Math 213 - Tangent Planes

Peter Perry

November 10, 2023

Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review

Important Notice

The material we cover on November 8, today, and November 13 will not be covered on Exam 3. Exam 3 covers Double and Triple integrals, vector fields, conservative vector fields, and line integrals.

Planes

The equation of a plane is determined by

- A point $\left(x_{0}, y_{0}, z_{0}\right)$ on the plane
- A vector \mathbf{n} normal to the plane

$$
\mathbf{n} \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0
$$

Tangent Planes

We've already seen:

- Tangent planes to the graph of a function $f(x, y)$
- Tangent planes to the level surface of a function $g(x, y, z)$

Tangent to the graph of a function $f(x, y)$

Point on the plane:

$$
(a, b, f(a, b))
$$

Normal:

$$
\mathbf{n}=-\frac{\partial f}{\partial x}(a, b) \mathbf{i}-\frac{\partial f}{\partial y}(a, b) \mathbf{j}+\mathbf{k}
$$

Tangent to the level surface
$g(x, y, z)=C$
Point on the plane: (a, b, c) with $g(a, b, c)=C$
Normal:

$$
\mathbf{n}=(\nabla g)(a, b, c)
$$

Parametrized Surfaces

A parametrized surface is described by a vector function

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

The sphere of radius 3 :

$$
\begin{aligned}
& x=3 \sin v \cos u \\
& y=3 \sin v \sin u \\
& z=3 \cos v
\end{aligned}
$$

The cylinder of radius 1 with the z axis for an axis of symmetry:

$$
\begin{aligned}
& x(u, v)=\cos u \\
& y(u, v)=\sin u \\
& z(u, v)=v
\end{aligned}
$$

Tangent Plane to a Parametrized Surface

If a parametrized surface is given by a vector function

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

two vectors tangent to the surface at $\mathbf{r}(a, b)$ are

$$
\begin{aligned}
\mathbf{T}_{u}(a, b) & =\frac{\partial x}{\partial u}(a, b) \mathbf{i}+\frac{\partial y}{\partial u}(a, b) \mathbf{j}+\frac{\partial z}{\partial u}(a, b) \mathbf{k} \\
\mathbf{T}_{v}(a, b) & =\frac{\partial x}{\partial v}(a, b) \mathbf{i}+\frac{\partial y}{\partial v}(a, b) \mathbf{j}+\frac{\partial z}{\partial v}(a, b) \mathbf{k}
\end{aligned}
$$

and a normal to the tangent plane is given by

$$
\mathbf{n}=\mathbf{T}_{u}(a, b) \times \mathbf{T}_{v}(a, b)
$$

Puzzler \#1

Are the surfaces

$$
x^{2}+y^{2}+(z-1)^{2}=1
$$

and

$$
x^{2}+y^{2}+(z+1)^{2}=1
$$

tangent to each other at $(0,0,0)$?

Puzzler \# 2

$$
\begin{aligned}
\mathbf{T}_{u}(a, b) & =\frac{\partial x}{\partial u}(a, b) \mathbf{i}+\frac{\partial y}{\partial u}(a, b) \mathbf{j}+\frac{\partial z}{\partial u}(a, b) \mathbf{k} \\
\mathbf{T}_{v}(a, b) & =\frac{\partial x}{\partial v}(a, b) \mathbf{i}+\frac{\partial y}{\partial v}(a, b) \mathbf{j}+\frac{\partial z}{\partial v}(a, b) \mathbf{k} \\
\mathbf{n} & =\mathbf{T}_{u}(a, b) \times \mathbf{T}_{v}(a, b)
\end{aligned}
$$

Find the equation of the tangent plane to the cylinder

$$
\mathbf{r}(u, v)=\cos u \mathbf{i}+\sin u \mathbf{j}+v \mathbf{k}
$$

at the point

$$
\mathbf{r}(\pi / 4,2)=\frac{\sqrt{2}}{2} \mathbf{i}+\frac{\sqrt{2}}{2} \mathbf{j}+2 \mathbf{k}
$$

Puzzler \#3

Find the tangent planes to the surface $x^{2}+y^{2}-z^{2}=1$ for any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface

This surface is a level surface of the function

$$
g(x, y, z)=x^{2}+y^{2}-z^{2}
$$

Puzzler \#4

Find all points on the hyperboloid $z^{2}=4 x^{2}+y^{2}-1$ where the tangent plane is parallel to the plane $2 x+y-z=0$

Puzzler \#5

Find the equation of the tangent plane to the surface

$$
\mathbf{r}(u, v)=\left\langle-4 u, 2 u^{2}+3 v, v^{2}\right\rangle
$$

at the point $(4,-1,1)$ (where $u=-1, v=-1$)

Preview: Surface Integrals

When a curve \mathcal{C} is parametrized by a function $\mathbf{r}(t)$ over an interval $[a, b]$, we can compute the line integral of a scalar function or a vector field over the curve:

$$
\begin{aligned}
\iint_{\mathcal{C}} f(x, y) d s & =\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
\iint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r} & =\int_{a}^{b} F(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
\end{aligned}
$$

When a surface \mathcal{S} is parametrized by a function $\mathbf{r}(u, v)$ over a domain \mathcal{D}, we can compute the surface integral of a scalar function or a vector field over that surface:

$$
\begin{aligned}
\iint_{\mathcal{S}} f(x, y, z) d A & =\iint_{\mathcal{D}} f(x(u, v), y(u, v), z(u, v)) d A \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{\mathcal{D}} \mathbf{F}(\mathbf{r}(u, v)) \cdot \mathbf{n} d A
\end{aligned}
$$

where \mathbf{n} is the unit normal to the surface, and $d A=\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| d u d v$

Preview: Surface Area

If a surface is parameterized by a vector function $\mathbf{r}(u, v)$, we can find the area of a small piece of surface near $\mathbf{r}(u, v)$ obtained by making small changes in u and v :

$$
\Delta A=\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| \Delta u \Delta v
$$

or

$$
d A=\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| d u d v
$$

Preview: Surface Area

If \mathcal{S} is a surface parametrized by $\mathbf{r}(u, v)$ with domain \mathcal{D}, then the total area of the surface is

$$
\iint_{\mathcal{S}} d A=\iint_{D}\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| d u d v
$$

Preview: Surface Area

$$
\iint_{\mathcal{S}} d A=\iint_{D}\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| d u d v
$$

A hemisphere above the $x y$ plane of radius a and centered at $(0,0,0)$ is parametrized by

$$
\mathbf{r}(r, \theta)=\left\langle r \cos \theta, r \sin \theta, \sqrt{a^{2}-r^{2}}\right\rangle
$$

for $0 \leq r \leq a, 0 \leq \theta \leq 2 \pi$. Find the surface area of the hemisphere.

Reminders for the Week of November 6-10

- Homework C6 is due tonight at 11:59 PM
- Exam 3, covering Webworks B7-B8 and C1-C6, takes place on Wednesday, November 15
- Apply no later than 5 PM today if you need to take an alternate exam and are not working with the DRC

