Math 213 - Integrating Along Curves

Peter Perry

September 8, 2023

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13-Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces

Arc Length Reminders

If C is a parameterized curve $(x(t), y(t)$ in the plane with $a \leq t \leq b$ then the arc length of C is

$$
L=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\int_{C} d s
$$

The arc length function $s(t)$ is

$$
s(t)=\int_{a}^{t} \sqrt{x^{\prime}\left(t^{\prime}\right)+y^{\prime}\left(t^{\prime}\right)^{2}} d t^{\prime}
$$

If C is a parametrized curve $(x(t), y(t), z(t))$ in space with $a \leq t \leq b$ then the arc length of C is

$$
L=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t=\int_{C} d s
$$

The arc length function $s(t)$ is

$$
s(t)=\int_{a}^{t} \sqrt{x^{\prime}\left(t^{\prime}\right)+y^{\prime}\left(t^{\prime}\right)^{2}+z^{\prime}(t)^{2}} d t^{\prime}
$$

Arc Length

$$
s(t)=\int_{a}^{t} \sqrt{x^{\prime}\left(t^{\prime}\right)^{2}+y^{\prime}\left(t^{\prime}\right)^{2}+z^{\prime}\left(t^{\prime}\right)^{2}} d t^{\prime}
$$

Find the arc length function for the curve

$$
(x(t), y(t), z(t))=(\cos t, t, \sin t)
$$

where $0 \leq t \leq 4 \pi$.

Parameterization by Arc Length

Recall that, for the curve

$$
\begin{gathered}
(x(t), y(t), z(t))=(\cos t, t, \sin t) \\
0 \leq t \leq 4 \pi
\end{gathered}
$$

the arc length function is

$$
s(t)=\sqrt{2} t
$$

Give an equation for this curve with arc length as the parameter.

We have $T(s)=s / \sqrt{2}$ so

$$
(x(s), y(s))=(\cos (s / \sqrt{2}), s / \sqrt{2}, \sin (s / \sqrt{2})
$$

The Asteroid

At left is the curve

$$
(x(t), y(t))=\left(a \cos ^{3} t, a \sin ^{3} t\right)
$$

or

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} .
$$

Find the arc length function $s(t)$ for $0 \leq t \leq \pi / 2$ and parametrize this curve by arc length.

$$
\begin{aligned}
\sqrt{\left.x^{\prime}(t)^{2}+y^{\prime}(t)\right)^{2}} & =3 a \sqrt{\cos ^{2} t \sin ^{2} t\left(\sin ^{2} t+\cos ^{2} t\right)} \\
& =\frac{3 a}{2} \sin (2 t)
\end{aligned}
$$

so

$$
s(t)=\frac{3 a}{2} \int_{0}^{t} \sin \left(2 t^{\prime}\right) d t^{\prime}=\frac{3 a}{4}(1-\cos (2 t))
$$

Solve to t in terms of s to get $T(s)=\frac{1}{2} \arccos (3 a / 4-s)$ and substitute!

The Logarithmic Spiral

At left is the curve

$$
(x(t), y(t))=\left(e^{t} \cos t, e^{t} \sin t\right), \quad-\infty<t<\infty
$$

First, find the arc length of the part of the curve inside the unit circle.

Second, find the arc length function for $-\infty<t<\infty$ and reparameterize the curve by arc length.

Since $\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=\sqrt{2} e^{t}$ (check this!) we get

$$
s(t)=\int_{-\infty}^{t} \sqrt{2} e^{t^{\prime}} d t^{\prime}=\sqrt{2} e^{t}
$$

The curve inside the unit circle goes from $t=-\infty$ to $t=0$, so the arc length is

$$
s(0)=\sqrt{2} .
$$

Second, solving for t in terms of s, we get $T(s)=\ln (s) / \sqrt{2}$. Now substitute!

The Mass of A Wire

A wire traces out a curve C

$$
(x(t), y(t)), \quad a \leq t \leq b
$$

and has mass $\rho(t)$ per unit length. Find the mass of the wire.

Approximation: if $\mathbf{r}(t)=\langle x(t), y(t)\rangle$,

$$
\begin{aligned}
M & \simeq \sum_{i=1}^{n} \rho\left(t_{i}\right)\left|\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)\right| \\
& =\sum_{i=1}^{n} \rho\left(t_{i}\right)\left|\frac{\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)}{t_{i}-t_{i-1}}\right| \Delta t
\end{aligned}
$$

This looks like a Riemann sum, but for what integral?

The Mass of a Wire

$$
M=\int_{a}^{b} \rho(t)\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{C} \rho d s
$$

A hoop traces out the curve $x^{2}+y^{2}=1$ where x and y are in meters. The hoop has a mass of
 $x^{2} \mathrm{~kg} / \mathrm{m}$. What is the total mass of the hoop?
Parametrize the wire by $(x(t), y(t)=(\cos t, \sin t)$. In this case, $\left|\mathbf{r}^{\prime}(t)\right|^{2}=x^{\prime}(t)^{2}+y^{\prime}(t)^{2}=1$ and $\rho(t)=\cos ^{2} t$ so

$$
\begin{aligned}
M & =\int_{0}^{2 \pi} \cos ^{2} t d t \\
& =\int_{0}^{2 \pi} \frac{1+\cos (2 t)}{2} d t \\
& =\pi \mathrm{kg}
\end{aligned}
$$

Integrals Along Curves

If $f(x, y)$ is a function of two variables, and C is a curve $(x(t), y(t))$ for $a \leq t \leq b$, then the integral of f along C is

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

What if $f(x, y, z)$ is a function of three variables and C is a curve $(x(t), y(t), z(t))$ for $a \leq t \leq b$?

Integrals Along Curves

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Suppose C is the curve from $(0,1,2)$ to $(1,2,3)$. Parametrize this curve and find $\int_{C} x y z d s$.
Corrected! The parametrization is

$$
(x(t), y(t), z(t))=(t, 1+t, 2+t), \quad 0 \leq t \leq 1
$$

so $x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}=3$. We get

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{0}^{1} t(1+t)(2+3 t) \sqrt{3} d t \\
& =\sqrt{3} \int_{0}^{1}\left(t^{3}+3 t^{2}+2 t\right) d t \\
& =\sqrt{3} \cdot \frac{9}{4}
\end{aligned}
$$

Reminders for the Week of September 6-8 and 11-15

- Continue reading CLP 4, sections 1.2 and 1.6
- Homework A4 due today at 11:59 PM
- Begin reading CLP 3, sections 1.7-1.9 for Wednesday and Friday of next week
- Homework A5 due Wednesday September 13 at 11:59 PM

