Math 213 - Cross Products

Peter Perry

August 28, 2023

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13-Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces

Determinants

2×2 Determinants

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

3×3 Determinants

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Determinant Practice

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

Find the following determinants:
$\left|\begin{array}{cc}2 & 1 \\ 4 & -6\end{array}\right|=(2)(-6)-(1)(4)=-16$
$\left|\begin{array}{cc}4 & -6 \\ 2 & 1\end{array}\right|=(4)(1)-(-6)(2)=16$. Note rows are reversed from example above
$\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=(1)(4)-(2)(2)=0$. Note second row is a multiple of the first

Determinant Practice

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21} \\
& \\
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Find:

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & -4 & -2 \\
2 & 0 & 4 \\
-1 & 2 & 3
\end{array}\right| & =1\left|\begin{array}{ll}
0 & 4 \\
2 & 3
\end{array}\right|+4\left|\begin{array}{cc}
2 & 4 \\
-1 & 3
\end{array}\right|+(-2)\left|\begin{array}{cc}
2 & 0 \\
-1 & 2
\end{array}\right|=1 \cdot(-8)+4 \cdot(10)-2 \cdot(4) \\
& =24
\end{aligned}
$$

using your favorite method

The Cross Product of Two Vectors

The cross product of

$$
\begin{array}{r}
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \\
\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}
\end{array}
$$

is a new vector given by

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

The Cross Product of Two Vectors

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Find $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a}=\langle 1,0,2\rangle$ and $\mathbf{b}=\langle 1,1,1\rangle$

$$
\begin{aligned}
\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right| & =\mathbf{i}\left|\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right| \\
& =-2 \mathbf{i}+\mathbf{j}+\mathbf{k}
\end{aligned}
$$

The Cross Product of Two Vectors
$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

$$
\begin{aligned}
\mathbf{a} & =\mathbf{i}+0 \mathbf{j}+2 \mathbf{k} \\
\mathbf{b} & =\mathbf{i}+\mathbf{j}+\mathbf{k} \\
\mathbf{a} \times \mathbf{b} & =-2 \mathbf{i}+\mathbf{j}+\mathbf{k}
\end{aligned}
$$

What are $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})$ and $\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})$?
You can check that both dot products are zero, which shows that $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b}

What is $\mathbf{b} \times \mathbf{a}$?

$$
\begin{aligned}
&\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right|=\mathbf{i}\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right| \\
&=2 \mathbf{i}-\mathbf{j}-\mathbf{k} \\
& \text { 可 }
\end{aligned}
$$

Cross Product Properties

(1) The cross product $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b} with direction given by the right-hand rule:

Source: Wikipedia Commons

(2) $\mathbf{b} \times \mathbf{a}=-(\mathbf{a} \times \mathbf{b})$
(3) $|\mathbf{a} \times \mathbf{b}|$ is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b}, i.e.,

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

4) Two vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b}=\mathbf{0}$.

Cross Product Properties

(1) The cross product $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b} with direction given by the right-hand rule
(2) $\mathbf{b} \times \mathbf{a}=-(\mathbf{a} \times \mathbf{b})$
(3) $|\mathbf{a} \times \mathbf{b}|$ is the area of a parallelogram spanned by \mathbf{a} and \mathbf{b}, i.e.,

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

(4) Two vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b}=\mathbf{0}$

Find $\mathbf{i} \times \mathbf{j}, \mathbf{i} \times \mathbf{k}$, and $\mathbf{j} \times \mathbf{k}$
$\mathrm{i} \times \mathrm{j}=\mathrm{k}, \mathrm{i} \times \mathrm{k}=-\mathrm{j}, \mathrm{j} \times \mathrm{k}=\mathrm{i}$
Find $(2 \mathbf{j}-4 \mathbf{k}) \times(-\mathbf{i}+3 \mathbf{j}+\mathbf{k})$
$14 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$

Cross Product Properties

Can you fill in the blanks?
If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and if c is a scalar:
(1) $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
(2) $(c \mathbf{a}) \times \mathbf{b}={ }_{-}(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times\left(_\right)$
(3) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=$
(4) $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=$ \qquad
(5) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
(6) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
(1)
(2) $(c \mathbf{a}) \times \mathbf{b}=\underline{c}(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(\underline{c b})$
(3) $\mathrm{a} \times(\mathrm{b}+\mathrm{c})=\mathrm{a} \times \mathrm{b}+\mathrm{a} \times \mathrm{c}$
(4) $(\mathrm{a}+\mathrm{b}) \times \mathrm{c}=\mathbf{a} \times \mathrm{c}+\mathrm{b} \times \mathrm{c}$
(5)

