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ABSTRACT OF DISSERTATION

SPECTRAL ANALYSIS OF NONLINEAR DIMENSIONALITY REDUCTION
METHODS

Nonlinear dimensionality reduction problems arise in a wide range of applications
in information science and technology. Enormous amount of high-dimensional da-
ta sets are often obtained from various kinds of sensing systems or measurements.
Processing high dimensional data set is a challenging problem in data classification
and regression. Typically, these high-dimensional data sets admit low-dimensional
parametric representations. It is then important to construct low-dimensional rep-
resentations of high-dimensional data sets, called dimensionality reduction problem.
Several competitive methods have been proposed in recent years for this task.

In this thesis, we present theoretical analysis of several recently developed dimen-
sionality reduction methods. We generalize the previous analysis of the local tangent
space alignment (LTSA) algorithm to include the case of alignments of sections of
manifolds of different dimensions. We show that, under certain conditions, the align-
ment algorithm can successfully recover global coordinates even when local sections
have different dimensions. We also present a spectral analysis for the alignment ma-
trix to include this more general situation. Moreover, we present a theoretical analysis
for the numerical procedure of Hessian Eigenmaps method. We formulate a discrete
Hessian Eigenmaps method and show when it will recover the global coordinates.
Our results provide a theoretical understanding of the Local Tangent Space Align-
ment method and Hessian Eigenmaps method for nonlinear dimensionality reduction.

KEYWORDS: nonlinear, dimensionality reduction, spectral analysis, Local Tangent
Space Alignment, Hessian Eigenmaps
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Chapter 1 Introduction

Nonlinear dimensionality reduction problems arise in a wide range of applications in

information science and technology. Enormous amount of high-dimensional data sets

are often obtained from various kinds of sensing systems and measurements, such as

systems of digital cameras, video surveillance, text document processing and sound

analysis [9, 7, 19, 20, 35, 28]. Processing high dimensional data sets is a challenging

problem in data classification and regression even though there have been tremendous

progresses in the areas of data communication, storage and computation. Here, the

computational work increases exponentially with the dimension of the data set. This

is a phenomenon called “curse of dimensionality” [2].

Fortunately, in many cases, there are some low dimensional structures underlying

these high dimensional data sets. For example, consider taking many pictures of a

person by a camera with different pan angles and tilt angles. Assume the pictures that

we obtain are 64 × 64 gray-scale digital images. Each picture consists of 3096 pixel

values. We consider each picture as a 3096-dimensional vector, i.e. each pixel value

is an entry of this high dimensional vector. Then there is a set of high dimensional

vectors. However, we notice that this data set has only two underlying degrees of

freedom, i.e. the pan angle and the tilt angle of the camera. If we change pan and/or

tilt angles of the camera, the values of those high dimensional vectors change. These

changes are highly related to each other. If we can explore the underlying correlation

of the data points, we may perform further analysis of the high dimensional data set,

such as data classification, regression and visualization.

In the last ten years or so, it has become clear that the high dimensional data

governed by a few degrees of freedom can be modeled as points lying close to a low
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dimensional manifold in a high-dimensional space with/without noise [22, 27]. The

problem of extracting the underlying low dimensional structure of the high dimen-

sional data set turns into the problem of finding the low dimensional parametrization

of the data points on the manifold, also called dimensionality reduction.

This manifold-based nonlinear dimensionality reduction has attracted significant

interest in recent years. Mathematically, it can be described as follows. Consider a

d-dimensional parameterized manifold M embedded in Rm (d < m) characterized by

a, possibly nonlinear, map,

ψ : C ⊂ R
d → R

m,

where C is a compact and connected subset of Rd. Here Rm represents the high-

dimensional data space, and Rd represents the low-dimensional parameter space.

Given a set of data points x1, · · · , xN ∈ Rm with

xi = ψ(τi), i = 1, . . . , N, (1.1)

where τi ∈ C, the problem of dimensionality reduction is to recover low dimensional

coordinates (parametrization) τi’s from the xi’s.

