# Math 213 - Gradient, Divergence, and Curl 

Peter Perry

November 17, 2023

## Unit D: Vector Calculus

- November 17 - Gradient, Divergence, Curl
- November 20 - The Divergence Theorem
- November 27 - Green's Theorem
- November 29 - Stokes' Theorem, Part I
- December 1 - Stokes' Theorem, Part II
- December 4 - Final Review
- December 6 - Final Review


## Gradient, Divergence, Curl

Let $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$
This lecture is about three vector derivatives:

- The gradient of a scalar function $f(x, y, z)$

$$
(\nabla f)(x, y, z)=\frac{\partial f}{\partial x}(x, y, z) \mathbf{i}+\frac{\partial f}{\partial y}(x, y, z) \mathbf{j}+\frac{\partial f}{\partial z}(x, y, z) \mathbf{j}
$$

- The divergence of a vector field:

$$
(\nabla \cdot \mathbf{F})(x, y, z)=\frac{\partial P}{\partial x}(x, y, z)+\frac{\partial Q}{\partial y}(x, y, z)+\frac{\partial R}{\partial z}(x, y, z)
$$

- The curl of a vector field:

$$
(\nabla \times \mathbf{F})(x, y, z)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P(x, y, z) & Q(x, y, z) & R(x, y, z)
\end{array}\right|
$$

## Derivatives of Vector Fields

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

Why choose the divergence and the curl out of all possible derivatives of a vector field?

$$
\left(\begin{array}{ccc}
\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} & \frac{\partial Q}{\partial z} \\
\frac{\partial R}{\partial x} & \frac{\partial R}{\partial y} & \frac{\partial R}{\partial z}
\end{array}\right)
$$

## Derivatives of Vector Fields

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

Why choose the divergence and the curl out of all possible derivatives of a vector field?

$$
\left(\begin{array}{lll}
\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} & \frac{\partial Q}{\partial z} \\
\frac{\partial R}{\partial x} & \frac{\partial R}{\partial y} & \frac{\partial R}{\partial z}
\end{array}\right)
$$

The divergence of a vector field,

$$
(\nabla \cdot \mathbf{F})(x, y, z)=\frac{\partial P}{\partial x}(x, y, z)+\frac{\partial Q}{\partial y}(x, y, z)+\frac{\partial R}{\partial z}(x, y, z)
$$

measures the flux of a vector field per unit volume

## Derivatives of Vector Fields

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

Why choose the divergence and the curl out of all possible derivatives of a vector field?

$$
\left(\begin{array}{lll}
\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} & \frac{\partial Q}{\partial z} \\
\frac{\partial R}{\partial x} & \frac{\partial R}{\partial y} & \frac{\partial R}{\partial z}
\end{array}\right)
$$

The curl of a vector field,

$$
(\nabla \times \mathbf{F})=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

measures the rotation (axis and speed) of a vector field at $(x, y, z)$

## The Laplacian

$$
\begin{aligned}
& \text { If } \mathbf{A}=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k} \text {, then } \\
& \qquad \nabla \cdot \mathbf{A}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
\end{aligned}
$$

If $f(x, y, z)$ is a scalar function, then

$$
(\nabla f)(x, y, z)=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

Find

$$
\nabla \cdot(\nabla f)
$$

which is also denoted

$$
\nabla^{2} f
$$

and called the Laplacian of $f$.

## Notation Break

You may also see the notations

$$
\begin{aligned}
\nabla \times \mathbf{A} & =\operatorname{curl} \mathbf{A} \\
\nabla \cdot \mathbf{A} & =\operatorname{div} \mathbf{A}
\end{aligned}
$$

for the curl and the divergence.

## Several Thousand Identities and How to Guess Them

For functions $f$ and $g$, vector fields $\mathbf{F}$ and $\mathbf{G}$, and a constant $c$,

$$
\begin{array}{rlrl}
\nabla(f+g) & =\nabla f+\nabla g & \nabla \cdot(\mathbf{F}+\mathbf{G}) & =\nabla \cdot \mathbf{F}+\nabla \cdot \mathbf{G} \\
(c f) & =c \nabla f & \nabla \cdot(c \mathbf{F}) & =c(\nabla \cdot \mathbf{F}) \\
\nabla(f g) & =(\nabla f) g+f(\nabla g) & \nabla \cdot(f \mathbf{F}) & =\nabla f \cdot \mathbf{F}+f \nabla \cdot \mathbf{F} \\
\nabla(f / g)= & \frac{g \nabla f-f \nabla g}{g^{2}} & \nabla \cdot(\mathbf{F} \times \mathbf{G})=(\nabla \times \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\nabla \times \mathbf{G}) \\
& & \\
& \nabla \times(\nabla f)=0 & & \text { curl of a gradient } \\
\nabla \cdot(\nabla \times \mathbf{F})=\mathbf{0} & & \text { divergence of a curl }
\end{array}
$$

To see lots of vector calculus identities, go to the relevant Wikipedia page!