6

Cross Product Puzzler \#1

Find the area of the parallelogram with vertices

$$
P(1,0,2), \quad Q(3,3,3),(7,5,8), \quad S(5,2,7)
$$

Note that:

$$
\overrightarrow{P Q}=\langle 2,3,1\rangle, \quad \overrightarrow{P S}=\langle 4,2,5\rangle
$$

The area of the parallelogram is the length of $\overrightarrow{P Q} \times \overrightarrow{P S}$. We can compute

$$
\overrightarrow{P Q} \times \overrightarrow{P S}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & 1 \\
4 & 2 & 5
\end{array}\right|=13 \mathbf{i}-6 \mathbf{j}-8 \mathbf{k}
$$

and

$$
|\overrightarrow{P Q} \times \overrightarrow{P S}|=\sqrt{13^{2}+6^{2}+8^{2}}=\sqrt{269}
$$

Cross Product Puzzler \#2

Find a nonzero vector orthogonal to the plane through

$$
P(1,0,1), Q(-2,1,3), R(4,2,5)
$$

and find the area of triangle $P Q R$

Cross Product Puzzler \#2

Find a nonzero vector orthogonal to the plane through

$$
P(1,0,1), Q(-2,1,3), R(4,2,5)
$$

and find the area of triangle $P Q R$

Two sides of the triangle are spanned by:

$$
\overrightarrow{P R}=\langle 3,2,4\rangle, \quad \overrightarrow{P Q}=\langle-3,1,2\rangle
$$

Cross Product Puzzler \#2

Find a nonzero vector orthogonal to the plane through

$$
P(1,0,1), Q(-2,1,3), R(4,2,5)
$$

and find the area of triangle $P Q R$

Two sides of the triangle are spanned by:

$$
\overrightarrow{P R}=\langle 3,2,4\rangle, \quad \overrightarrow{P Q}=\langle-3,1,2\rangle
$$

An orthogonal vector is $\overrightarrow{P R} \times \overrightarrow{P Q}$, and the length of this vector is twice the area of the triangle (why?). You can compute that

$$
\overrightarrow{P R} \times \overrightarrow{P Q}=-18 \mathbf{j}+9 \mathbf{k}
$$

and

$$
|\overrightarrow{P R} \times \overrightarrow{P Q}|=9 \sqrt{5}
$$

The Scalar Triple Product

The scalar triple product of three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is the determinant

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

The volume of the parallelepiped formed by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is given by

$$
|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})| .
$$

What happens if the vectors \mathbf{a}, \mathbf{b}, and c are coplanar?

Triple Product Puzzler

Find the volume of the parallelepiped with adjacent ages $P Q, P R$, and $P S$ if

$$
\begin{aligned}
& P=P(-2,1,0), \quad Q=(2,3,2) \\
& R=R(1,4,-1), \quad S=S(3,6,1)
\end{aligned}
$$

$$
\overrightarrow{P Q}=\langle 4,2,2\rangle
$$

$$
\overrightarrow{P R}=\langle 3,3,-1\rangle
$$

$$
\overrightarrow{P S}=\langle 5,5,1\rangle
$$

The volume is $\left|\begin{array}{ccc}4 & 2 & 2 \\ 3 & 3 & -1 \\ 5 & 5 & 1\end{array}\right|=16$

Dot Product, Cross Product, Triple Product

Dot Product Cross Product
Scalar Triple Product

Type	Scalar $\mathbf{a} \cdot \mathbf{b}$	Vector $\mathbf{a} \times \mathbf{b}$	Scalar $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$	
Magnitude	$\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$	$\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$		
Symmetry	$\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$	$\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$	Antisymmetric	
Direction	None!	Right-hand rule	None!	
In Physics	Work	Torque		
In Geometry	Projection	Parallelogram Area	Parallelepiped Area	
Zero If	$\mathbf{a} \perp \mathbf{b}$	$\mathbf{a} \\| \mathbf{b}$	$\mathbf{a}, \mathbf{b}, \mathbf{c}$ coplanar	

Reminders for the Week of August 28-September 1

- Recitation on dot products, cross products Tuesday 8/29
- Read CLP 3, section 1.4, Equations of Planes for Wednesday 8/30
- WebWork A2 due on Wednesday 8/30 by 11:59 PM
- Recitation on planes Thursday 8/31
- Quiz \# 1 on coordinate systems and vectors due on Thursday 8/31 at 11:59 PM
- Read CLP 3, section 1.5 for Friday 9/1

