Unit A 00 Jnit B 00000 Unit C

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

00000

Math 213 - Semester Review, Part I

Peter Perry

December 4, 2023

t B 00000 Unit C

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

00000

Unit D: Vector Calculus

- November 17 Gradient, Divergence, Curl
- November 20 The Divergence Theorem
- November 27 Green's Theorem
- November 29 Stokes' Theorem, Part I
- December 1 Stokes' Theorem, Part II
- December 4 Final Review
- December 6 Final Review

Unit C

▲□▶▲□▶▲□▶▲□▶ □ のQで

00000

Final Exam Reminders

Your final exam takes place on Thursday, December 14, 6:00 PM-8:00 PM

Section 011	CP 139
Sections 012-014	CP 153

The final exam will consist of:

- 10 multiple choice questions covering Units A-D
- 4 free response questions focussing on Unit D together with material on conservative vector fields, parametrized surfaces, and surface integrals from from Unit C.

You are allowed one sheet of notes on notebook-sized paper. Notes on both sides are OK.

it B 00000 Unit C

00000

The Big Picture

What was this course about?

- Unit A Three-dimensional space, vector algebra, equations of lines and planes, space curves, quadric surfaces
- Unit B Differential calculus for functions of several variables: partial derivatives, chain rule, tangent planes and normal lines, the gradient, maxima and minima, Lagrange multiplier method
- Unit C Integral calculus for functions of several variables: double integrals in Cartesian and polar coordinates, triple integrals in Cartesian, cylindrical, spherical coordinates, general coordinate changes.
 "Preview" topics: vector fields, line integrals, conservative vector fields. Integrals of scalar functions and vector fields over parametrized surfaces.
- Unit D Vector Calculus: gradient, divergence, and curl. "Fundamental theorems" of vector calculus: the divergence theorem, Green's theorem, and Stokes' Theorem.

Unit A

t B 00000 Unit C

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

00000

Vector Algebra

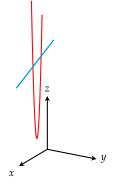
Can you fill in the following facts about basic vector operations?

Operation	Meaning	Uses
Dot product a · b	$ \mathbf{a} \mathbf{b} \cos\theta$	Test for Define projection
Cross product $\mathbf{a} \times \mathbf{b}$	$ \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta$	Test for Area of

Triple product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ Signed volume of . . .

How do you compute each?

Do the following curves collide? Do they intersect?



$$\mathbf{r}(s) = 2s\mathbf{i} + (s-1)\mathbf{j} + (s^2+1)\mathbf{k}$$
$$\mathbf{w}(t) = (t^2+2)\mathbf{i} + (t^2-2)\mathbf{j} + (t^2+6)\mathbf{k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Overview	Unit A	Unit B	Unit C
00	00	•00000	00000

Tangent Planes, Normal Lines, Linear Approximation

1 Find the equation of the tangent plane to the graph of $z = e^{x-y}$ at (2, 2, 1).

z = 1 + x - y

2 Find the linear approximation to the function f(x, y) = (y - 1)/(x + 1) at (0,0).

$$f_x(x,y) = -\frac{y-1}{(x+1)^2}$$
 $f_y(x,y) = \frac{1}{x+1}$

SO

 $L(x,y) = L(0,0) + f_x(0,0)x + f_y(0,0)y = -1 + x + y$

3 Find an equation of the normal line to $z = 2x^2 - y^2 - 5y$ at (1, 2, -4). Find the gradient of $f(x, y, z) = z - 2x^2 + y^2 + 5y$ at (1, 2, -4):

$$\nabla f(x, y, z) = \langle -4x, 2y + 5, 1 \rangle$$
$$\nabla f(1, 2, -4) = \langle -4, 9, 1 \rangle$$

 \mathbf{SO}

$$\mathbf{r}(t) = \langle 1 - 4t, 2 + 9t, -4 + t \rangle$$

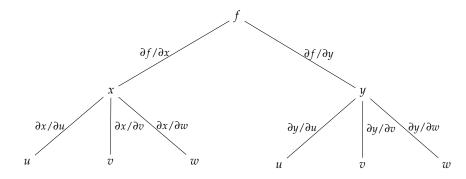
Differential Calculus - Chain Rule

What is the chain rule tree for f(x, y) if x and y are functions of u, v, w? How do you compute $\frac{\partial f}{\partial v}$?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Differential Calculus - Chain Rule

What is the chain rule tree for f(x, y) if x and y are functions of u, v, w? How do you compute $\frac{\partial f}{\partial v}$?



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Overview	Unit A	Unit B	Unit C
00	00	000000	00000

Differential Calculus - Gradient

Recall that

$$(\nabla f)(x,y,z) = \frac{\partial f}{\partial x}(x,y,z)\mathbf{i} + \frac{\partial f}{\partial y}(x,y,z)\mathbf{j} + \frac{\partial f}{\partial z}(x,y,z)\mathbf{k}$$

In which direction does $(\nabla f)(x, y, z)$ point?

What is the magnitude of $(\nabla f)(x, y, z)$?

