Math 213 - Plane and Space Curves

Peter Perry

September 6, 2023

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13-Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces

Parameterized Curves

The parametric equations

$$
\begin{aligned}
& x(t)=2+t \\
& y(t)=2+2 t \\
& z(t)=1+t
\end{aligned}
$$

where

$$
0 \leq t \leq 3
$$

define a line in three-dimensional space.

We're going to study other parameteric curves where we're given a vector function

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

and an allowed range of t-values

$$
a \leq t \leq b
$$

Parametric Curves - xy Plane

Parametric Curve in the $x y$ Plane:

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle, \quad a \leq t \leq b
$$

The curve at left is
$\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle, \quad 0 \leq t \leq \pi$.

Parametric Curves - xy Plane

Parametric Curve in the $x y$ Plane:

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle, \quad a \leq t \leq b
$$

The curve at left is

$$
\begin{gathered}
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle, \quad 0 \leq t \leq \pi \\
\mathbf{r}(\pi / 4)=\langle\sqrt{2}, \sqrt{2}\rangle
\end{gathered}
$$

Parametric Curves - xy Plane

Parametric Curve in the $x y$ Plane:

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle, \quad a \leq t \leq b
$$

The curve at left is

$$
\begin{gathered}
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle, \quad 0 \leq t \leq \pi \\
\mathbf{r}(\pi / 4)=\langle\sqrt{2}, \sqrt{2}\rangle \\
\mathbf{r}(2 \pi / 3)=\langle-1, \sqrt{3}\rangle
\end{gathered}
$$

Parametric Curves - Mix and Match

Can you match these parametric curves with their graphs?

$$
\begin{aligned}
& \mathbf{r}(t)=\langle 1+\cos (t), \sin (t)\rangle \\
& \mathbf{r}(t)=\langle 2 \cos t, 3 \sin t\rangle \\
& \mathbf{r}(t)=\left\langle t, t^{2}\right\rangle
\end{aligned}
$$

$$
\begin{array}{r}
\pi \leq t \leq 2 \pi \\
0 \leq t \leq 2 \pi \\
0 \leq t \leq 2
\end{array}
$$

$\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle$
$\mathbf{r}(t)=\langle 2 \cos t, 3 \sin t\rangle$

Parametric Curves in Space

Which of these is the correct formula for $\mathbf{r}(t)$?

$$
\begin{aligned}
\mathbf{r}(t) & =\langle t, \cos (5 t), \sin (5 t)\rangle \\
\mathbf{r}(t) & =\langle\cos (5 t), t, \sin (5 t)\rangle \\
\mathbf{r}(t) & =\langle t, \sin (5 t), \cos (5 t)\rangle \\
\mathbf{r}(t) & =\langle\sin (5 t), t, \cos (5 t)\rangle
\end{aligned}
$$

Here $0 \leq t \leq \pi$.
$r(t)=\langle\cos (5 t), t, \sin (5 t)\rangle$

Unparametrization

Find an equation in x and y for the curve

$$
\begin{aligned}
& x(t)=1+\cos (2 t) \\
& y(t)=2-\sin (2 t)
\end{aligned}
$$

Since
$x(t)-1=\cos (2 t), \quad y(t)-2=-\sin (2 t)$
we get

$$
(x(t)-1)^{2}+(y(t)-2)^{2}=1
$$

or

$$
(x-1)^{2}+(y-2)^{2}=1
$$

which is the equation of a circle of radius 1 with center at $(1,2)$.

