Algebraic properties of cut ideals

Sonja Petrović
(joint work with Uwe Nagel)

Mathematics Department
University of Kentucky

Special Session on Toric Ideals
AMS Eastern Section Meeting, Rutgers NJ

October 22, 2007
Outline

- Motivation: from cuts to toric ideals
Outline

- Motivation: from cuts to toric ideals
- Conjectures on algebraic properties
Outline

- Motivation: from cuts to toric ideals
- Conjectures on algebraic properties
- Cut ideals of cycles and trees
Outline

- Motivation: from cuts to toric ideals
- Conjectures on algebraic properties
- Cut ideals of cycles and trees
- Algebraic properties of certain graphs of interest
From cuts to toric ideals

- G any finite graph
From cuts to toric ideals

- G any finite graph
- $A|B$ an unordered partition of $V(G)$
From cuts to toric ideals

- G any finite graph
- $A | B$ an unordered partition of $V(G)$
- $\text{Cut}(A | B) = \{ \{ i, j \} \in E(G) : i \in A, j \in B \text{ or } j \in A, i \in B \}$
From cuts to toric ideals

- G any finite graph
- $A|B$ an unordered partition of $V(G)$
- $\text{Cut}(A|B) = \{{i, j} \in E(G) : i \in A, j \in B \text{ or } j \in A, i \in B\}$
- Assign variables to the edges according to whether they are in $\text{Cut}(A|B)$: s_{ij} for "separated"; t_{ij} for "together".
From cuts to toric ideals

- G any finite graph
- $A|B$ an unordered partition of $V(G)$
- $\text{Cut}(A|B) = \{\{i,j\} \in E(G) : i \in A, j \in B \text{ or } j \in A, i \in B\}$
- Assign variables to the edges according to whether they are in $\text{Cut}(A|B)$: s_{ij} for ”separated”; t_{ij} for ”together”.

Definition (Sturmfels-Sullivant)

$$
\phi_G : K[q_{A|B} : A|B \text{ partition}] \rightarrow K[s_{ij}, t_{ij} : \{i,j\} \text{ edge of } G],
$$

\[q_{A|B} \mapsto \prod_{\{i,j\} \in \text{Cut}(A|B)} s_{ij} \prod_{\{i,j\} \in E(G) \setminus \text{Cut}(A|B)} t_{ij} \]

The cut ideal I_G is the kernel of the map ϕ_G. It is a homogeneous toric ideal. The projective variety X_G is defined by the cut ideal I_G.
Object of interest: the projective variety X_G.
From cuts to toric ideals

- Object of interest: the projective variety X_G.

- Its properties depend on the combinatorics of G.
Decomposing into smaller graphs

If G is a small clique sum of G_1 and G_2,

Theorem (Sturmfels-Sullivant)
Decomposing into smaller graphs

If G is a small clique sum of G_1 and G_2, I_G can be built from I_{G_1}s and I_{G_2}:

Theorem (Sturmfels-Sullivant)
Decomposing into smaller graphs

If G is a small clique sum of G_1 and G_2, I_G can be built from I_{G_1} and I_{G_2}: by relating clique sum to toric fiber product.

Theorem (Sturmfels-Sullivant)
Decomposing into smaller graphs

If G is a small clique sum of G_1 and G_2,
I_G can be built from I_{G_1} and I_{G_2}:
by relating clique sum to toric fiber product.

Theorem (Sturmfels-Sullivant)

Let G be a clique sum of G_1 and G_2 with clique size at most 3.
Decomposing into smaller graphs

If G is a small clique sum of G_1 and G_2, I_G can be built from I_{G_1}s and I_{G_2}:
by relating clique sum to toric fiber product.

Theorem (Sturmfels-Sullivant)

Let G be a clique sum of G_1 and G_2 with clique size at most 3.

Suppose that F_1 and F_2 are binomial generating sets for the smaller cut ideals I_{G_1} and I_{G_2}. Then
Decomposing into smaller graphs

If \(G \) is a small clique sum of \(G_1 \) and \(G_2 \),
\(I_G \) can be built from \(I_{G_1} \)s and \(I_{G_2} \):
by relating clique sum to toric fiber product.

