# Math 213 - Lines in Space 

Peter Perry

September 1, 2023

## Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13 - Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces


## Introducing Bill the Heron



## Equations of Lines

A line is space is determined by:


- A point $P$ on the line
- A vector $\mathbf{d}$, the displacement vector, that points along the line

In the line shown,

$$
\begin{aligned}
& P=P(3 / 2,1,1) \\
& \mathbf{d}=(1 / 4,-1,1)
\end{aligned}
$$

How can we write an equation for this line?

## Equations of Lines



You can get from $P$ to any other point $Q$ on the line by a vector displacement $t \mathbf{d}$ for some real number $t$

## Equations of Lines



You can get from $P$ to any other point $Q$ on the line by a vector displacement $t \mathbf{d}$ for some real number $t$

If

$$
P=P(3 / 2,1,1)
$$

and

$$
\mathbf{d}=\langle 1 / 4,-1,1\rangle
$$

the coordinates of $Q$ are given by

$$
\begin{aligned}
& x=3 / 2+(1 / 4) t \\
& y=1+(-1) t \\
& z=1+(1) t
\end{aligned}
$$

## The Parametric Equations of a Line



The parametric equations of a line are:

$$
\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=t\langle a, b, c\rangle
$$

or

$$
\begin{aligned}
& x-x_{0}=t a \\
& y-y_{0}=t b \\
& z-z_{0}=t c
\end{aligned}
$$

## Puzzler \#1



The planes

$$
\begin{array}{r}
x+y+z=2 \\
x-2 y=0
\end{array}
$$

are shown at left. Find the equation of their line of intersection.

We can use $z$ as the parameter and solve for $x$ and $y$ :

$$
\begin{aligned}
x+y-2 & =-z \quad \Rightarrow \\
x & =2 y
\end{aligned}
$$

$$
\begin{aligned}
& x=-\frac{2}{3} z+\frac{4}{3} \\
& y=-\frac{1}{3} z+\frac{2}{3}
\end{aligned}
$$

so $\left\langle x-\frac{4}{3}, y-\frac{2}{3}, z\right\rangle=z\left\langle-\frac{2}{3},-\frac{1}{3}, 1\right\rangle$

## Puzzler \#2



A displacement vector for the line is

$$
\mathrm{d}=\mathrm{n}_{1} \times \mathrm{n}_{2}=2 \mathrm{i}+\mathrm{j}-3 \mathrm{k}
$$

and the line passes through the point $(1 / 2,3 / 2,0)$ (use the equations above with $z=0$ )

The planes

$$
\begin{array}{r}
x+y+z=2 \\
x-2 y=0
\end{array}
$$

have normal vectors

$$
\begin{aligned}
& \mathbf{n}_{1}=\langle 1,1,1\rangle \\
& \mathbf{n}_{2}=\langle 1,-2,0\rangle
\end{aligned}
$$

Find another equation for the line of intersection.

## So we get

$$
\left\langle x-\frac{1}{2}, y-\frac{3}{2}, z\right\rangle=t\langle 2,1,-3\rangle
$$

or
$x-\frac{1}{2}=2 t, y-\frac{3}{2}=t, z=-3 t$.

## Puzzler \#3



Find the distance from the point

$$
P=(1,3,2)
$$

to the line

$$
L:\langle x-1, y-2, z-1\rangle=t\langle 1,0,1\rangle
$$

Another form of the equation for the line is

$$
x(t)=1+t, \quad y(t)=2, \quad z(t)=1+t
$$

The squared distance from $P$ to any point on the line is

$$
\begin{aligned}
f(t) & =(1-(1+t))^{2}+(3-2)^{2}+(2-(1+t))^{2} \\
& =t^{2}+1+(1-t)^{2} \\
& =2 t^{2}-2 t+2
\end{aligned}
$$

Since $f^{\prime}(t)=4 t-2$, the minimum value occurs at $t=2$ where $f(2)=6$. Hence the distance from $P$ to the line is $\sqrt{6}$.

## What Can Two Lines Do?



In three dimensions, lines can be:

- Parallel

What Can Two Lines Do?


