Math 213 - Integration on Curves

Peter Perry

September 11, 2023

Important Reminders

- If you need disability accommodations for Exam 1, I need your accommodation letter no later than 5 PM on Wednesday, September 13
- If you want to request an alternate exam, you need to fill out the form here no later than 5 PM on Friday, September 15

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13 - Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces

Working Backwards

$$
\begin{aligned}
\mathbf{v}(t) & =\mathbf{r}^{\prime}(t) \\
\mathbf{a}(t) & =\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)
\end{aligned}
$$

Suppose that the acceleration $\mathbf{a}(t)$ of a moving particle is

$$
\mathbf{a}(t)=\langle-16 \cos (-4 t), 16 \sin (-4 t),-t\rangle
$$

and that the initial velocity and position of the particle are

$$
\mathbf{v}(0)=\langle 1,0,1\rangle
$$

and

$$
\mathbf{r}(0)=\langle 1,1,1\rangle
$$

Find $\mathbf{v}(t)$ and $\mathbf{r}(t)$ for all t.

Solutions to Working Backwards

First,

$$
\begin{aligned}
\mathbf{v}(t) & =\mathbf{v}(0)+\int_{0}^{1} \mathbf{a}(s) d s \\
& =\langle 1,0,1\rangle+\int_{0}^{1}\langle-16 \cos (-4 s), 16 \sin (-4 s),-s\rangle d s \\
& =\left\langle 1+4 \sin (-4 t), 4 \cos (-4 t)-4, \frac{1}{2}-\frac{t^{2}}{2}\right\rangle
\end{aligned}
$$

Second,

$$
\begin{aligned}
\mathbf{r}(t) & =\mathbf{r}(0)+\int_{0}^{t} \mathbf{v}(s) d s \\
& =\langle 1,1,1\rangle+\int_{0}^{t}\left\langle 1+4 \sin (-4 s), 4 \cos (-4 s)-4, \frac{1}{2}-\frac{s^{2}}{2}\right\rangle d s \\
& =\langle 1,1,1\rangle+\left\langle t+\cos (-4 t)-1,-\sin (-4 t)-4 t, \frac{t}{2}-\frac{t^{3}}{6}\right\rangle
\end{aligned}
$$

Working Forwards

Suppose that

$$
\mathbf{r}(t)=\langle t \cos (\pi t / 2), t \sin (\pi t / 2), t\rangle
$$

- Show that the path lies along the cone $x^{2}+y^{2}=z^{2}$
- Find the velocity vector at time t
- If at time $t=1$ the particle flies off on a line L the in a direction tangent to the path, find the equation of the line.

First, $x(t)^{2}+y(t)^{2}=t^{2} \cos ^{2}(\pi t / 2)+t^{2} \sin ^{2}(\pi t / 2)=t^{2}=z(t)^{2}$
Next,

$$
\mathbf{r}^{\prime}(t)=\langle\cos (\pi t / 2)-(\pi t / 2) \sin (\pi t / 2), \sin (\pi t / 2)+(\pi t / 2) \cos (\pi t / 2), 1\rangle
$$

so that $\mathbf{r}(1)=\langle 0,1,1\rangle, \mathbf{r}^{\prime}(1)=\langle-\pi / 2,1,1\rangle$ and the line L has equation

$$
\langle x(t), y(t), z(t)\rangle=\langle 0,1,1\rangle+t\langle-\pi / 2,1,1\rangle
$$

The Asteroid Revisited

The curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is parameterized by

$$
\mathbf{r}(t)=\left\langle a \cos ^{3} t, a \sin ^{3} t\right\rangle, \quad 0 \leq t \leq \pi / 2
$$