If **u** is a unit vector, how can you use the gradient to find $D_{\mathbf{u}}f(a, b, c)$?

If f(x, y, z) has a local maximum or local minimum at (a, b, c), what is $(\nabla f)(a, b, c)$?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Differential Calculus - Maxima and Minima

Suppose that f(x, y) is a function of two variables and that

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0.$$

How can you tell whether (a, b) is a local maximum, a local minimum, or a saddle point?

$$D = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(a,b) & \frac{\partial^2 f}{\partial x \partial y}(a,b) \\ \frac{\partial^2 f}{\partial y \partial x}(a,b) & \frac{\partial^2 f}{\partial y^2}(a,b) \end{vmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Туре	$f_{xx}(a,b)$	D
Maximum	< 0	> 0
Minimum	> 0	> 0
Saddle	•••	< 0

Differential Calculus - Maxima and Minima

Find the critical points of the function

$$f(x,y) = (y-2)x^2 - y^2$$

and determine whether they are local maxima, local minima, or neither.

$$f_x(x,y) = 2x(y-2), \quad f_y(x,y) = x^2 - 2y$$

so critical points occur at (0,0), (2,2) and (-2,2). Next,

$$D(x,y) = \begin{vmatrix} 2(y-2) & 2x \\ 2x & -2 \end{vmatrix} = 8 - 4y - 4x^2$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

x	y	$f_{xx}(x,y)$	D(x,y)	Туре
0	0	-4	8	Local Maximum
2	2	0	-16	Saddle
-2	2	0	-16	Saddle

Source: Paul's Online Math Notes, §14.3, Example 1

Differential Calculus - Lagrange Method

To find extrema of a function

f(x, y) Objective Function

subject to

g(x, y) = 0 Constraint Function

solve the Lagrange equations

$$\begin{aligned} (\nabla f)(x,y) &= \lambda(\nabla g)(x,y) \\ g(x,y) &= 0 \end{aligned}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for (x, y) and test the resulting points by finding f(x, y) for each solution.

Double Integrals: Up-Down, Left-Right

Set up but do not evaluate the following double integrals:

- $\iint_D (2yx^2 + 9y^3) dA$ if *D* is the region bounded by $y = \frac{2}{3}x$ and $y = 2\sqrt{x}$
- $\iint_D (10x^2y^3 6) dA$ if *D* is the region bounded by $x = -2y^2$ and $x = y^3$

Please see the link below for solutions

Source: Paul's Online Math Notes, examples for §15.3

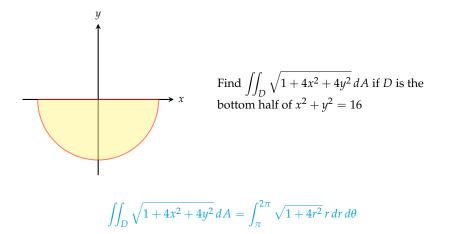
Unit A

it B 0000 Unit C

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

00000

Double Integrals: Polar



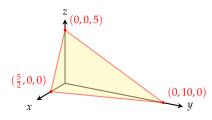
Source: Paul's Online Math Notes, Practice Problems for §15.4

it B 00000 Unit C

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

00000

Triple Integrals: Cartesian



Find $\iiint_E 6z^2 dV$ if *E* is the region in the first octant below the plane 4x + y + 2z = 10.

See the reference below for solutions

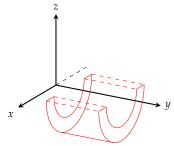
Source: Paul's Online Math Notes, practice problems for §15.5

Unit C

00000

Triple Integrals: Cylindrical

Set up but do not evaluate the triple integral $\iiint_E e^{-x^2-z^2} dV$ if *E* is the region between the two cylinders $x^2 + z^2 = 4$ and $x^2 + z^2 = 9$ with $1 \le y \le 5$ and $z \le 0$.



The region is described by

 $\pi \le \theta \le 2\pi$, $2 \le r \le 3$, $1 \le y \le 5$

where $x = r \cos \theta$, $z = r \sin \theta$. The triple integral is

$$\int_{\pi}^{2\pi} \int_{2}^{3} \int_{1}^{5} e^{-r^{2}} dy \, r \, dr \, d\theta$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Source: Paul's Online Math Notes, Practice Problems for §15.6

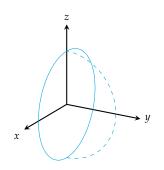
it B 00000 Unit C

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

0000

Triple Integrals: Spherical

Find $\iiint_E (x^2 + y^2) dV$ if *E* is the part of the sphere of radius 2 centered at (0,0,0) with $y \ge 0$.



The region is described by

 $0 \le
ho \le 2$, $0 \le heta \le \pi$, $0 \le heta \le \pi$

In spherical coordinates

 $x^2 + y^2 = \rho^2 \sin^2 \varphi$

So the integral is given by

 $\int_0^{\pi} \int_{\pi}^{2\pi} \int_0^2 \rho^2 \sin^2 \varphi \ \rho^2 \sin \varphi \ d\rho \ d\theta \ d\varphi$

Source: Paul's Online Math Notes, Practice Problems for §15.7