Unit A Overview A

Mass of a Wire

long Curves

Puzzlers

eminders Remino

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

0

Math 213 - Integrating Along Curves

Peter Perry

September 8, 2023

Unit A: Vectors, Curves, and Surfaces

- August 21 Points
- August 23 Vectors
- August 25 Dot Product
- August 28 Cross Product
- August 30 Equations of Planes
- September 1 Equations of Lines
- September 6 Curves
- September 8 Integrating Along Curves
- September 11 Integrating Along Curves
- September 13 Sketching Surfaces
- September 15 Cylinders and Quadric Surfaces

Unit A Overview

Arc Length Mass of

tegrals Along Cu 00 Puzzlers

Reminders

inders Reminders

Arc Length Reminders

If *C* is a parameterized curve (x(t), y(t)) in the plane with $a \le t \le b$ then the arc length of *C* is

$$L = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt = \int_{C} ds.$$

The arc length function s(t) is

$$s(t) = \int_{a}^{t} \sqrt{x'(t') + y'(t')^2} \, dt'.$$

If *C* is a parametrized curve (x(t), y(t), z(t)) in space with $a \le t \le b$ then the arc length of *C* is

$$L = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} \, dt = \int_{C} ds$$

The arc length function s(t) is

$$s(t) = \int_{a}^{t} \sqrt{x'(t') + y'(t')^{2} + z'(t)^{2}} dt'.$$

Arc Length 00000

Arc Length

$$s(t) = \int_{a}^{t} \sqrt{x'(t')^{2} + y'(t')^{2} + z'(t')^{2}} dt'$$

Find the arc length function for the curve

 $(x(t), y(t), z(t)) = (\cos t, t, \sin t)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where $0 < t < 4\pi$.

Arc Length 00000

Parameterization by Arc Length

Recall that, for the curve

 $(x(t), y(t), z(t)) = (\cos t, t, \sin t)$

 $0 < t < 4\pi$.

the arc length function is

 $s(t) = \sqrt{2t}.$

Give an equation for this curve with arc length as the parameter.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

We have $T(s) = s/\sqrt{2}$ so

 $(x(s), y(s)) = (\cos(s/\sqrt{2}), s/\sqrt{2}, \sin(s/\sqrt{2}))$

Unit A Overview

Arc Length Mass of a

ng Curves Puz

Puzzlers

ninders Reminders

The Asteroid

At left is the curve

$$(x(t), y(t)) = (a\cos^3 t, a\sin^3 t)$$

or

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}.$$

Find the arc length function s(t) for $0 \le t \le \pi/2$ and parametrize this curve by arc length.

$$\sqrt{x'(t)^2 + y'(t))^2} = 3a\sqrt{\cos^2 t \sin^2 t (\sin^2 t + \cos^2 t)}$$
$$= \frac{3a}{2}\sin(2t)$$

so

$$s(t) = \frac{3a}{2} \int_0^t \sin(2t') \, dt' = \frac{3a}{4} (1 - \cos(2t))$$

Solve to *t* in terms of *s* to get $T(s) = \frac{1}{2} \arccos(3a/4 - s) \text{ and substitute!}$

Unit A Overview

 $x^2 + y^2 = 1$

Arc Length Mass of a

grals Along Curves

Puzzlers

minders Reminders

The Logarithmic Spiral

At left is the curve

First, find the arc length of the part of the curve inside the unit circle.

Second, find the arc length function for $-\infty < t < \infty$ and reparameterize the curve by arc length.

Since $\sqrt{x'(t)^2 + y'(t)^2} = \sqrt{2}e^t$ (check this!) we get

$$s(t) = \int_{-\infty}^{t} \sqrt{2}e^{t'} dt' = \sqrt{2}e^{t'} dt'$$

The curve inside the unit circle goes from $t = -\infty$ to t = 0, so the arc length is

 $s(0)=\sqrt{2}.$

Second, solving for *t* in terms of *s*, we get $T(s) = \ln(s)/\sqrt{2}$. Now substitute!

0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

.

Mass of a Wire Integrals Along Curves

The Mass of A Wire

A wire traces out a curve *C*

 $(x(t), y(t)), a \le t \le b$

and has mass $\rho(t)$ per unit length. Find the mass of the wire.

Approximation: if $\mathbf{r}(t) = \langle x(t), y(t) \rangle$,

$$M \simeq \sum_{i=1}^{n} \rho(t_i) |\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})|$$
$$= \sum_{i=1}^{n} \rho(t_i) \left| \frac{\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})}{t_i - t_{i-1}} \right| \Delta t$$

This looks like a Riemann sum, but for what integral?

Mass of a Wire

The Mass of a Wire

$$M = \int_{a}^{b} \rho(t) |\mathbf{r}'(t)| \, dt = \int_{C} \rho \, ds$$

00

A hoop traces out the curve $x^2 + y^2 = 1$ where *x* and *y* are in meters. The hoop has a mass of x^2 kg/m. What is the total mass of the hoop?

Parametrize the wire by $(x(t), y(t) = (\cos t, \sin t)$. In this case, $|\mathbf{r}'(t)|^2 = x'(t)^2 + y'(t)^2 = 1$ and $\rho(t) = \cos^2 t$ so

$$M = \int_0^{2\pi} \cos^2 t \, dt$$
$$= \int_0^{2\pi} \frac{1 + \cos(2t)}{2} \, dt$$
$$= \pi \, \mathrm{kg}$$

х

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Integrals Along Curves

.

If f(x, y) is a function of two variables, and *C* is a curve (x(t), y(t)) for $a \le t \le b$, then the integral of *f* along *C* is

$$\int_C f(x,y) \, ds = \int_a^b f(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} \, dt$$

What if f(x, y, z) is a function of three variables and *C* is a curve (x(t), y(t), z(t)) for $a \le t \le b$?

00

Integrals Along Curves

$$\int_{C} f(x, y, z) \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} \, dt$$

Suppose *C* is the curve from (0, 1, 2) to (1, 2, 3). Parametrize this curve and find $\int_C xyz \, ds$.

Corrected! The parametrization is

$$(x(t), y(t), z(t)) = (t, 1 + t, 2 + t), \quad 0 \le t \le 1$$

so $x'(t)^2 + y'(t)^2 + z'(t)^2 = 3$. We get

$$\int_C f(x, y, z) \, ds = \int_0^1 t(1+t)(2+3t)\sqrt{3} \, dt$$
$$= \sqrt{3} \int_0^1 (t^3 + 3t^2 + 2t) \, dt$$
$$= \sqrt{3} \cdot \frac{9}{4}$$

Reminders for the Week of September 6-8 and 11-15

- Continue reading CLP 4, sections 1.2 and 1.6
- Homework A4 due today at 11:59 PM
- Begin reading CLP 3, sections 1.7-1.9 for Wednesday and Friday of next week
- Homework A5 due Wednesday September 13 at 11:59 PM