## Scalar and Vector Potentials

A scalar function $\varphi$ is a scalar potential for a vector field $\mathbf{F}$ if

$$
\mathbf{F}=\nabla \varphi
$$

Screening test: if $\mathbf{F}$ is a gradient vector field then

$$
\nabla \times \mathbf{F}=\mathbf{0}
$$

A vector field $\mathbf{A}$ is a vector potential for a vector field $\mathbf{B}$ if

$$
\mathbf{B}=\nabla \times \mathbf{A}
$$

Screening test: If $\mathbf{B}=\nabla \times \mathbf{A}$ for a vector potential $\mathbf{A}$, then

$$
\nabla \cdot \mathbf{B}=0
$$

## Vector Potentials

Find a vector potential for the solenoidal magentic field


$$
\mathbf{B}=-y \mathbf{i}+x \mathbf{j}
$$

Remember that $\mathbf{B}=\nabla \times \mathbf{A}$ if

$$
\mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{1} & A_{2} & A_{3}
\end{array}\right|
$$

## Interpretation of the Gradient

The gradient of a scalar function is related to its change along a curve: if $f(x, y, z)$ is a function and

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

then

$$
\begin{aligned}
\frac{d}{d t} f(x(t), y(t), z(t)) & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
& =(\nabla f)(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)
\end{aligned}
$$

The rate of change of $f$ along the curve is greatest if $\mathbf{r}^{\prime}(t)$ points in the direction of the gradient, and least if $\mathbf{r}^{\prime}(t)$ is orthogonal to the gradient

## Interpretation of the Gradient



$$
\begin{aligned}
& \text { Suppose } f(x, y)=x^{2}+y^{2} \\
& \text { If } \mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j} \text {, find } \\
& \qquad\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0} \\
& \text { If } \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j} \text {, find } \\
& \qquad\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=1}
\end{aligned}
$$

## Interpretation of the Divergence

Let's look at two vector fields and their divergence.

$$
\begin{gathered}
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \\
\nabla \cdot \mathbf{F}=3
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j} \\
\nabla \cdot \mathbf{F}=0
\end{gathered}
$$



## Interpretation of the Divergence

We will soon prove:
Divergence Theorem: If $V$ is a bounded surface with piecewise smooth boundary $\partial V$, and $\mathbf{F}$ is a vector field with continuous first partial derivatives, then

$$
\int_{\partial V} \mathbf{F} \cdot \mathbf{n} d S=\int_{V} \nabla \cdot \mathbf{F} d V
$$

Now suppose that $V$ is a sphere of radius $\varepsilon$ centered at $\mathbf{r}_{0}$. Then

$$
\begin{aligned}
& \int_{\partial V} \mathbf{F} \cdot \mathbf{n} d S=\text { flux of } \mathbf{F} \text { across the boundary of the sphere } \\
& \int_{V} \nabla \cdot \mathbf{F} d V=\text { volume integral of the divergence over the interior }
\end{aligned}
$$

Conclusion: $(\nabla \cdot \mathbf{F})\left(\mathbf{r}_{0}\right)$ is the net flux of the vector field, per unit volume, per unit time

## Interpretation of the Curl

Let's look at two vector fields and their curl:

$$
\begin{aligned}
\mathbf{F}(x, y, z) & =x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \\
\nabla & \times \mathbf{F}=\mathbf{0}
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j} \\
\nabla \times \mathbf{F}=2 \mathbf{k}
\end{gathered}
$$



## Interpretation of the Curl

If $\mathbf{r}_{0}$ is a point in $\mathbb{R}^{3}, \widehat{\mathbf{n}}$ is a unit vector, and $C_{\varepsilon}$ is a circle centered at $\mathbf{r}_{0}$, we claim that


$$
(\nabla \times \mathbf{v})\left(\mathbf{r}_{0}\right) \cdot \widehat{\mathbf{n}}=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi \varepsilon^{2}} \oint_{C_{\varepsilon}} \mathbf{v}(\mathbf{r}) \cdot d \mathbf{r}
$$

The integral $\oint_{C_{\varepsilon}} \mathbf{v}(\mathbf{r}) \cdot d \mathbf{r}$ is called the circulation of $\mathbf{v}$
around $C_{\varepsilon}$


- If we parameterize $C_{\varepsilon}$ by arc length,

$$
\oint_{C_{\varepsilon}} \mathbf{v}(\mathbf{r}) \cdot d \mathbf{r}=\int \mathbf{v}(\mathbf{r}) \cdot \frac{d \mathbf{r}}{d s} d s
$$

- If we visualize the fluid as moving a paddlewheel, the speed of the paddles, $\Omega \varepsilon$, should be the average value of $\mathbf{v}(\mathbf{r}) \cdot \frac{d \mathbf{r}}{d s}$ around the circle

See CLP 4, 4.1.5 for more details

## Interpretation of the Curl



- If we parameterize $C_{\varepsilon}$ by arc length,

$$
\oint_{C_{\varepsilon}} \mathbf{v}(\mathbf{r}) \cdot d \mathbf{r}=\int \mathbf{v}(\mathbf{r}) \cdot \frac{d \mathbf{r}}{d s} d s
$$

- If we visualize the fluid as moving a paddlewheel,
 the speed of the paddles, $\Omega \varepsilon$, should be the average value of $\mathbf{v}(\mathbf{r}) \cdot \frac{d \mathbf{r}}{d s}$ around the circle
- The rate of rotation of the paddlewheels, $\Omega$, should be determined by

$$
\Omega \varepsilon=\frac{\oint_{C_{\varepsilon}} \mathbf{v}(\mathbf{r}) \cdot \frac{d \mathbf{r}}{d s}}{\oint_{C_{\varepsilon}} d s}=\frac{\oint_{C_{\varepsilon}} \mathbf{v}(\mathbf{r}) \cdot d \mathbf{r}}{2 \pi \varepsilon}
$$

So

$$
\nabla \times \mathbf{v}\left(\mathbf{r}_{0}\right) \cdot \widehat{\mathbf{n}}=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi \varepsilon^{2}} \oint_{C_{\varepsilon}} \mathbf{v}(\mathbf{r}) \cdot d \mathbf{r}=2 \Omega
$$

See CLP 4, 4.1.5 for more details

## Reminders for the week of November 13-17 and November 20-24

- Webwork C7 on parametrized surfaces and tangent planes due Friday, November 17 by 11:59 PM
- Homework D1 on surface integrals due Monday, November 20
- Lecture on the Divergence Theorem, Monday November 20
- Thanksgiving Break, November 22-26