Theorem (Sturmfels-Sullivant)

Let \(G \) be a clique sum of \(G_1 \) and \(G_2 \) with clique size at most 3. Suppose that \(F_1 \) and \(F_2 \) are binomial generating sets for the smaller cut ideals \(I_{G_1} \) and \(I_{G_2} \). Then

\[
M = \text{Lift}(F_1) \cup \text{Lift}(F_2) \cup \text{Quad}(G_1, G_2)
\]

is a generating set for the cut ideal \(I_G \). If \(F_1 \) and \(F_2 \) are Gröbner bases, then there exists a term order such that \(M \) is a Gröbner basis of \(I_G \).
Conjectures

Conjecture (Sturmfels-Sullivant)
The set of graphs whose cut ideals is generated in degree at most \(k \) is minor-closed for any \(k \).

The cut ideal \(I_G \) is generated by quadrics if and only if \(G \) is free of \(K_4 \) minors (that is, \(G \) is a simple series-parallel graph).

Conjecture (Sturmfels-Sullivant)
The semigroup algebra \(K[q]/I_G \) is normal if and only if \(K[q]/I_G \) is Cohen-Macaulay if and only if \(G \) is free of \(K_5 \) minors.

Gorenstein? No clear conjecture.
Conjectures

Maximal degree of a minimal generator:

Conjecture (Sturmfels-Sullivant)

The set of graphs whose cut ideals is generated in degree at most k is minor-closed for any k.

The cut ideal I_G is generated by quadrics if and only if G is free of K_4 minors (that is, G is a simple series-parallel graph).
Conjectures

Maximal degree of a minimal generator:

Conjecture (Sturmfels-Sullivant)

The set of graphs whose cut ideals is generated in degree at most k is minor-closed for any k.

The cut ideal I_G is generated by quadrics if and only if G is free of K_4 minors (that is, G is a simple series-parallel graph).

Conjecture (Sturmfels-Sullivant)

The semigroup algebra $K[q]/I_G$ is normal if and only if $K[q]/I_G$ is Cohen-Macaulay if and only if G is free of K_5 minors.
Conjectures

Maximal degree of a minimal generator:

Conjecture (Sturmfels-Sullivant)

The set of graphs whose cut ideals is generated in degree at most k is minor-closed for any k.

The cut ideal I_G is generated by quadrics if and only if G is free of K_4 minors (that is, G is a simple series-parallel graph).

Conjecture (Sturmfels-Sullivant)

The semigroup algebra $K[q]/I_G$ is normal if and only if $K[q]/I_G$ is Cohen-Macaulay if and only if G is free of K_5 minors.

Gorenstein? No clear conjecture.
Results

- Cut ideals of cycles
Results

- Cut ideals of cycles
 - phylogenetic ideals
 - generated in degree 2
 - Cohen-Macaulay
Results

- Cut ideals of cycles
 - phylogenetic ideals
 - generated in degree 2
 - Cohen-Macaulay
- Cut ideals of trees
Results

- Cut ideals of cycles
 - phylogenetic ideals
 - generated in degree 2
 - Cohen-Macaulay

- Cut ideals of trees
 - generated in degree 2
 - special Hilbert series
 - Gorenstein
Results

- Cut ideals of cycles
 - phylogenetic ideals
 - generated in degree 2
 - Cohen-Macaulay

- Cut ideals of trees
 - generated in degree 2
 - special Hilbert series
 - Gorenstein

- A large subclass of series-parallel graphs
Results

- Cut ideals of cycles
 - phylogenetic ideals
 - generated in degree 2
 - Cohen-Macaulay

- Cut ideals of trees
 - generated in degree 2
 - special Hilbert series
 - Gorenstein

- A large subclass of series-parallel graphs
 - Cohen-Macaulay
 - quadratic Gröbner basis
Results

- Cut ideals of cycles
 - phylogenetic ideals
 - generated in degree 2
 - Cohen-Macaulay
- Cut ideals of trees
 - generated in degree 2
 - special Hilbert series
 - Gorenstein
- A large subclass of series-parallel graphs
 - Cohen-Macaulay
 - quadratic Gröbner basis
- Disjoint union of nice graphs is nice.
A phylogenetic ideal on a claw tree

Let I_n denote the phylogenetic ideal for the general group-based model for the group \mathbb{Z}_2 on the claw tree $K_{1,n}$.