Traditionally, the linear dimensionality reduction problem has been considered

where the data set lies close to an affine subspace, i.e. ψ is a linear map. Such a

problem can be solved by the Principal Component Analysis or Multidimensional

Scaling method. However, many problems do not admit a linear structure. A more

interesting problem concerns a nonlinear structure underlying the high dimensional

data points, i.e. when ψ is a nonlinear map. In 2000, two algorithms, called Locally

Linear Embedding (LLE) [22] and Isometric Mapping (Isomap) [27], were developed

for this problem. Since then, several competitive algorithms have been proposed for

nonlinear dimensionality reduction, which include Laplacian Eigenmap [1], Hessian
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Eigenmaps [8], and Local Tangent Space Alignment (LTSA) [34] among many others;

see [23] for a thorough review.

One idea underlying several of these methods is to reconstruct global coordinates

τi from their local relations as defined by data points in a small neighborhood. For

example, the LTSA method [34] recovers global coordinates through first constructing

local coordinate systems for local neighborhoods and then aligning them into a global

coordinate system by constructing an alignment matrix and computing its null space.

The first theoretical analysis for this kind of alignment methods was obtained in [30].

It is shown in [30] that LTSA is able to recover the low dimensional representation

of the high dimensional data up to a rigid motion under a certain condition on local

neighborhoods called fully overlap, provided coordinates for points lying in local

neighborhoods are constructed correctly.

One common assumption of the global construction methods based on local rela-

tions is that the underlying manifolds for the local neighborhoods (or the sets of local

points) all have the same dimension d. (Here, we say a set of data points (1.1) is of

dimension p if the corresponding set of coordinates τi, after being centered, spans a

p-dimensional space.) However, there are many situations where such an assumption

may not hold. For example, the data points may lie on several manifolds of different

dimensions or they may be sampled from a d-dimensional manifold with lower dimen-

sional branches/sections. Then the ability of dimensionality reduction algorithms to

detect and work with change of dimension in local data points is very important.

For the first part of this thesis, we derive a thorough analysis for the alignment of

manifold sections of different dimensions. We show that the alignment algorithm can

work with manifold sections of different dimensions under certain conditions on local

neighborhoods. To demonstrate the application of this analysis, we consider a semi-

supervised manifold learning method to allow alignment of manifolds with different
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dimensions.

Another important issue for the alignment methods is concerned with the com-

putation of the null space of the alignment matrix. To computationally separate

the null space, it is important to have a sufficient gap between the smallest positive

eigenvalue and the zero eigenvalue. This is the subject of [16, 32] and indeed a full

characterization of the eigenvalues of the alignment matrix was obtained in [16]. We

generalize the results of [16] to include the case of alignment of manifold sections of

different dimensions. Specifically, we present the characterization of the eigenvalues

of the alignment matrix and a lower bound on the smallest positive eigenvalue.

We finally consider the Hessian Eigenmaps method, which is probably mathe-

matically most sophisticated among the nonlinear dimensionality methods that have

been developed. By introducing a Hessian operator and a quadratic form called H-

functional defined for a function f : M → R, it is proved in [8] that the H-functional

has a (d + 1)-dimensional null space consisting of the constant functions and a d-

dimensional space of functions spanned by the original isometric coordinates. Hence,

the locally isometric coordinates can be obtained up to a linear transformation by

computing the H-functional and its null space. This procedure, called the Hessian

Eigenmap method, is set on the continuous framework and is a theoretical method

only, however. To derive a practical method in the discrete setting, various approxi-

mations and necessary modifications have to be introduced and a resulting procedure

is called Hessian LLE [8]. However, it is not clear exactly whether the modified dis-

crete procedure still recovers the isometric coordinates as in the theoretical analysis

for the continuous case. Here, we present a discrete Hessian Eigenmap method that

is based on the numerical procedure developed in [8]. By defining a discrete Hessian

operator and a generalized H-functional that we call Hessian alignment matrix, we

show that the null space of the Hessian alignment matrix recovers the locally isometric
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coordinates, provided local neighborhoods are sufficiently “overlapped”.

