Equations of Line

Lines, Planes, Points

Parallel, Intersecting, Skew

Reminders

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Math 213 - Lines in Space

Peter Perry

September 1, 2023

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Unit A: Vectors, Curves, and Surfaces

- August 21 Points
- August 23 Vectors
- August 25 Dot Product
- August 28 Cross Product
- August 30 Equations of Planes
- September 1 Equations of Lines
- September 6 Curves
- September 8 Integrating Along Curves
- September 11 Integrating Along Curves
- September 13 Sketching Surfaces
- September 15 Cylinders and Quadric Surfaces

Equations of Line

ines, Planes, Points

Parallel, Intersecting, Skew

Reminders

Introducing Bill the Heron

0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Equations of Lines

ines, Planes, Points. 000 Parallel, Intersecting, Skew 00000 Reminders

Equations of Lines

A line is space is determined by:

- A point *P* on the line
- A vector **d**, the *displacement vector*, that points along the line

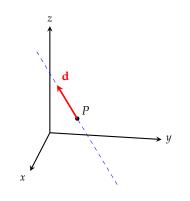
In the line shown,

P = P(3/2, 1, 1) $\mathbf{d} = (1/4, -1, 1)$

How can we write an equation for this line?

イロト 不得 とうほう 不良 とう

3



Equations of Lines $0 \bullet 0$

ines, Planes, Points. 000 Parallel, Intersecting, Skew 00000

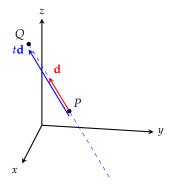
Reminders

Equations of Lines

You can get from P to any other point Q on the line by a vector displacement t**d** for some real number t

イロト 不得 とうほう イヨン

э.



Equations of Lines $0 \bullet 0$

ines, Planes, Points. 000 Parallel, Intersecting, Skew

Reminders

Equations of Lines

You can get from P to any other point Q on the line by a vector displacement t**d** for some real number t

If

$$P = P(3/2, 1, 1)$$

and

$$\mathbf{d} = \langle 1/4, -1, 1 \rangle,$$

the coordinates of Q are given by

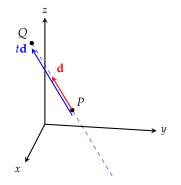
$$x = 3/2 + (1/4)t$$

$$y = 1 + (-1)t$$

$$z = 1 + (1)t$$

イロト 不得 とうほう 不良 とう

э.



Equations of Lines

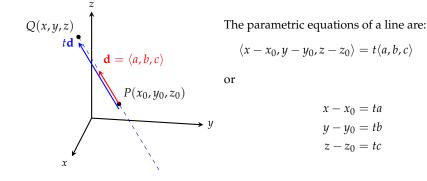
Lines, Planes, Points

Parallel, Intersecting, Skew 00000 Reminders

ヘロト 人間 とくほとく ほとう

3

The Parametric Equations of a Line



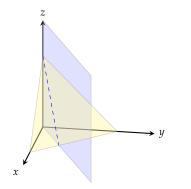
Equations of Lines

Lines, Planes, Points

Parallel, Intersecting, Skew 00000

Reminders

Puzzler #1



The planes

 $\begin{aligned} x + y + z &= 2\\ x - 2y &= 0 \end{aligned}$

are shown at left. Find the equation of their line of intersection.

 $x = -\frac{2}{3}z + \frac{4}{3}$

 $y = -\frac{1}{3}z + \frac{2}{3}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We can use *z* as the parameter and solve for *x* and *y*:

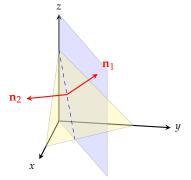
$$x + y - 2 = -z \quad \Rightarrow$$
$$x = 2y$$
so $\langle x - \frac{4}{3}, y - \frac{2}{3}, z \rangle = z \langle -\frac{2}{3}, -\frac{1}{3}, 1 \rangle$

Equations of Line

Lines, Planes, Points

Parallel, Intersecting, Skew 00000 Reminders

Puzzler #2



The planes

x + y + z = 2x - 2y = 0

have normal vectors

 $\mathbf{n}_1 = \langle 1, 1, 1 \rangle,$ $\mathbf{n}_2 = \langle 1, -2, 0 \rangle.$

Find another equation for the line of intersection.

