Unit D	Stokes' Th
0	0000

Summing Up

Reminders

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Math 213 - Stokes' Theorem

Peter Perry

November 29, 2023

Unit D

More Practice

Summing Up 0000 Reminders

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Unit D: Vector Calculus

- November 17 Gradient, Divergence, Curl
- November 20 The Divergence Theorem
- November 27 Green's Theorem
- November 29 Stokes' Theorem, Part I
- December 1 Stokes' Theorem, Part II
- December 4 Final Review
- December 6 Final Review

Unit D o	Stokes' Theorem	More Practice 000	Summing Up 00000	Reminders	0
		Stokes' Th	leorem		

Theorem

Suppose that *S* is an oriented smooth surface (a unit normal $\hat{\mathbf{n}}$ is chosen at each point and varies continuously) whose boundary *C* consists of a finite number of piecewise smooth curves oriented consistently with $\hat{\mathbf{n}}$.

Suppose that **F** is a vector field with continuous first partial derivatives at every point of *S*.

Then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

More Practice 000 Summing Up 0000 Reminders

Green Versus Stokes

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

Suppose that *S* is a domain in the *xy* plane with boundary *C*, and

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}.$$

Then

$$\nabla \times \mathbf{F} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

and

 $\widehat{\mathbf{n}}=\mathbf{k}$

so we get

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

which is Green's Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Summing Up 00000 Reminders

Stokes Versus Stokes

Suppose that S_1 and S_2 are oriented surfaces with the same oriented boundary *C*, and **F** is a vector field. Then

$$\int_{S_1} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS = \int_{S_2} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS = \oint_C \mathbf{F} \cdot d\mathbf{r}$$

Why is this true?

What is $\int_{S_2} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS - \int_{S_1} \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$?

Remember that for any volume *V* bounded by a closed surface *S*,

$$\iint_{\partial V} \mathbf{G} \cdot \widehat{\mathbf{n}} \, dS = \iiint_{V} \nabla \cdot \mathbf{G} \, dV$$

(the divergence theorem) and that $\nabla \cdot (\nabla \times \mathbf{F}) = 0$ for any vector field \mathbf{F} .

More Practice

Summing Up 0000 Reminders

Stokes Versus Curl

Suppose **v** is the velocity field of a fluid. Suppose D_{ε} is a disc of size ε centered at P_0 with unit normal $\hat{\mathbf{n}}$, and let C_{ε} be its boundary.

By Stokes' Theorem,

$$\int_{D_{\varepsilon}} \nabla \times \mathbf{v} \cdot \widehat{\mathbf{n}} \, dS = \oint_{C_{\varepsilon}} \mathbf{v} \cdot d\mathbf{r}$$

or

$$\pi\varepsilon^2(\nabla\times\mathbf{v})(P_0)\cdot\widehat{\mathbf{n}}\simeq\oint_{C_\varepsilon}\mathbf{v}\cdot d\mathbf{r}$$

The right-hand side is the *circulation* of the vector field **v** around C_{ε} , and is approximately

 $2\pi\varepsilon v_T = 2\pi\varepsilon(\varepsilon\Omega)$

where v_T is the average tangential velocity and Ω is the angular velocity in the $\hat{\mathbf{n}}$ direction. So

$$\begin{aligned} \pi \varepsilon^2 (\nabla \times \mathbf{v})(P_0) &\simeq 2\pi \varepsilon^2 \Omega \\ & \frac{1}{2} (\nabla \times \mathbf{v})(P_0) \cdot \widehat{\mathbf{n}} = \Omega \\ & \stackrel{\scriptstyle{\scriptstyle{(1)}}}{\xrightarrow{\scriptstyle{(1)}}} \cdot \stackrel{\scriptstyle{\scriptstyle{(2)}}}{\xrightarrow{\scriptstyle{(2)}}} \cdot \stackrel{\scriptstyle{\scriptstyle{(2)}}}{\xrightarrow{\scriptstyle{(2)}}} \cdot \stackrel{\scriptstyle{\scriptstyle{(2)}}}{\xrightarrow{\scriptstyle{(2)}}} \circ \stackrel{\scriptstyle{\scriptstyle{(2)}}}$$

Puzzler #1

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

Find $\iint_{c} (\nabla \times \mathbf{F}) \cdot \widehat{\mathbf{n}} \, dS$ if $\mathbf{F} = (z - y)\mathbf{i} + x\mathbf{j} - x\mathbf{k}$ and *S* is the hemisphere

$$x^2 + y^2 + z^2 = 4, \quad z \ge 0$$

oriented so that surface normals point away from the center of the sphere.