The rest of this thesis is organized as follows.

In Chapter 2, we present a review of some dimensionality reduction methods that

have been developed. In Section 2.1, we review two classical linear dimensionality

reduction methods, i.e. Principle Component Analysis and Multidimensional Scaling.

In Section 2.2, we present several nonlinear dimensionality reduction methods.

In Chapter 3, we consider an alignment algorithm for reconstructing global coor-

dinates from local coordinates constructed for sections of manifolds. We show that,

under certain conditions, the alignment algorithm can successfully recover global co-

ordinates even when local sections have different dimensions. In Section 3.1, we

review the alignment algorithm. We present an analysis of the alignments of sections

of different dimensions in Section 3.2. We discuss a semi-supervised learning prob-

lem and put forth an algorithm for this problem in Section 3.3. We present several

examples to illustrate our results in Section 3.4.

Chapter 4 provides a spectral analysis for the alignment matrix that arises in

the alignment algorithms. In Section 4.1, we set up the framework and introduce

notations by introducing the LTSA method and a more general alignment matrix.

As in [16], Section 4.2 first presents our main results for the case of two submatrices

and then discusses how to obtain a bound recursively in the general case of more

than two subsections. We present some numerical examples to illustrate our bounds

in Section 4.3.

In Chapter 5, we present and analyze a discrete Hessian Eigenmaps method that

is based on the numerical procedure developed in [8]. In Section 5.1, we introduce the

discrete Hessian Eigenmaps method including the construction of Hessian alignment

matrix from local coordinates. In Section 5.2, we provide the analysis for the discrete

Hessian Eigenmaps. In particular, we derive the condition under which the locally
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isometric coordinates can be recovered by Hessian alignment matrix constructed from

local subsets.

In Chapter 6, we present some concluding remarks and discuss future work.

Notation. Throughout, In denotes the identity matrix of dimension n and e denotes

a column vector of all ones the dimension of which should be clear from the context.

null(·) is the null space of the argument matrix, and span(·) denotes the subspace

spanned by all the columns of argument matrix. We also use the following MAT-

LAB notation. For an index set I = [i1, . . . , ik], A(:, I) denotes the submatrix of A

consisting of columns of A with indices I.

For a matrix A = [a1, . . . , an] ∈ R
m×n, vec(A) represents the mn-dimension col-

umn vector formed by stacking the columns of A on top of each other as

vec(A) =




a1
...
an


 ∈ R

mn.

For two matrices A = (aij)m×n ∈ Rm×n andB = (bij)p×q ∈ Rp×q, A
⊗

B ∈ Rmp×nq

represents the Kronecker product of A and B, i.e.

A
⊗

B =




a11B · · · a1nB
...

. . .
...

a1mB · · · amnB


 .

For two row vectors a = [a1, . . . , an] ∈ R1×n and b = [b1, . . . , bn] ∈ R1×n, we also

define a
⊙

b = [c1, . . . , cn(n−1)/2] ∈ R
n(n−1)/2 where

c k(k−1)
2

+ℓ
= akbℓ for ℓ ≤ k. (1.2)

Copyright c© Weifeng Zhi, 2012.
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Chapter 2 Preliminaries

In this section, we review several methods for dimensionality reduction and manifold

learning. We limit ourselves to ’unsupervised’ methods. The unsupervised methods

extract features from the unlabeled data sets without specification of the task needing

to be done from the low dimensional representation. The methods described here are

divided into two groups:

• Linear Dimensionality Reduction methods. Traditional dimensionality reduc-

tion methods such as Principal Component Analysis and Multidimensional S-

caling, extract the linear features out of the data sets.

• Nonlinear Dimensionality Reduction methods. Nonlinear dimensionality reduc-

tion methods such as LLE and Isomap explore the nonlinear map between the

high dimensional data set and its low dimensional representation.