A displacement vector for the line is

 $\mathbf{d} = \mathbf{n}_1 \times \mathbf{n}_2 = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$

and the line passes through the point (1/2, 3/2, 0) (use the equations above with z = 0)

So we get $\langle x - \frac{1}{2}, y - \frac{3}{2}, z \rangle = t \langle 2, 1, -3 \rangle$ or $x - \frac{1}{2} = 2t, \ y - \frac{3}{2} = t, \ z = -3t.$

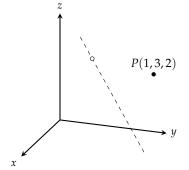
Equations of Line

Lines, Planes, Points

Parallel, Intersecting, Skew

Reminders

Puzzler #3



Find the distance from the point

P = (1, 3, 2)

to the line

$$L: \langle x-1, y-2, z-1 \rangle = t \langle 1, 0, 1 \rangle$$

Another form of the equation for the line is

$$x(t) = 1 + t$$
, $y(t) = 2$, $z(t) = 1 + t$.

The squared distance from *P* to any point on the line is

$$f(t) = (1 - (1 + t))^2 + (3 - 2)^2 + (2 - (1 + t))^2$$
$$= t^2 + 1 + (1 - t)^2$$
$$= 2t^2 - 2t + 2$$

Since f'(t) = 4t - 2, the minimum value occurs at t = 2 where f(2) = 6. Hence the distance from *P* to the line is $\sqrt{6}$.

0

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

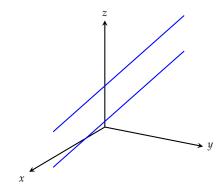
Equations of Line

ines, Planes, Points

Parallel, Intersecting, Skew

Reminders

What Can Two Lines Do?



In three dimensions, lines can be:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Parallel

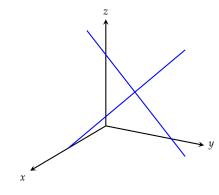
Equations of Line

ines, Planes, Points

Parallel, Intersecting, Skew

Reminders

What Can Two Lines Do?



In three dimensions, lines can be:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

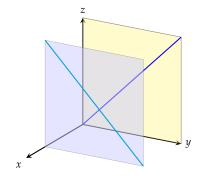
- Parallel
- Intersecting, or

Equations of Line

ines, Planes, Points 000 Parallel, Intersecting, Skew

Reminders

What Can Two Lines Do?



In three dimensions, lines can be:

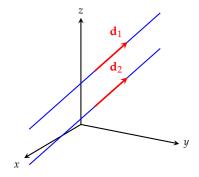
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Parallel
- Intersecting, or
- Skew

Parallel, Intersecting, Skew 00000

What Can Two Lines Do?

$$\langle x - x_0, y - y_0, z - z_0 \rangle = t \langle a, b, c \rangle = t \mathbf{d}$$



How do you tell when two lines are:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

parallel - parallel vectors

Equations of Line

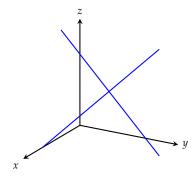
ines, Planes, Points.

Parallel, Intersecting, Skew

Reminders

What Can Two Lines Do?

$$\langle x - x_0, y - y_0, z - z_0 \rangle = t \langle a, b, c \rangle = t \mathbf{d}$$



How do you tell when two lines are:

- parallel parallel vectors
- intersecting point in common

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

S

Equations of Line

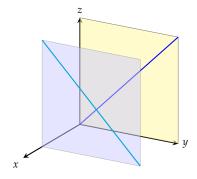
ines, Planes, Points

Parallel, Intersecting, Skew

Reminders

What Can Two Lines Do?

$$\langle x - x_0, y - y_0, z - z_0 \rangle = t \langle a, b, c \rangle = t \mathbf{d}$$



How do you tell when two lines are:

- parallel parallel vectors
- intersecting point in common

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• skew - neither parallel nor intersecting

0

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Finding out What Two Lines Do

Two lines are:

- parallel if the **d** vectors are parallel
- intersecting if they have a point in common
- skew if none of the above

Are the two lines

$$\begin{array}{ll} x - 1 = 2s & x - 3 = 4t \\ y - 2 = -s & y - 4 = -2t \\ z - 3 = 3s & z - 5 = 6t \end{array}$$

parallel, intersecting, or skew?