Intersection of Surfaces

$$
z=2
$$

$x^{2}+y^{2}+z^{2}=9$

Find a parametric equation for the curve where the surfaces

$$
x^{2}+y^{2}+z^{2}=9
$$

and

$$
z=2
$$

intersect.
The intersection given by the equation $x^{2}+y^{2}+4=9$ or

$$
x^{2}+y^{2}=5
$$

the equation a circle of radius $\sqrt{5}$.
We can parametrize the circle by

$$
x(t)=\sqrt{5} \cos t, \quad y(t)=\sqrt{5} \sin t, \quad z(t)=2 .
$$

Derivatives

The derivative of a function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

Practically speaking,

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

The difference

$$
\mathbf{r}(t+h)-\mathbf{r}(t)
$$

gives the motion along the curve between t and $t+h$

Derivatives

The derivative of a function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

Practically speaking,

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

The derivative $\mathbf{r}^{\prime}(t)$ gives the velocity along the curve $\mathbf{r}^{\prime}(t)$ is also called a tangent vector

Derivative Practice

Find the following derivatives if:

$$
\begin{aligned}
\gamma(t) & =t^{2} \\
\mathbf{v}(t) & =\mathbf{i}+e^{t} \mathbf{j}+e^{2 t} \mathbf{k} \\
\mathbf{w}(t) & =t \mathbf{i}+t^{2} \mathbf{j}+\mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t}(\gamma(t) \mathbf{w}(t)) & =(2 t) \mathbf{i}+\left(t^{2}+2 t\right) e^{t} \mathbf{j}+\left(2 t^{2}+2 t\right) e^{2 t} \mathbf{j} \\
\frac{d}{d t}(\mathbf{v}(t) \cdot \mathbf{w}(t)) & =1+\left(t^{2}+2 t\right) e^{t}+2 e^{2 t} \\
\frac{d}{d t}(\mathbf{v}(t) \times \mathbf{w}(t)) & =\left(e^{t}-\left(2 t^{2}+2 t\right) e^{2 t}\right) \mathbf{i}+(2-t) e^{2 t} \mathbf{j}+\left(2 t-(t+1) e^{t}\right) \mathbf{k}
\end{aligned}
$$

Derivative Rules

If $\mathbf{a}(t)$ and $\mathbf{b}(t)$ are differentiable vector functions, α and β are scalars, and $\gamma(t)$ and $s(t)$ are differentiable functions:

$$
\begin{aligned}
\frac{d}{d t}(\alpha \mathbf{a}(t)+\beta \mathbf{b}(t)) & =\alpha \mathbf{a}^{\prime}(t)+\beta \mathbf{b}^{\prime}(t) & \text { linear combination } \\
\frac{d}{d t}(\gamma(t) \mathbf{a}(t)) & =\gamma^{\prime}(t) \mathbf{a}(t)+\gamma(t) \mathbf{a}^{\prime}(t) & \text { product rule } \\
\frac{d}{d t}(\mathbf{a}(t) \cdot \mathbf{b}(t)) & =\mathbf{a}^{\prime}(t) \cdot \mathbf{b}(t)+\mathbf{a}(t) \cdot \mathbf{b}^{\prime}(t) & \text { product rule }(\cdot) \\
\frac{d}{d t}(\mathbf{a}(t) \times \mathbf{b}(t)) & =\mathbf{a}^{\prime}(t) \times \mathbf{b}(t)+\mathbf{a}(t) \times \mathbf{b}^{\prime}(t) & \text { product rule }(\times) \\
\frac{d}{d t}(\mathbf{a}(s(t))) & =s^{\prime}(t) \mathbf{a}^{\prime}(s(t)) & \text { (chain rule) }
\end{aligned}
$$

Tangent, Unit Tangent, Arc Length

$\mathbf{r}^{\prime}(a)$ is the tangent vector to $\mathbf{r}(t)$ at $t=a$
$\left|\mathbf{r}^{\prime}(a)\right|$ is the instantaneous speed along the curve $\mathbf{r}(t)$ at time $t=a$

Tangent, Unit Tangent, Arc Length

$\mathbf{r}^{\prime}(a)$ is the tangent vector to $\mathbf{r}(t)$ at $t=a$
$\left|\mathbf{r}^{\prime}(a)\right|$ is the instantaneous speed along the curve $\mathbf{r}(t)$ at time $t=a$

How can we find a unit vector tangent to $\mathbf{r}(t)$ at $t=a$?