This chapter is organized as follows. In Section 2.1, we introduce the classical linear

dimensionality methods. The nonlinear dimensionality reduction methods, including

Locally Linear Embedding algorithm (LLE), Isometric Mapping algorithm (Isomap),

Laplacian Eigemaps algorithm, Local Tangent Space Alignment algorithm (LTSA)

and Hessian Eigenmaps (HLLE), are presented in Section 2.2.

2.1 Linear Dimensionality Reduction

In this section, we present two classical linear dimensionality reduction methods.

These methods attempt to extract the linear features out of the high dimensional data.

They are very useful in neutral networks [18, 15], Meteorology [12], Oceanography

[21], data compression and computing [14].
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2.1.1 Principle Component Analysis

Principle component analysis (PCA) is one of the traditional linear dimensionality

reduction methods. There are several ways to describe PCA method. One of the

popular ways is considering PCA as a method to discover a low rank projection of

the high dimensional data set by maximizing the variance matrix [13]. The other idea

is to find the linear low dimensional parametrization of the data set by minimizing the

distance between the original data and its extracted low dimensional parametrization

[11, 34]. The latter idea is used in the derivation of LTSA, and we present the details

of this idea as follows.

Given a collection of data points {xi} sampled from a m-dimensional linear sub-

space, assume xi ∈ R
m and the low dimensional parametrization τi ∈ R

d, i = 1, . . . , N

such that

xi = c+ Uτi + ǫi, i = 1, . . . , N,

where c ∈ Rm, U ∈ Rm×d and ǫi ∈ Rm is the term of noise. The column vectors of

matrix U is a set of orthogonal basis for the linear subspace. We rewrite this model

in the matrix form below:

X = ceT + UT + E,

whereX = [x1, x2, . . . , xN ] ∈ Rm×N , T = [τ1, τ2, . . . , τN ] ∈ Rd×N and E = [ǫ1, ǫ2, . . . , ǫN ] ∈

Rm×N . The problem of dimensionality reduction in the linear case can be considered

as minimizing the distance between the original data points and the low dimensional

parametrization of the data points by seeking c, U and T , i.e.,

min ‖E‖F = min
c,U,T

‖X − (ceT + UT )‖F ,

where ‖ · ‖F is the Frobenius norm of a matrix and E is the difference between X and

ceT + UT .
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The problem can be solved by singular value decomposition (SVD) based on the

following two observations:

(1) The norm of the error matrix E can be reduced by centering the columns of

E, and hence we can assume the optimal E is such that Ee = 0. Assume Te = 0, i.e.

T is centered. This requirement can be fulfilled if c is chosen as c = Xe/N ≡ x̄.

(2) The matrix UT is the rank-d approximation to the matrix X − x̄eT . Let

X − x̄eT = QΣV T ,

be the SVD for X − x̄eT , where Q ∈ R
m×m, Σ ∈ R

m×N and V ∈ R
N×N . We

have UT = QdΣdV
T
d , where Σd = diag(σ1, . . . , σd) with d largest singular values

σ1 ≥ · · · ≥ σd, Qd and Vd consist of the corresponding left and right singular vectors,

respectively. The Qd is the optimal matrix U .

For PCA, the low dimensional parametrization is given by

T = QT
d (X − x̄eT ) = diag(σ1, . . . , σd)V

T
d .

Ideally, the dimension d of the dimensionality reduction model should be chosen such

that σd+1 ≪ σd.

2.1.2 Multidimensional Scaling

The other classical linear dimensionality reduction method is Multidimensional Scal-

ing (MDS). The idea of MDS is to find the low dimensional projection of the data

set that preserves the pairwise Euclidean distance between data points [5, 33]. We

present MDS as follows.