- The ideal of phylogenetic invariants I_n for this tree is the kernel of the following homomorphism between polynomial rings:

$$
\phi_n: \mathbb{C}[q_{g_1}, \ldots, q_{g_n}]: g_1, \ldots, g_n \in G \rightarrow \mathbb{C}[a_{(1)}g_1, \ldots, a_{(n+1)}g_1 + g_2 + \cdots + g_n].
$$

(The coordinate q_{g_1}, \ldots, q_{g_n} corresponds to observing the element g_1 at the first leaf of the tree, g_2 at the second, ...)
A phylogenetic ideal on a claw tree

Let I_n denote the phylogenetic ideal for the general group-based model for the group \mathbb{Z}_2 on the claw tree $K_{1,n}$.

Definition

The ideal of phylogenetic invariants I_n for this tree is the kernel of the following homomorphism between polynomial rings:

$$
\varphi_n : \mathbb{C}[q_{g_1,\ldots,g_n} : g_1, \ldots, g_n \in G] \rightarrow \mathbb{C}[a_g^{(i)} : g \in \mathbb{Z}_2, i = 1, \ldots, n + 1]
$$

$$
q_{g_1,\ldots,g_n} \mapsto a_{g_1}^{(1)} a_{g_2}^{(2)} \cdots a_{g_n}^{(n)} a_{g_1+g_2+\cdots+g_n}^{(n+1)}.
$$
Let I_n denote the phylogenetic ideal for the general group-based model for the group \mathbb{Z}_2 on the claw tree $K_{1,n}$.

Definition

The ideal of phylogenetic invariants I_n for this tree is the kernel of the following homomorphism between polynomial rings:

$$\varphi_n : \mathbb{C}[q_{g_1, \ldots, g_n} : g_1, \ldots, g_n \in G] \rightarrow \mathbb{C}[a_g^{(i)} : g \in \mathbb{Z}_2, i = 1, \ldots, n + 1]$$

$$q_{g_1, \ldots, g_n} \mapsto a_{g_1}^{(1)} a_{g_2}^{(2)} \cdots a_{g_n}^{(n)} a_{g_1 + g_2 + \cdots + g_n}^{(n+1)}.$$

(The coordinate q_{g_1, \ldots, g_n} corresponds to observing the element g_1 at the first leaf of the tree, g_2 at the second, ...)

Cycles and phylogenetics

Lemma (Petrović)

The phylogenetic ideal on the claw tree with n leaves is isomorphic to the cut ideal of an $(n + 1)$-cycle.
Cycles and phylogenetics

Lemma (Petrović)

The phylogenetic ideal on the claw tree with \(n \) leaves is isomorphic to the cut ideal of an \((n + 1) \)-cycle.

Lemma provides a set of properties for the cut ideals of cycles.
Cycles and phylogenetics

Lemma (Petrović)

The phylogenetic ideal on the claw tree with n leaves is isomorphic to the cut ideal of an $(n + 1)$-cycle.

Lemma provides a set of properties for the cut ideals of cycles.

Corollary (Chifman-Petrović)

The cut ideal of a k-cycle has a quadratic lexicographic Gröbner basis for $k \geq 4$. In addition, the Gröbner basis is squarefree.
Cycles and phylogenetics

Lemma (Petrović)

The phylogenetic ideal on the claw tree with \(n \) leaves is isomorphic to the cut ideal of an \((n + 1)\)-cycle.

Lemma provides a set of properties for the cut ideals of cycles.

Corollary (Chifman-Petrović)

The cut ideal of a \(k \)-cycle has a quadratic lexicographic Gröbner basis for \(k \geq 4 \). In addition, the Gröbner basis is squarefree.

Corollary (Nagel-Petrović)

The cut varieties of cycles are Cohen-Macaulay.
Cycles: other properties

The cut ideals of cycles are not Gorenstein in general. I_{C_4} is a special case: complete intersection.
The cut ideals of cycles are not Gorenstein in general. I_{C_4} is a special case: complete intersection.

Lemma

Let $n \geq 3$. The number of generators for the cut ideal of the $(n + 1)$-cycle is

$$
\mu(I_{C_{n+1}}) = \binom{2^n + 1}{2} + \cdots + \binom{2^3 + 1}{2} - [3^n + \cdots + 3^3] - \left[\binom{2^{n-1}}{2} + \cdots \binom{2^2}{2} \right].
$$
Cycles: other properties

The cut ideals of cycles are not Gorenstein in general. \(I_{C_4} \) is a special case: complete intersection.