Find the unit tangent to

$$
\mathbf{r}(t)=\left\langle t, t^{2}, t^{2}\right\rangle
$$

at $t=1$
$r^{\prime}(1)=\langle 1,2,2\rangle$ so the unit tangent is

$$
\mathrm{T}(1)=\left\langle\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle
$$

Tangent, Unit Tangent, Arc Length

$\mathbf{r}^{\prime}(a)$ is the tangent vector to $\mathbf{r}(t)$ at $t=a$
$\left|\mathbf{r}^{\prime}(a)\right|$ is the instantaneous speed along the curve $\mathbf{r}(t)$ at time $t=a$

How can we find the distance travelled along the curve $\mathbf{r}(t)$ between $t=a$ and $t=b$?

Find the distance travelled from $t=0$ to $t=\pi$ along

$$
\mathbf{r}(t)=\langle\cos (2 t), t, \sin (2 t)\rangle
$$

Since $\mathbf{r}^{\prime}(t)=\langle-2 \sin (2 t), 1,2 \cos (2 t)\rangle$, $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{5}$ (constant speed), and the distance travelled is $\pi \sqrt{5}$

Summary

Given a parameterized curve $\mathbf{r}(t)$ for $a \leq t \leq b$:

- The tangent vector to the curve at time $t=c$ is given by $\mathbf{r}^{\prime}(c)$
- The unit tangent vector to the curve at time $t=c$ is given by

$$
\mathbf{T}(c)=\frac{\mathbf{r}^{\prime}(c)}{\left|\mathbf{r}^{\prime}(c)\right|}
$$

- If $s(t)$ denotes the distance travelled along the curve between times a and t, then

$$
s^{\prime}(t)=\left|\mathbf{r}^{\prime}(t)\right|
$$

- The distance travelled from $t=a$ to $t=b$ is given by

$$
s=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Velocity and Acceleration

If $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is the position of a particle at time t, then:

- $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is the velocity of the particle at time t
- $\left|\mathbf{r}^{\prime}(t)\right|$ is the speed of the particle at time t
- $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)$ is the acceleration of the particle at time t

A particle moves along the curve

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle
$$

Find the velocity and acceleration.

$$
\begin{aligned}
& \mathbf{v}(t)=\langle-2 \sin (t), 2 \cos (t)\rangle \\
& \mathbf{a}(t)=\langle-2 \cos (t),-2 \sin (t)\rangle
\end{aligned}
$$

Velocity and Acceleration

If $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is the position of a particle at time t, then:

- $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is the velocity of the particle at time t
- $\left|\mathbf{r}^{\prime}(t)\right|$ is the speed of the particle at time t
- $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)$ is the acceleration of the particle at time t

A particle moves along the curve

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle
$$

Find the velocity and acceleration.

$$
\begin{aligned}
& \mathbf{v}(t)=\langle-2 \sin (t), 2 \cos (t)\rangle \\
& \mathbf{a}(t)=\langle-2 \cos (t),-2 \sin (t)\rangle
\end{aligned}
$$

Velocity and Acceleration

If $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is the position of a particle at time t, then:

- $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is the velocity of the particle at time t
- $\left|\mathbf{r}^{\prime}(t)\right|$ is the speed of the particle at time t
- $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)$ is the acceleration of the particle at time t

A particle moves along the curve

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle
$$

Find the velocity and acceleration.

$$
\begin{aligned}
& \mathbf{v}(t)=\langle-2 \sin (t), 2 \cos (t)\rangle \\
& \mathbf{a}(t)=\langle-2 \cos (t),-2 \sin (t)\rangle
\end{aligned}
$$

Reminders for the Week of September 4-6

- Homework A3 on Equations of Lines and Planes due Wednesday 9/6 at 11:59 PM
- Quiz \#2 on Equations of Lines and Planes due Thursday 9/7 at 11:59 PM
- Read CLP 4, sections 1.2 and 1.6 for Friday 9/8
- Homework A4 on Curves and Tangent Vectors due Friday 9/8

