PM
- Exam 3, covering Webworks B7-B8 and C1-C6, takes place on Wednesday, November 15
- Apply no later than 5 PM on Friday, November 10 if you need to take an alternate exam and are not working with the DRC

