Math 213 - Semester Review, Part I

Peter Perry

December 4, 2023

Unit D: Vector Calculus

- November 17 - Gradient, Divergence, Curl
- November 20 - The Divergence Theorem
- November 27 - Green's Theorem
- November 29 - Stokes' Theorem, Part I
- December 1 - Stokes' Theorem, Part II
- December 4 - Final Review
- December 6 - Final Review

Final Exam Reminders

Your final exam takes place on Thursday, December 14, 6:00 PM-8:00 PM

Section 011	CP 139
Sections 012-014	CP 153

The final exam will consist of:

- 10 multiple choice questions covering Units A-D
- 4 free response questions focussing on Unit D together with material on conservative vector fields, parametrized surfaces, and surface integrals from from Unit C.

You are allowed one sheet of notes on notebook-sized paper. Notes on both sides are OK.

The Big Picture

What was this course about?
Unit A Three-dimensional space, vector algebra, equations of lines and planes, space curves, quadric surfaces
Unit B Differential calculus for functions of several variables: partial derivatives, chain rule, tangent planes and normal lines, the gradient, maxima and minima, Lagrange multiplier method
Unit C Integral calculus for functions of several variables: double integrals in Cartesian and polar coordinates, triple integrals in Cartesian, cylindrical, spherical coordinates, general coordinate changes. "Preview" topics: vector fields, line integrals, conservative vector fields. Integrals of scalar functions and vector fields over parametrized surfaces.
Unit D Vector Calculus: gradient, divergence, and curl. "Fundamental theorems" of vector calculus: the divergence theorem, Green's theorem, and Stokes' Theorem.

Vector Algebra

Can you fill in the following facts about basic vector operations?
Operation
Dot product $\mathbf{a} \cdot \mathbf{b}$
$|\mathbf{a}||\mathbf{b}| \cos \theta$
$|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta \quad$ Test for \ldots
Area of ...

Triple product $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \quad$ Signed volume of \ldots

How do you compute each?

Curves

Do the following curves collide? Do they intersect?

$$
\begin{aligned}
\mathbf{r}(s) & =2 s \mathbf{i}+(s-1) \mathbf{j}+\left(s^{2}+1\right) \mathbf{k} \\
\mathbf{w}(t) & =\left(t^{2}+2\right) \mathbf{i}+\left(t^{2}-2\right) \mathbf{j}+\left(t^{2}+6\right) \mathbf{k}
\end{aligned}
$$

Tangent Planes, Normal Lines, Linear Approximation

(1) Find the equation of the tangent plane to the graph of $z=e^{x-y}$ at $(2,2,1)$.

$$
z=1+x-y
$$

(2) Find the linear approximation to the function $f(x, y)=(y-1) /(x+1)$ at $(0,0)$.

$$
f_{x}(x, y)=-\frac{y-1}{(x+1)^{2}} \quad f_{y}(x, y)=\frac{1}{x+1}
$$

so

$$
L(x, y)=L(0,0)+f_{x}(0,0) x+f_{y}(0,0) y=-1+x+y
$$

(3) Find an equation of the normal line to $z=2 x^{2}-y^{2}-5 y$ at $(1,2,-4)$. Find the gradient of $f(x, y, z)=z-2 x^{2}+y^{2}+5 y$ at $(1,2,-4)$:

$$
\begin{gathered}
\nabla f(x, y, z)=\langle-4 x, 2 y+5,1\rangle \\
\nabla f(1,2,-4)=\langle-4,9,1\rangle
\end{gathered}
$$

so

$$
\mathbf{r}(t)=\langle 1-4 t, 2+9 t,-4+t\rangle
$$

Differential Calculus - Chain Rule

What is the chain rule tree for $f(x, y)$ if x and y are functions of u, v, w ? How do you compute $\frac{\partial f}{\partial v}$?

Differential Calculus - Chain Rule

What is the chain rule tree for $f(x, y)$ if x and y are functions of u, v, w ? How do you compute $\frac{\partial f}{\partial v}$?

Differential Calculus - Gradient

Recall that

$$
(\nabla f)(x, y, z)=\frac{\partial f}{\partial x}(x, y, z) \mathbf{i}+\frac{\partial f}{\partial y}(x, y, z) \mathbf{j}+\frac{\partial f}{\partial z}(x, y, z) \mathbf{k}
$$

In which direction does $(\nabla f)(x, y, z)$ point?
What is the magnitude of $(\nabla f)(x, y, z)$?
If \mathbf{u} is a unit vector, how can you use the gradient to find $D_{\mathbf{u}} f(a, b, c)$?
If $f(x, y, z)$ has a local maximum or local minimum at (a, b, c), what is $(\nabla f)(a, b, c)$?

