Preview 000 Stokes' Theorem

Reminders

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

0

# Math 213 - Stokes' Theorem

Peter Perry

November 29, 2023

Reminders

### Unit D: Vector Calculus

- November 17 Gradient, Divergence, Curl
- November 20 The Divergence Theorem
- November 27 Green's Theorem
- November 29 Stokes' Theorem, Part I
- December 1 Stokes' Theorem, Part II
- December 4 Final Review
- December 6 Final Review

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Preview

Stokes' Theorem

Reminders

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

### Preview

Stokes' Theorem generalizes Green's Theorem to three dimensions.

*Green's Theorem* states that if *R* is a plane region with simple, piecewise smooth, closed boundary *C*, then

$$\oint_C P \, dx + Q \, dy = \iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

*Stokes' Theorem* states that if **F** is a vector field and *S* is an oriented surface with simple, piecewise smooth boundary *C*, then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

where  $\hat{\mathbf{n}}$  is a unit normal to *S* oriented consistently with *C*.

Stokes' Theorem

Reminders

### Green versus Stokes



$$\oint_C P\,dx + Q\,dy = \iint_R (Q_x - P_y)\,dA$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times F \cdot \hat{\mathbf{n}} \, dS$$

### Consistency:

If you walk along *C* in the direction of the arrow with the vector from your feet to your head having direction  $\hat{\mathbf{n}}$ , then *S* is on your left hand side

Consistency:

If you walk along *C* in the direction of the arrow, the region is to the left

Stokes' Theorem

Reminders

## **Oriented Surfaces**

An *oriented surface* is a surface with a unit normal for each point on the surface that depends continuously on the point

An (in)famous example of a non-orientable surface is the Möbius strip (there's an app for that!)

If a surface has two sides, you can orient the surface by choosing one side to be the positive side. However, the Möbius strip has only one side!

Begin with a strip:



Stokes' Theorem

Reminders

## **Oriented Surfaces**

An *oriented surface* is a surface with a unit normal for each point on the surface that depends continuously on the point

An (in)famous example of a non-orientable surface is the Möbius strip (there's an app for that!)

If a surface has two sides, you can orient the surface by choosing one side to be the positive side. However, the Möbius strip has only one side!

Begin with a strip:



Twist the right-hand side and connect to the left to get a one-sided figure

・ロト・四ト・モート 中一 シック

Preview 000 Stokes' Theorem

#### Reminders

### Stokes' Theorem



Sir George Gabriel Stokes (1819-1903), Lucasian Professor of Mathematics at Cambridge University

### Theorem

Suppose that *S* is an oriented smooth surface (a unit normal  $\hat{\mathbf{n}}$  is chosen at each point and varies continuously) whose boundary *C* consists of a finite number of piecewise smooth curves oriented consistently with  $\hat{\mathbf{n}}$ .

Suppose that **F** is a vector field with continuous first partial derivatives at every point of *S*.

Then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

0

Stokes' Theorem

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Orientation – Pick A Side

For Stokes' Theorem, the unit normal  $\widehat{\mathbf{n}}$  should obey the following consistency condition:

If you along the boundary *C* in the direction of the arrow with the vector from your feet to your head having direction  $\hat{\mathbf{n}}$ , then the surface *S* is on your left hand side

What is the correct direction for the normal in each of the following examples?



Preview 000 Stokes' Theorem

Reminders

# Using Stokes' Theorem: Example 1

Let *S* be the part of the surface  $z = 5 - x^2 - y^2$  above the plane z = 1 and let

$$\mathbf{F}(x,y,z) = z^2\mathbf{i} - 3xy\mathbf{j} + x^3y^3\mathbf{k}.$$



According to Stokes' Theorem, we can instead compute  $\oint_C \mathbf{F} \cdot d\mathbf{r}$  where *C* is the oriented boundary of *S* 

What is C?

How can we (correctly) parametrize *C*?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

What is F along C?

Example courtesy of Paul's Online Math Notes, Examples for §17.5

Stokes' Theorem

Reminders

# Using Stokes Theorem: Example 2

Find  $\oint_C \mathbf{F} \cdot d\mathbf{r}$  if *C* is the triangle with vertices (0, 0, 3), (0, 2, 0), and (4, 0, 0) with orientation shown, and

$$\mathbf{F}(x,y,z) = (3yx^2 + z^3)\mathbf{i} + y^2\mathbf{j} + 4yx^2\mathbf{k}$$



Here we'll use Stokes' Theorem in the other direction

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

What is S?

How do we parameterize S?

What is the correct outward normal for S?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example courtesy of Paul's Online Math Notes, Examples for §17.5

# Using Stokes' Theorem: Example 3

Use Stokes' Theorem to find  $\oint_C \mathbf{F} \cdot d\mathbf{r}$  if  $\mathbf{F} = x^2 \mathbf{i} - 4z \mathbf{j} + xy \mathbf{k}$  and *C* is the circle of radius 1 at z = -3 and perpendicular to the *x*-axis with the orientation shown.

According to Stokes' Theorem, we can instead compute



if we can find an oriented surface *S* bounded by *C*.

What is the surface *S*?

How do we parametrize it?

Which way should the unit normal point?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example courtesy of Paul's Online Math Notes, Problems for §17.5



▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Reminders for the week of November 27–December 1

- Homework D2 on Gradient, Divergence, and Curl is due on Wednesday, November 29
- Homework D3 on the Divergence Theorem is due on Friday, December 1