Math 213 - Semester Review, Part II

Peter Perry

December 6, 2023

Unit D: Vector Calculus

- November 17 - Gradient, Divergence, Curl
- November 20 - The Divergence Theorem
- November 27 - Green's Theorem
- November 29 - Stokes' Theorem, Part I
- December 1 - Stokes' Theorem, Part II
- December 4 - Final Review
- December 6 - Final Review

Final Exam Reminders

Your final exam takes place on Thursday, December 14, 6:00 PM-8:00 PM

Section 011	CP 139
Sections 012-014	CP 153

The final exam will consist of:

- 10 multiple choice questions covering Units A-D
- 4 free response questions focussing on Unit D together with material on conservative vector fields, parametrized surfaces, and surface integrals from from Unit C.

You are allowed one sheet of notes on notebook-sized paper. Notes on both sides are OK.

The Big Picture

What was this course about?
Unit A Three-dimensional space, vector algebra, equations of lines and planes, space curves, quadric surfaces
Unit B Differential calculus for functions of several variables: partial derivatives, chain rule, tangent planes and normal lines, the gradient, maxima and minima, Lagrange multiplier method
Unit C Integral calculus for functions of several variables: double integrals in Cartesian and polar coordinates, triple integrals in Cartesian, cylindrical, spherical coordinates, general coordinate changes. "Preview" topics: vector fields, line integrals, conservative vector fields. Integrals of scalar functions and vector fields over parametrized surfaces.
Unit D Vector Calculus: gradient, divergence, and curl. "Fundamental theorems" of vector calculus: the divergence theorem, Green's theorem, and Stokes' Theorem.

Scalar Line Integrals

If C is parametrized by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, a \leq t \leq b$ and $f(x, y, z)$ is a scalar function

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Example: Set up but don't evaluate $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$ for

$$
C: x=t, \quad y=\cos 2 t, \quad z=\sin 2 t
$$

Vector Field Line Integrals

If C is parametrized by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, a \leq t \leq b$ and $\mathbf{F}(x, y, z)$ is a vector field, then

$$
\int_{C} \mathbf{F}(x, y, z) \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Example: Set up but don't evaluate $\int_{C}\left(\left(x^{2}+y^{2}\right) \mathbf{i}+x z \mathbf{j}+(y+z) \mathbf{k}\right) \cdot d \mathbf{r}$ if

$$
C: x=t^{2} \quad y=t^{3}, \quad z=-2 t
$$

Time Out: Parametrized Surfaces I

A parametrized surface is a surface S given by a function

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

for (u, v) in a domain D of the $u v$ plane.
Example: The hemisphere of radius 2 above the $x y$ plane is given by

$$
\begin{aligned}
\mathbf{r}(u, v) & =2 \sin (u) \cos (v) \mathbf{i}+2 \sin (u) \sin (v) \mathbf{j}+2 \cos (u) \\
(u, v) & \in\{(u, v): 0 \leq u \leq \pi, 0 \leq v \leq 2 \pi\}
\end{aligned}
$$

Time Out: Parameterized Surfaces II

A parametrized surface is a surface S given by a function

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

for (u, v) in a domain D of the $u v$ plane.
If

$$
\mathbf{r}_{u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k}, \quad \mathbf{r}_{v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k}
$$

then the surface element is

$$
d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

and the unit normal is

$$
\widehat{\mathbf{n}}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

The vector surface element is

$$
d \mathbf{S}=\widehat{\mathbf{n}} d S=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}\left|\mathrm{r}_{u} \times \mathbf{r}_{v}\right| d u d v=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
$$

Scalar Surface Integrals

If S is parametrized by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in R
$$

and $f(x, y, z)$ is a scalar function, then

$$
\iint_{S} f(x, y, z) d S=\iint_{R} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

Example: Find $\iint_{S} x y z d S$ if

$$
\mathbf{r}(u, v)=\langle u \cos v, u \sin v, u\rangle, \quad 0 \leq u \leq 1, \quad 0 \leq v \leq \pi / 2
$$

Vector Surface Integrals

If S is parametrized by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in R
$$

and $\mathbf{F}(x, y, z)$ is a vector field, then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
$$

Example: Set up but do not evaluate the surface integral

$$
\iint_{S}(x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}) \cdot d \mathbf{S}
$$

if S is the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leq x, y \leq 1$ and has upward orientation.

See next slide for graphs!

Vector Surface Integrals

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
$$

Example: Set up but do not evaluate the surface integral

$$
\iint_{S}(x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}) \cdot d \mathbf{S}
$$

if S is the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leq x, y \leq 1$ and has upward orientation.

What do Line and Surface Integrals Measure?

If C is a closed,simple path, then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

is called the circulation of the vector field \mathbf{F} around the curve C

If S is an oriented, closed surface with piecewise smooth boundary, and \mathbf{n} is an outward normal, then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

is the flux of the vector field out of the closed surface S

The circulation enters in Stokes' Theorem and the flux enters in the Divergence Theorem.

Gradient, Divergence, and Curl

The gradient

$$
(\nabla f)(x, y, z)=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

gives the magnitude and direction of greatest change of f at (x, y, z)
If

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

is a vector field:
The divergence

$$
(\nabla \cdot \mathbf{F})=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

is the net flux of \mathbf{F} out of an infinitesimal sphere per unit time per unit volume

Gradient, Divergence, and Curl

The curl of a vector field

$$
\mathbf{v}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

is

$$
(\nabla \times \mathbf{v})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial f}{\partial z} \\
P & Q & R
\end{array}\right|
$$

If $\widehat{\mathbf{n}}$ is a unit vector, then

$$
(\nabla \times \mathbf{v})(x, y, z) \cdot \widehat{\mathbf{n}}
$$

measures twice the angular velocity of a small paddlewheel placed at (x, y, z) with axis of rotation in the $\widehat{\mathbf{n}}$ direction

Divergence Theorem

Suppose that V is a bounded volume enclosed by an oriented closed surface S. Then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{V} \nabla \cdot \mathbf{F} d V
$$

Remember that

$$
d \mathbf{S}=\widehat{\mathbf{n}} d S=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
$$

for a parametrization of S, where $\mathbf{r}_{u} \times \mathbf{r}_{v}$ points in the direction of the outward normal

Green's Theorem

If D is a domain with oriented piecewise smooth boundary C, and $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a vector field, then

$$
\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

where the boundary is oriented with "surface to the left"

Stokes' Theorem

If S is an oriented surface with oriented boundary C, and $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field, then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \widehat{\mathbf{n}} d S
$$

where C is oriented so that a walker with the orientation of \mathbf{n} walks around S with surface to the left.

It's been great to work with you. . .
Good Luck on Finals!