We found that

$$
s(t)=\frac{3 a}{4}(1-\cos (2 t))
$$

so

$$
\frac{4 s}{3 a}=1-\cos (2 t)
$$

Let's parametrize this curve by solving for $\cos (t)$ and $\sin (t)$.
We have $\cos (2 t)=1-4 s / 3 a$ so by the formulas

$$
\cos (t)=\sqrt{\frac{1+\cos (2 t)}{2}}, \quad \sin (t)=\sqrt{\frac{1-\cos (2 t)}{2}}
$$

we get $\cos (t)=\sqrt{1-2 s / 3 a}, \quad \sin (t)=\sqrt{2 s / 3 a}$ and

$$
x(s)=a\left(1-\frac{2 s}{3 a}\right)^{\frac{3}{2}}, \quad y(s)=a\left(\frac{2 s}{3 a}\right)
$$

The Asteroid Revisited

The curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is parameterized by arc length:

$$
\begin{aligned}
& x(s)=a\left(1-\frac{2 s}{3 a}\right)^{\frac{3}{2}} \\
& y(s)=a\left(\frac{2 s}{3 a}\right)^{\frac{3}{2}}
\end{aligned}
$$

What points on the curve correspond to $s=0$? What about $s=3 a / 4$? What about $s=3 a / 2$?
At $s=0,(x(0), y(0))=(a, 0)$ (the starting point)
At $s=3 a / 4,(x(3 a / 4), y(3 a / 4))=\left(2^{-\frac{3}{2}} a,^{-\frac{3}{2}} a\right)$ (the midpoint)
At $s=3 a / 2,(x(3 a / 2), y(3 a / 2))=(0, a)$ (the ending point)
What is the length of the curve from $(0, a)$ to $(a, 0)$?
The arc length is $3 a / 2$ since this value of s puts us at the endpoint

Going Around in Circles

A circle of radius 2 has center $(1,2,1)$ and lies in a plane parallel to the $x z$ plane. Find a parameterization for the circle.

$$
\begin{aligned}
& x(t)=1+2 \cos (t) \\
& y(t)=2 \\
& z(t)=1+2 \sin (t)
\end{aligned}
$$

Integration Along Curves

If $f(x, y)$ is a function of two variables and C is a curve $(x(t), y(t))$ for $a \leq t \leq b$, then

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

If $f(x, y, z)$ is a function of three variables and C is a curve $(x(t), y(t), z(t))$ with $a \leq t \leq b$, then

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Computing the integral of a function along a curve is a one-variable Calculus problem!

Puzzler \#1

Find $\int_{C} \sin x d s$ if C is the curve $(\operatorname{arcsec}(t), \ln (t))$ for $1 \leq t \leq \sqrt{2}$. Hint:

$$
\frac{d}{d t} \operatorname{arcsec}(t)=\frac{1}{t \sqrt{t^{2}-1}}
$$

$$
\text { If } \begin{aligned}
\mathbf{r}(t)=\operatorname{arcsec}(t) \mathbf{i}+\ln (t) \mathbf{j} \text { then } \mathbf{r}^{\prime}(t) & =\frac{1}{t \sqrt{t^{2}-1}} \mathbf{i}+\frac{1}{t} \mathbf{j} \text { so } \\
d s & =\sqrt{\frac{1}{t^{2}-1}}
\end{aligned}
$$

If $\theta=\operatorname{arcsec}(t)$ then $\cos (\theta)=\frac{1}{t}$ and $\sin \theta=\sqrt{1-\frac{1}{t^{2}}}=\sqrt{\frac{t^{2}-1}{t^{2}}}$. Hence

$$
\begin{aligned}
\int_{C} \sin x d s & =\int_{1}^{\sqrt{2}} \sqrt{\frac{t^{2}-1}{t^{2}}} \sqrt{\frac{1}{t^{2}-1}} d t \\
& =\int_{1}^{\sqrt{2}} \frac{1}{t} d t \\
& =\ln \sqrt{2} .
\end{aligned}
$$

Puzzler \#2

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Suppose C is the curve from $(0,1,2)$ to $(1,2,3)$. Parametrize this curve and find $\int_{C} x y z d s$.
The parametrization is

$$
(x(t), y(t), z(t))=(t, 1+t, 2+t), \quad 0 \leq t \leq 1
$$

so $x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}=3$. We get

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{0}^{1} t(1+t)(2+t) \sqrt{3} d t \\
& =\sqrt{3} \int_{0}^{1}\left(2 t+3 t^{2}+t^{3}\right) d t \\
& =\frac{7 \sqrt{3}}{3}
\end{aligned}
$$