Lemma

Let \(n \geq 3 \). The number of generators for the cut ideal of the \((n + 1)\)-cycle is

\[
\mu(I_{C_{n+1}}) = \binom{2^n + 1}{2} + \cdots + \binom{2^3 + 1}{2} - \left[3^n + \cdots + 3^3 \right] - \left[\binom{2^{n-1}}{2} + \cdots \binom{2^2}{2} \right].
\]

Note: \(\mu(I_{C_{n+1}}) = 3 S(n, 4) \).

\(S(n, 4) \) = the Stirling number of the second kind.
Trees I

Let T be a tree with n edges. Let $p, p+1 \in V(T)$. T_p is defined to be obtained by adding a new edge $\{p, r\}$. T_{p+1} is defined to be obtained by adding a new edge $\{p+1, r\}$.

Lemma
The toric varieties whose ideals are the cut ideals I_T and I_{T+p} have the same parametrization up to renaming variables.

Remark
Algebraic properties of cut ideals of trees depend only on the number of edges of the tree.
$T =$ tree with n edges. $p, p + 1 \in V(T)$.
$T =$ tree with n edges. $p, p + 1 \in V(T)$.

$T_p :$ add a new edge $\{p, r\}$.

$T_{p+1} :$ add a new edge $\{p + 1, r\}$.
Trees I

$T = \text{tree with } n \text{ edges. } p, p + 1 \in V(T)$.
$T_p : \text{add a new edge } \{p, r\}$.
$T_{p+1} : \text{add a new edge } \{p + 1, r\}$.
Trees I

\[T = \text{tree with } n \text{ edges. } p, p + 1 \in V(T). \]
\[T_p : \text{add a new edge } \{p, r\}. \]
\[T_{p+1} : \text{add a new edge } \{p + 1, r\}. \]

Lemma

The toric varieties whose ideals are the cut ideals \(I_{T_p} \) and \(I_{T_{p+1}} \) have the same parametrization up to renaming variables.
Trees I

$T =$ tree with n edges. $p, p + 1 \in V(T)$.

$T_p :$ add a new edge $\{p, r\}$.

$T_{p+1} :$ add a new edge $\{p + 1, r\}$.

Lemma

The toric varieties whose ideals are the cut ideals I_{T_p} and $I_{T_{p+1}}$ have the same parametrization up to renaming variables.

Remark

Algebraic properties of cut ideals of trees depend only on the number of edges of the tree.
Trees II

Theorem (Nagel-Petrović)

Let T be a tree with n edges, $n \geq 1$. Let $I_T \subset S_T$.

$$h_{S_T/I_T}(i) = (i + 1)^n.$$

$\dim(S_T/I_T) = n + 1$

$\deg(S_T/I_T) = n!$.

Remark

The cut ideals of trees have a quadratic squarefree Gröbner basis. Thus, the varieties are Cohen-Macaulay.
Theorem (Nagel-Petrović)

Let T be a tree with n edges, $n \geq 1$. Let $I_T \subset S_T$.

\[h_{S_T/I_T}(i) = (i + 1)^n. \]

\[\dim(S_T/I_T) = n + 1 \]
\[\deg(S_T/I_T) = n!. \]

(All T in same connected component of the Hilbert scheme.)
Theorem (Nagel-Petrović)

Let T be a tree with n edges, $n \geq 1$. Let $I_T \subset S_T$.

$$h_{S_T/I_T}(i) = (i + 1)^n.$$

$$\dim(S_T/I_T) = n + 1$$

$$\deg(S_T/I_T) = n!.$$

(All T in same connected component of the Hilbert scheme.)

Remark

The cut ideals of trees have a quadratic squarefree Gröbner basis. Thus, the varieties are Cohen-Macaulay.
Theorem (Nagel-Petrović)

\[h(S_T / I_T) = \sum_{i \geq 0} (i + 1)^n t^i = \frac{1 + h_{1,n} t + \cdots + h_{r,n} t^{r_n}}{(1 - t)^{n+1}}, \]

where the entries of the \(h \) vector are the Eulerian numbers. In particular, the regularity is \(\text{reg}(S_T / I_T) = n - 1 \).
Theorem (Nagel-Petrović)

\[
h(S_T/I_T) = \sum_{i \geq 0} (i + 1)^n t^i = \frac{1 + h_{1,n} t + \cdots + h_{r,n} t^{r_n}}{(1 - t)^{n+1}},
\]

where the entries of the \(h \) vector are the Eulerian numbers.