In three dimensions, lines can be:

- Parallel
- Intersecting, or


## What Can Two Lines Do?



In three dimensions, lines can be:

- Parallel
- Intersecting, or
- Skew


## What Can Two Lines Do?

$$
\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=t\langle a, b, c\rangle=t \mathbf{d}
$$



How do you tell when two lines are:

- parallel - parallel vectors


## What Can Two Lines Do?

$$
\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=t\langle a, b, c\rangle=t \mathbf{d}
$$



How do you tell when two lines are:

- parallel - parallel vectors
- intersecting - point in common


## What Can Two Lines Do?

$$
\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=t\langle a, b, c\rangle=t \mathbf{d}
$$



How do you tell when two lines are:

- parallel - parallel vectors
- intersecting - point in common
- skew - neither parallel nor intersecting


## Finding out What Two Lines Do

Two lines are:

- parallel if the $\mathbf{d}$ vectors are parallel
- intersecting if they have a point in common
- skew if none of the above

Are the two lines

$$
\begin{array}{ll}
x-1=2 s & x-3=4 t \\
y-2=-s & y-4=-2 t \\
z-3=3 s & z-5=6 t
\end{array}
$$

parallel, intersecting, or skew?
The displacement vectors for the two lines are

$$
\mathbf{d}_{1}=\langle 2,-1,3\rangle \text { and } \mathbf{d}_{2}=\langle 4,-2,6\rangle .
$$

Since these vectors are parallel $\left(\mathbf{d}_{2}=2 \mathbf{d}_{1}\right)$, the lines are parallel.

## Finding out What Two Lines Do

Two lines are:

- parallel if the $\mathbf{d}$ vectors are parallel
- intersecting if they have a point in common
- skew if none of the above

Are the two lines

$$
\begin{aligned}
x-1 & =0 & & x-1
\end{aligned}=t
$$

parallel, intersecting, or skew?
The displacement vectors are $\langle 0,1,-1\rangle$ and $\langle 1,-3,3\rangle$ so the vectors aren't parallel. Solve the equations

$$
0=t, \quad s=3-3 t, \quad-s=3 t-3
$$

to find $t=0, s=3$ and a point of intersection at $\langle 1,3,-3\rangle$.

## Finding out What Two Lines Do

Two lines are:

- parallel if the $\mathbf{d}$ vectors are parallel
- intersecting if they have a point in common
- skew if none of the above

Are the lines

$$
\begin{array}{ll}
x-2=s & x-2=-t \\
y-2=0 & y+2=0 \\
z-3=2 s & z-2=4 t
\end{array}
$$

parallel, intersecting, or skew?
These lines are not parallel (check the displacement vectors!). If we check for an intersection we get the equations

$$
s=-t, \quad 2=-2, \quad 2 s+3=2+4 t
$$

which are not consistent (the second one especially!). These lines are skew.

## The Distance Between Lines



Find the distance between the following two lines:

$$
\mathbf{x}(t)=\langle t, 2+t, 2 t-1\rangle
$$

and

$$
\mathbf{y}(s)=\langle 1+s, s,-1+3 s\rangle
$$

Hint: At the closest approach, $\mathbf{x}(t)-\mathbf{y}(s)$ should be perpendicular to the direction vectors of both lines

## See the next page for the solution

Problem courtesy of this YouTube video

## The Distance Between Two Lines

From $\mathbf{x}(t)=\langle t, 2+t, 2 t-1\rangle, \quad \mathbf{y}(s)=\langle 1+s, s,-1+3 s\rangle$ we get

$$
\mathbf{x}(t)-\mathbf{y}(s)=\langle t-s-1,2+t-s, 2 t-3 s\rangle .
$$

The two displacement vectors are $\mathbf{d}_{1}=\langle 1,1,2\rangle$ and $\mathbf{d}_{2}=\langle 1,1,3\rangle$. From the two conditions $\mathbf{d}_{1} \cdot(\mathbf{x}(t)-\mathbf{y}(s))=0, \mathbf{d}_{2} \cdot(\mathbf{x}(t)-\mathbf{y}(s))=0$, we get

$$
\begin{aligned}
& (t-s-1)+(2+t-s)+(4 t-6 s)=0 \\
& (t-s-1)+(2+t-s)+(6 t-9 s)=0
\end{aligned}
$$

or, simplifying

$$
\begin{aligned}
6 t-8 s & =-1 \\
8 t-11 s & =-1
\end{aligned}
$$

You can solve these equations to find $s=-1, t=-3 / 2$ so that

$$
\mathrm{x}(-3 / 2)-\mathrm{y}(-1)=\langle-3 / 2,1 / 2,-4\rangle-\langle 0,-1,-4\rangle=\langle-3 / 2,-1 / 2,0\rangle
$$

The distance between the two lines is $\sqrt{(-3 / 2)^{2}+(-1 / 2)^{2}}=\sqrt{10} / 2$

## Reminders for the Week of September 5-8

- Happy Labor Day, Monday 9/4!
- Read CLP 3 section 1.6 for Wednesday 9/6
- Homework A3 on Equations of Lines and Planes due Wednesday 9/6 at 11:59 PM
- Quiz \#2 on Equations of LInes and Planes due Thursday 9/7 at 11:59 PM
- Read CLP 4, sections 1.2 and 1.6 for Friday 9/8
- Homework A4 on Curves and Tangent Vectors due Friday 9/8