Differential Calculus - Maxima and Minima

Suppose that $f(x, y)$ is a function of two variables and that

$$
\frac{\partial f}{\partial x}(a, b)=\frac{\partial f}{\partial y}(a, b)=0 .
$$

How can you tell whether (a, b) is a local maximum, a local minimum, or a saddle point?

$$
D=\left|\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial x \partial y}(a, b) \\
\frac{\partial^{2} f}{\partial y \partial x}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right|
$$

Type	$f_{x x}(a, b)$	D
Maximum	<0	>0
Minimum	>0	>0
Saddle	\cdots	<0

Differential Calculus - Maxima and Minima

Find the critical points of the function

$$
f(x, y)=(y-2) x^{2}-y^{2}
$$

and determine whether they are local maxima, local minima, or neither.

$$
f_{x}(x, y)=2 x(y-2), \quad f_{y}(x, y)=x^{2}-2 y
$$

so critical points occur at $(0,0),(2,2)$ and $(-2,2)$. Next,

$$
D(x, y)=\left|\begin{array}{cc}
2(y-2) & 2 x \\
2 x & -2
\end{array}\right|=8-4 y-4 x^{2}
$$

x	y	$f_{x x}(x, y)$	$D(x, y)$	Type
0	0	-4	8	Local Maximum
2	2	0	-16	Saddle
-2	2	0	-16	Saddle

Source: Paul's Online Math Notes, §14.3, Example 1

Differential Calculus - Lagrange Method

To find extrema of a function

$$
f(x, y) \quad \text { Objective Function }
$$

subject to

$$
g(x, y)=0 \quad \text { Constraint Function }
$$

solve the Lagrange equations

$$
\begin{aligned}
(\nabla f)(x, y) & =\lambda(\nabla g)(x, y) \\
g(x, y) & =0
\end{aligned}
$$

for (x, y) and test the resulting points by finding $f(x, y)$ for each solution.

Double Integrals: Up-Down, Left-Right

Set up but do not evaluate the following double integrals:

- $\iint_{D}\left(2 y x^{2}+9 y^{3}\right) d A$ if D is the region bounded by $y=\frac{2}{3} x$ and $y=2 \sqrt{x}$
- $\iint_{D}\left(10 x^{2} y^{3}-6\right) d A$ if D is the region bounded by $x=-2 y^{2}$ and $x=y^{3}$

Please see the link below for solutions

Source: Paul's Online Math Notes, examples for $\S 15.3$

Double Integrals: Polar

Find $\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d A$ if D is the bottom half of $x^{2}+y^{2}=16$

$$
\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d A=\int_{\pi}^{2 \pi} \sqrt{1+4 r^{2}} r d r d \theta
$$

Source: Paul's Online Math Notes, Practice Problems for $\S 15.4$

Triple Integrals: Cartesian

Find $\iiint_{E} 6 z^{2} d V$ if E is the region in the first octant below the plane $4 x+y+2 z=10$.

See the reference below for solutions

Source: Paul's Online Math Notes, practice problems for $\S 15.5$

Triple Integrals: Cylindrical

Set up but do not evaluate the triple integral $\iiint_{E} e^{-x^{2}-z^{2}} d V$ if E is the region between the two cylinders $x^{2}+z^{2}=4$ and $x^{2}+z^{2}=9$ with $1 \leq y \leq 5$ and $z \leq 0$.

$$
\begin{aligned}
& \text { The region is described by } \\
& \pi \leq \theta \leq 2 \pi, \quad 2 \leq r \leq 3, \quad 1 \leq y \leq 5 \\
& \text { where } x=r \cos \theta, z=r \sin \theta \text {. The } \\
& \text { triple integral is }
\end{aligned}
$$

$$
\int_{\pi}^{2 \pi} \int_{2}^{3} \int_{1}^{5} e^{-r^{2}} d y r d r d \theta
$$

Source: Paul's Online Math Notes, Practice Problems for $\S 15.6$

Triple Integrals: Spherical

Find $\iiint_{E}\left(x^{2}+y^{2}\right) d V$ if E is the part of the sphere of radius 2 centered at $(0,0,0)$ with $y \geq 0$.

The region is described by

$$
0 \leq \rho \leq 2, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \varphi \leq \pi
$$

In spherical coordinates

$$
x^{2}+y^{2}=\rho^{2} \sin ^{2} \varphi
$$

So the integral is given by

$$
\int_{0}^{\pi} \int_{\pi}^{2 \pi} \int_{0}^{2} \rho^{2} \sin ^{2} \varphi \rho^{2} \sin \varphi d \rho d \theta d \varphi
$$

Source: Paul's Online Math Notes, Practice Problems for $\S 15.7$

