Math 213 - Stokes' Theorem

Peter Perry

November 29, 2023

Unit D: Vector Calculus

- November 17 - Gradient, Divergence, Curl
- November 20 - The Divergence Theorem
- November 27 - Green's Theorem
- November 29 - Stokes' Theorem, Part I
- December 1 - Stokes' Theorem, Part II
- December 4 - Final Review
- December 6 - Final Review

Preview

Stokes' Theorem generalizes Green's Theorem to three dimensions.
Green's Theorem states that if R is a plane region with simple, piecewise smooth, closed boundary C, then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Stokes' Theorem states that if \mathbf{F} is a vector field and S is an oriented surface with simple, piecewise smooth boundary C, then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} d S
$$

where $\widehat{\mathbf{n}}$ is a unit normal to S oriented consistently with C.

Green versus Stokes

Consistency:
If you walk along C in the direction of the arrow, the region is to the left

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times F \cdot \widehat{\mathbf{n}} d S
$$

Consistency:
If you walk along C in the direction of the arrow with the vector from your feet to your head having direction $\widehat{\mathbf{n}}$, then S is on your left hand side

Oriented Surfaces

An oriented surface is a surface with a unit normal for each point on the surface that depends continuously on the point

An (in)famous example of a non-orientable surface is the Möbius strip (there's an app for that!)
If a surface has two sides, you can orient the surface by choosing one side to be the positive side. However, the Möbius strip has only one side!

Begin with a strip:

Oriented Surfaces

An oriented surface is a surface with a unit normal for each point on the surface that depends continuously on the point

An (in)famous example of a non-orientable surface is the Möbius strip (there's an app for that!)
If a surface has two sides, you can orient the surface by choosing one side to be the positive side. However, the Möbius strip has only one side!

Begin with a strip:

Twist the right-hand side and connect to the left to get a one-sided figure

Stokes' Theorem

Sir George Gabriel Stokes (1819-1903), Lucasian
Professor of Mathematics at Cambridge University

Theorem

Suppose that S is an oriented smooth surface (a unit normal $\widehat{\mathbf{n}}$ is chosen at each point and varies continuously) whose boundary C consists of a finite number of piecewise smooth curves oriented consistently with $\widehat{\mathbf{n}}$.

Suppose that \mathbf{F} is a vector field with continuous first partial derivatives at every point of S.

Then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} d S
$$

Orientation - Pick A Side

For Stokes' Theorem, the unit normal $\widehat{\mathbf{n}}$ should obey the following consistency condition:

If you along the boundary C in the direction of the arrow with the vector from your feet to your head having direction $\widehat{\mathbf{n}}$, then the surface S is on your left hand side

What is the correct direction for the normal in each of the following examples?

Using Stokes' Theorem: Example 1

Let S be the part of the surface $z=5-x^{2}-y^{2}$ above the plane $z=1$ and let

$$
\mathbf{F}(x, y, z)=z^{2} \mathbf{i}-3 x y \mathbf{j}+x^{3} y^{3} \mathbf{k}
$$

Find $\iint_{S} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} d S$.

According to Stokes' Theorem, we can instead compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the oriented boundary of S

What is C ?
How can we (correctly) parametrize C?

What is \mathbf{F} along C ?

Example courtesy of Paul's Online Math Notes, Examples for $\S 17.5$

Using Stokes Theorem: Example 2

Find $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ if C is the triangle with vertices $(0,0,3),(0,2,0)$, and $(4,0,0)$ with orientation shown, and

$$
\mathbf{F}(x, y, z)=\left(3 y x^{2}+z^{3}\right) \mathbf{i}+y^{2} \mathbf{j}+4 y x^{2} \mathbf{k}
$$

Here we'll use Stokes' Theorem in the other direction

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} d S
$$

What is S ?
How do we parameterize S ?
What is the correct outward normal for S ?

Example courtesy of Paul's Online Math Notes, Examples for $\S 17.5$

Using Stokes' Theorem: Example 3

Use Stokes' Theorem to find $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ if $\mathbf{F}=x^{2} \mathbf{i}-4 z \mathbf{j}+x y \mathbf{k}$ and C is the circle of radius 1 at $z=-3$ and perpendicular to the x-axis with the orientation shown.

According to Stokes' Theorem, we can instead compute

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} d S
$$

if we can find an oriented surface S bounded by C.

What is the surface S ?
How do we parametrize it?
Which way should the unit normal point?

Example courtesy of Paul's Online Math Notes, Problems for $\S 17.5$

Reminders for the week of November 27-December 1

- Homework D2 on Gradient, Divergence, and Curl is due on Wednesday, November 29
- Homework D3 on the Divergence Theorem is due on Friday, December 1