The displacement vectors for the two lines are

$$\mathbf{d}_1 = \langle 2, -1, 3 \rangle$$
 and $\mathbf{d}_2 = \langle 4, -2, 6 \rangle$.

Since these vectors are parallel ($d_2 = 2d_1$), the lines are parallel.

Finding out What Two Lines Do

Two lines are:

- parallel if the **d** vectors are parallel
- intersecting if they have a point in common
- skew if none of the above

Are the two lines

$$x - 1 = 0$$

 $y = s$
 $z = -s$
 $x - 1 = t$
 $y - 3 = -3t$
 $z + 3 = 3t$

parallel, intersecting, or skew?

The displacement vectors are (0, 1, -1) and (1, -3, 3) so the vectors aren't parallel. Solve the equations

$$0 = t, \quad s = 3 - 3t, \quad -s = 3t - 3$$

to find t = 0, s = 3 and a point of intersection at (1, 3, -3).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

э.

Finding out What Two Lines Do

Two lines are:

- parallel if the **d** vectors are parallel
- intersecting if they have a point in common
- skew if none of the above

Are the lines

x-2=s	x - 2 = -t
y - 2 = 0	y + 2 = 0
z - 3 = 2s	z - 2 = 4t

parallel, intersecting, or skew?

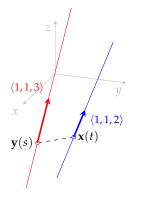
These lines are not parallel (check the displacement vectors!). If we check for an intersection we get the equations

$$s = -t$$
, $2 = -2$, $2s + 3 = 2 + 4t$

which are not consistent (the second one especially!). These lines are skew.

Parallel, Intersecting, Skew 00000

The Distance Between Lines



See the next page for the solution

Problem courtesy of this YouTube video

Find the distance between the following two lines:

$$\mathbf{x}(t) = \langle t, 2+t, 2t-1 \rangle$$

and

$$\mathbf{y}(s) = \langle 1+s, s, -1+3s \rangle$$

Hint: At the closest approach, $\mathbf{x}(t) - \mathbf{y}(s)$ should be perpendicular to the direction vectors of *both* lines

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Equations of Lines 000 ines, Planes, Points

The Distance Between Two Lines

From $\mathbf{x}(t) = \langle t, 2+t, 2t-1 \rangle$, $\mathbf{y}(s) = \langle 1+s, s, -1+3s \rangle$ we get

$$\mathbf{x}(t) - \mathbf{y}(s) = \langle t - s - 1, 2 + t - s, 2t - 3s \rangle.$$

The two displacement vectors are $\mathbf{d}_1 = \langle 1, 1, 2 \rangle$ and $\mathbf{d}_2 = \langle 1, 1, 3 \rangle$. From the two conditions $\mathbf{d}_1 \cdot (\mathbf{x}(t) - \mathbf{y}(s)) = 0$, $\mathbf{d}_2 \cdot (\mathbf{x}(t) - \mathbf{y}(s)) = 0$, we get

$$(t - s - 1) + (2 + t - s) + (4t - 6s) = 0$$

(t - s - 1) + (2 + t - s) + (6t - 9s) = 0

or, simplifying

$$6t - 8s = -1$$
$$8t - 11s = -1$$

You can solve these equations to find s = -1, t = -3/2 so that

$$\mathbf{x}(-3/2) - \mathbf{y}(-1) = \langle -3/2, 1/2, -4 \rangle - \langle 0, -1, -4 \rangle = \langle -3/2, -1/2, 0 \rangle$$

The distance between the two lines is $\sqrt{(-3/2)^2 + (-1/2)^2} = \sqrt{10}/2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Reminders for the Week of September 5-8

- Happy Labor Day, Monday 9/4!
- Read CLP 3 section 1.6 for Wednesday 9/6
- Homework A3 on Equations of Lines and Planes due Wednesday 9/6 at 11:59 PM
- Quiz #2 on Equations of LInes and Planes due Thursday 9/7 at 11:59 PM
- Read CLP 4, sections 1.2 and 1.6 for Friday 9/8
- Homework A4 on Curves and Tangent Vectors due Friday 9/8