Puzzler \#3

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Find $\int_{C} f(x, y, z) d s$ if $f(x, y, z)=\frac{x+y}{y+z}$ and C is the curve

$$
\mathbf{r}(t)=t \mathbf{i}+\frac{2}{3} t^{\frac{3}{2}} \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq 1
$$

Note that $x^{\prime}(t)=z^{\prime}(t)=1, y^{\prime}(t)=t^{\frac{1}{2}}$ so $d s=\sqrt{2+t}, \frac{x+y}{y+z}=1$, and

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{0}^{1} \sqrt{2+t} d t \\
& =\int_{2}^{3} \sqrt{u} d u \quad \text { where } u=2+t \\
& =\frac{2}{3}\left(3^{\frac{3}{2}}-2^{\frac{3}{2}}\right)
\end{aligned}
$$

Sketching a Surface by Traces

Problem: Sketch the surface

$$
4 x^{2}+y^{2}-z^{2}=1
$$

- Find traces in planes
$z=0, \pm 1, \pm 2, \pm 3$
- Find traces in planes $x=0, y=0$

Sketching a Surface by Traces

Problem: Sketch the surface

$$
4 x^{2}+y^{2}-z^{2}=1
$$

- Find traces in planes

$$
z=0, \pm 1, \pm 2, \pm 3
$$

- Find traces in planes $x=0, y=0$

$$
4 x^{2}+y^{2}=1+z^{2}
$$

For each z, we get the equation of an ellipse

Sketching a Surface by Traces

Problem: Sketch the surface

$$
4 x^{2}+y^{2}-z^{2}=1
$$

- Find traces in planes

$$
z=0, \pm 1, \pm 2, \pm 3
$$

- Find traces in planes $x=0, y=0$

In the plane $x=0$, we get $y^{2}-z^{2}=1$
In the plane $y=0$, we get $4 x^{2}-z^{2}=1$

Sketching a Surface by Traces

Here is the surface

$$
4 x^{2}+y^{2}-z^{2}=1
$$

Note that the traces in planes parallel to the $x y$ are ellipses and the traces in the $x z$ and $y z$ planes are hyperbolas

What Happens if One Sign Changes?

Let's try the same analysis with the surface

$$
4 x^{2}+y^{2}-z^{2}=-1
$$

- Find the traces in planes $z=0, \pm 1, \pm 2, \pm 3$
- Find the traces in the $x z$ and $y z$ planes

What Happens if One Sign Changes?

Let's try the same analysis with the surface

$$
4 x^{2}+y^{2}-z^{2}=-1
$$

- Find the traces in planes $z=0, \pm 1, \pm 2, \pm 3$
- Find the traces in the $x z$ and $y z$ planes

Traces in planes $z=0, \pm 1, \pm 2, \pm 3$:

$$
4 x^{2}+y^{2}=z^{2}-1
$$

What Happens if One Sign Changes?

Let's try the same analysis with the surface

$$
4 x^{2}+y^{2}-z^{2}=-1
$$

- Find the traces in planes $z=0, \pm 1, \pm 2, \pm 3$
- Find the traces in the $x z$ and $y z$ planes

In the $x z$ plane, $4 x^{2}-z^{2}=-1$
In the $y z$ plane, $y^{2}-z^{2}=1$

Reminders for the Week of September 11-15

- Homework A4 is due tonight at 11:59 PM
- Read CLP 3-1.7 for Wednesday and look at the gallery of Quadric Surfaces here
- Homework A5 is due Wednesday at 11:59 PM
- Quiz \#3 on curves and reparametrizations is due on Thursday at 11:59 PM
- Read CLP 3-1.8 and CLP 3-1.9 for Friday. If you haven't already looked at the Gallery of Quadric Surfaces yet, go here now!