What is *C*, the boundary of *S*?

How do we parametrize it with the correct orientation?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is **F** restricted to C?

More Practice

Summing Up

Reminders

Puzzler #2

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

A vector field **F** has $(\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} = 10$ inside the domain shown, where C_1 has radius 5 and the smaller circles C_2 , C_3 and C_4 have radius 1. If $\oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = 3\pi$ and $\oint_{C_3} \mathbf{F} \cdot d\mathbf{r} = 2\pi$, what is $\oint_{C_1} \mathbf{F} \cdot d\mathbf{r}$?

What does this problem have to do with Stokes' Theorem?

What is $\iint (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \, dS$ over the shaded region?

What does Stokes' Theorem say about the relation between $\oint_{C_1} \mathbf{F} \cdot d\mathbf{r}$ and the other line integrals?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS$$

Suppose that **F** is a conservative vector field, i.e., $\mathbf{F} = \nabla \varphi$ for a scalar function φ . What does Stokes' Theorem allow to conclude about $\oint_C \mathbf{F} \cdot d\mathbf{r}$ for any simple closed curve *C*? It may help to remember that, for any function φ ,

$$\nabla \times (\nabla \varphi) = \mathbf{0}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Three Kinds of Differentiation, Part I

The *gradient* of a function φ is a vector field

$$\nabla \varphi(x, y, z) = \left\langle \frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z} \right\rangle$$

which points in the direction of greatest change of φ . If **F** = $\nabla \varphi$ for some potential function φ , then **F** is a *conservative* vector field

The *divergence* of a vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a scalar function

$$\nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

which measures the next flux of the vector field per unit area per unit time out of a small ball.

▲□▶▲□▶▲□▶▲□▶ = つへぐ

Unit D	Stokes' Theorem	More Practice	Summing Up	Reminders
0	0000	000	00000	

Three Kinds of Differentiation, Part II

The *curl* of a vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a new vector field

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

which measures the magnitude and direction of angular velocity if **F** is interpreted as a velocity field.

it D	Stokes' Theore
	0000

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Scalar and Vector Potentials

A vector field **F** is called *irrotational* (new word!) if $\nabla \times \mathbf{F} = \mathbf{0}$. In this case, $\mathbf{F} = \nabla \varphi$ for a scalar function φ called the potential of **F**. The condition $\nabla \times \mathbf{F} = \mathbf{0}$ means that there is no infinitesimal rotation at any point.

A vector field **B** is called *solenoidal* (new word!) if $\nabla \cdot \mathbf{B} = 0$. In this case $\mathbf{B} = \nabla \times \mathbf{A}$ for a vector field **A** called the *vector potential* for **B**. The condition $\nabla \cdot \mathbf{B} = 0$ means that there are no sources or sinks.

Summing Up

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Three Big Theorems, Part I

The Divergence Theorem If *V* is a bounded volume with piecewise smooth boundary *S*, and **F** is a vector field with continuous partial derivatives throughout *V*, then

$$\iint_{S} \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS = \iiint_{V} (\nabla \cdot \mathbf{F}) \, dV$$

Green's Theorem If *S* is a bounded domain in the *xy* plane with piecewise smooth boundary *C*, and $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ is a vector field with continuous first partial derivatives throughout *S*, then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

where *C* is oriented so that *S* is always "to the left"

Summing Up

Reminders

Three Big Theorems, Part II

Stokes' Theorem If *S* is a bounded, oriented surface with piecewise smooth boundary *C*,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \widehat{\mathbf{n}} \, dS$$

where **n** is chosen so that the path *C* is traversed with surface to the left by a walker standing in the direction of **n**

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Reminders for the week of November 27–December 1

• Homework D3 on the Divergence Theorem is due today, Friday, December 1

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()