In particular, the regularity is \(\text{reg}(S_T/I_T) = n - 1 \).

Recurrence relation for the entries of the \(h \)-vector:

\[
h_{i,n} = (n - i)h_{i-1,n-1} + (i + 1)h_{i,n-1}.
\]
Theorem (Nagel-Petrović)

\[h(S_T/I_T) = \sum_{i \geq 0} (i + 1)^n t^i = \frac{1 + h_{1,n} t + \cdots + h_{r,n} t^r}{(1 - t)^{n+1}}, \]

where the entries of the \(h \) vector are the Eulerian numbers. In particular, the regularity is \(\text{reg}(S_T/I_T) = n - 1 \).

Recurrence relation for the entries of the \(h \)-vector:

\[h_{i,n} = (n - i)h_{i-1,n-1} + (i + 1)h_{i,n-1}. \]

Eulerian numbers generalize binomial coefficients.
Theorem (Nagel-Petrović)

\[
h(S_T/\mathcal{I}_T) = \sum_{i \geq 0} (i + 1)^n t^i = \frac{1 + h_{1,n} t + \cdots + h_{r,n} t^{r_n}}{(1 - t)^{n+1}},
\]

where the entries of the \(h \) vector are the Eulerian numbers. In particular, the regularity is \(\text{reg}(S_T/\mathcal{I}_T) = n - 1 \).

Recurrence relation for the entries of the \(h \)-vector:

\[
h_{i,n} = (n - i)h_{i-1,n-1} + (i + 1)h_{i,n-1}.
\]

Eulerian numbers generalize binomial coefficients. Eulerian triangle has symmetric rows.

Corollary

The coordinate ring of the cut ideal of any tree is Gorenstein.
Consequences

Theorem (Nagel-Petrović)

If a graph can be built from trees and cycles using clique sums ($k \leq 2$), then:

- squarefree quadratic Gröbner basis (thus generated in degree 2),
- Cohen-Macaulay.
Note: not Gorenstein in general.
Consequences

Theorem (Nagel-Petrović)

If a graph can be built from trees and cycles using clique sums ($k \leq 2$), then:

- squarefree quadratic Gröbner basis (thus generated in degree 2),
Consequences

Theorem (Nagel-Petrović)

If a graph can be built from trees and cycles using clique sums ($k \leq 2$), then:

- squarefree quadratic Gröbner basis (thus generated in degree 2),
- Cohen-Macaulay.
Consequences

Theorem (Nagel-Petrović)

If a graph can be built from trees and cycles using clique sums ($k \leq 2$), then:

- *squarefree quadratic Gröbner basis (thus generated in degree 2)*,
- *Cohen-Macaulay*.

Note: not Gorenstein in general.
In particular, the conjectures on quadratic generation and Cohen-Macaulayness are true for a large subclass of series-parallel graphs:

Example

Outerplanar graphs.
In particular, the conjectures on quadratic generation and Cohen-Macaulayness are true for a large subclass of series-parallel graphs:

Example

Outerplanar graphs.

Example

2-trees have the same properties.
Minor-closed conjecture

Degrees of generators should not go up when deleting edges.

Lemma (Nagel-Petrović)

Maximal degree of a minimal generator is preserved under taking disjoint union. Cohen-Macaulayness is also preserved.
Minor-closed conjecture

Degrees of generators should not go up when deleting edges.

Lemma (Nagel-Petrović)

Maximal degree of a minimal generator is preserved under taking disjoint union. Cohen-Macaulayness is also preserved.

- This provides an insight into the algebraic interpretation of edge deletion.
Minor-closed conjecture

Degrees of generators should not go up when deleting edges.

Lemma (Nagel-Petrović)

Maximal degree of a minimal generator is preserved under taking disjoint union. Cohen-Macaulayness is also preserved.

- This provides an insight into the algebraic interpretation of edge deletion.
- The proof will solve the conjectures on maximal degree of a minimal generator.
Minor-closed conjecture

Degrees of generators should not go up when deleting edges.

Lemma (Nagel-Petrović)

Maximal degree of a minimal generator is preserved under taking disjoint union. Cohen-Macaulayness is also preserved.

- This provides an insight into the algebraic interpretation of edge deletion.
- The proof will solve the conjectures on maximal degree of a minimal generator
- and one direction of conjecture on Cohen-Macaulayness.
Thank you!