Math 213 - Green's Theorem

Peter Perry

November 27, 2023

Unit D: Vector Calculus

- November 17 - Gradient, Divergence, Curl
- November 20 - The Divergence Theorem
- November 27 - Green's Theorem
- November 29 - Stokes' Theorem, Part I
- December 1 - Stokes' Theorem, Part II
- December 4 - Final Review
- December 6 - Final Review

Preview

Green's Theorem relates the line integral of a vector field around a oriented, simple, closed curve C to an integral of its derivative over the enclosed surface R.
The statement is:

$$
\oint_{C} F(x, y) d x+G(x, y) d y=\iint_{R}\left(\frac{\partial G}{\partial x}(x, y)-\frac{\partial F}{\partial y}\right) d x d y
$$

To understand and use Green's theorem, we need to:
(1) Review line integrals of vector fields
(2) Define what a simple closed curve is
(3) Define the orientation of a curve means, and what is the right orientation for curves bounding the enclosed region

(Vector) Line Integrals

If C is a parametrized curve

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b
$$

then

$$
d x=x^{\prime}(t) d t, \quad d y=y^{\prime}(t) d t
$$

and

$$
\begin{aligned}
\int_{C} P(x, y) d x+Q(x, y) d y & = \\
& \int_{a}^{b}\left[P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t)\right] d t
\end{aligned}
$$

Express $\int_{C} x^{2} y d x+x y d y$ as an integral with respect to t if C is the curve

$$
\mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}
$$

Vocabulary - Simple, Closed, Piecewise Smooth

Suppose that \mathcal{C} is a parameterized curve with parametrization $\mathbf{r}(t)$, $a \leq t \leq b$.
\mathcal{C} is closed if $\mathbf{r}(a)=\mathbf{r}(b)$.
\mathcal{C} is simple if it does not cross itself.
\mathcal{C} is piecewise smooth if \mathcal{C} has a parametrization that is continuous and differentiable except at finitely many points

Which of these is closed, simple, piecewise smooth?

Vocabulary - Oriented Boundary

If R is a region in the $x y$ plane bounded by finitely many closed, simple, piecewise smooth curves, the oriented boundary (or, the boundary with positive orientation) gives the bounding curves a direction so that R is always to the left as you walk along the curve

Which of these two boundaries has the correct (positive) orientation?

Why Orientation Matters

What is the relationship between

$$
\oint_{C} P(x, y) d x+Q(x, y) d y
$$

and

$$
\oint_{C^{\prime}} P(x, y) d x+Q(x, y) d y
$$

if C and C^{\prime} are the oriented curves shown below?

Green's Theorem

Suppose R is a region in the $x y$-plane whose oriented boundary C consists of finitely many piecewise smooth curves.

Suppose F and G have continuous first partials at every point of R.

Then

$$
\begin{aligned}
& \oint_{C} F(x, y) d x+G(x, y) d y= \\
& \iint_{R}\left(\frac{\partial G}{\partial x}-\frac{\partial F}{\partial y}\right) d x d y
\end{aligned}
$$

Notice that the boundary curves have positive orientation

Puzzler \#1

$$
\oint_{C} P(x, y) d x+Q(x, y) d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

Use Green's Theorem to evaluate

$$
\oint_{C} x y d x+x^{3} y^{3} y
$$

if C is the triangle with vertices $(0,0)$, $(1,0),(1,2)$ with positive orientation.

Puzzler \#2

$$
\oint_{C} P(x, y) d x+Q(x, y) d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y .
$$

Use Green's Theorem to evaluate

$$
\oint_{C}\left(7 x+y^{2}\right) d y-\left(x^{2}-2 y\right) d x
$$

if C is the oriented curve shown at left.

Green's Theorem and Areas

$$
\oint_{C} P(x, y) d x+Q(x, y) d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

Corollary Suppose R is a region in the $x y$ plane with piecewise smooth oriented boundary C. Then

$$
\operatorname{Area}(R)=\oint_{C} x d y=-\oint y d x=-\frac{1}{2} \oint_{C} x d y-y d x
$$

Proof: Apply Green's Theorem to the vector fields

$$
\mathbf{F}_{1}=x \mathbf{i}, \quad \mathbf{F}_{2}=y \mathbf{j}, \quad \mathbf{F}_{3}=\frac{1}{2}(x \mathbf{i}-y \mathbf{j})
$$

Puzzler \#3

$$
\operatorname{Area}(R)=\oint_{C} x d y=-\oint y d x=-\frac{1}{2} \oint_{C} x d y-y d x
$$

Find the area of the region bounded by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The ellipse is parametrized by
$\mathbf{r}(t)=a \cos (t) \mathbf{i}+b \sin (t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi$

Unit Tangent and Unit Normal

If C is a curve parametrized by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$:
The unit tangent is

$$
\widehat{\mathbf{t}}(t)=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left(x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}\right)
$$

The unit normal is

$$
\widehat{\mathbf{n}}(t)=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left(y^{\prime}(t) \mathbf{i}-x^{\prime}(t) \mathbf{j}\right)
$$

For later use note that

$$
\widehat{\mathbf{n}}(t) d s=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left(y^{\prime}(t) \mathbf{i}-x^{\prime}(t) \mathbf{j}\right)\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Another Form of Green's Theorem

$$
\oint_{C} P(x, y) d x+Q(x, y) d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

If R is a region in the $x y$ plane whose boundary consists of a single simple, closed curve, then

$$
\iint_{R} \nabla \cdot \mathbf{F} d x d y=\oint_{C} \mathbf{F} \cdot \widehat{\mathbf{n}} d s
$$

where $\widehat{\mathbf{n}}$ is the unit normal to the curve C.
Proof: Apply Green's Theorem above to

$$
P(x, y)=-G(x, y), \quad Q(x, y)=F(x, y)
$$

and remember that

$$
\widehat{\mathbf{n}}(t)=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left(y^{\prime}(t) \mathbf{i}-x^{\prime}(t) \mathbf{j}\right)
$$

Reminders for the week of November 27-December 1

- Homework D2 on Gradient, Divergence, and Curl is due on Wednesday, November 29
- Homework D3 on the Divergence Theorem is due on Friday, December 1