Given a set of data points {xi}, i = 1, . . . , N , xi ∈ Rm with N > m, assume

τi ∈ Rd, i = 1, . . . , N , is the low dimensional representation for xi, i = 1, . . . , N . We

construct the set of pairwise Euclidean distances

d(xi, xj) = ‖xi − xj‖2.
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We are asked to reconstruct the low dimensional parametrization τi’s from the above

set of pairwise distances. We can proceed as follows: without loss of generality,

assume that the xi’s are centered

N∑

i=1

xi = 0.

Notice that the squared pairwise distance

d2(xi, xj) = ‖xi − xj‖22. (2.1)

Let D = (Di,j)N×N be the squared-distance matrix, where Di,j = d2(xi, xj). Let e

be the N -dimensional vector of all ones and X = [x1, . . . , xN ]. Let J = I − eeT /N .

Define

H ≡ −JDJ/2 = XTX.

Let T = [τ1, . . . , τN ]. To recover the low dimensional representation T , let the eigen-

decomposition of H be

H = Udiag(λ1, . . . , λm)U
T ,

where U ∈ RN×m is an orthogonal matrix and λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Then we set

T = diag(λ
1
2
1 , . . . , λ

1
2
d )U

T
d ,

where Ud is the matrix consisting of the column vectors corresponding to the eigen-

values λ1, . . . , λd. The column vectors of T are the low dimensional parametrization

of the data points.

In applications, we can substitute the Euclidean distance (2.1) by any other proper

dissimilarity criteria depending on the problem. See [5] for a thorough review.

Moreover, we notice that the procedure to find a d-dimensional representation

of the data set by MDS is equivalent to projecting the data on the d-dimensional

principle components. Thus MDS is equivalent to PCA. We can consider MDS as an
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alternative way for PCA in dimensionality reduction if we have the distance between

each two data points rather than the coordinates of the data points [29].

PCA and MDS work well if the data points lie close to an affine subspace (mani-

fold), whereas they fail to detect the nonlinear structure underlying the data points.

2.2 Nonlinear Dimensionality Reduction

Since the publications of LLE [22] and Isomap [27], several competitive methods have

been proposed for the nonlinear dimensionality reduction, which include Laplacian

Eigenmap [1], Hessian Eigenmap [8], and LTSA (Local Tangent Space Alignment)[34]

among many others. In this section, we introduce several nonlinear dimensionality

reduction methods, which can explore the nonlinear structure among the high dimen-

sional data points.

2.2.1 Isometric Mapping

The Isomap method can be considered an extension of MDS for the nonlinear di-

mensionality reduction. Assume that we have a set of high dimensional data points

lying closely to a nonlinear low dimensional manifold. We try to extract the low

dimensional structure from the data set. The idea of Isomap is that the pairwise Eu-

clidean distance between low dimensional parameters preserves the pairwise geodesic

distance between high dimensional data points [27].

Given a set of data points {xi}, 1, . . . , N , xi ∈ R
m, assume τi ∈ R

d, i = 1, . . . , N ,

are the low dimensional parametrization for xi, i = 1, . . . , N . The main idea of

ISOMAP is to compute pairwise geodesic distance among pairs of data points, which

are the same as the Euclidean distance among τi’s. Then τi can be constructed from

its distance matrix using MDS.
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First of all, Isomap finds the neighborhood with k nearest points of each data point

xi. We construct a neighborhood graph for all the data points as follows. We consider

each point as a vertex of the neighborhood graph. If xj is in the neighborhood of xi,

there is an edge between xi and xj . The weight of the edge between xi and xj is the

Euclidean distance between vertex xi and vertex xj defined as dx(i, j). If the radius

of the neighborhood is very small, the Euclidean distance between the two points in a

small neighborhood approximates to the geodesic distance between those two points.

From the neighborhood graph constructed in the first step, we estimate the

geodesic distance between any two points in the data set. For any two vertices

in the graph, we compute the shortest path through the graph as an estimation for

the geodesic distance between those two vertices. To compute the shortest distance

among all vertices in the graph, we can use either Dijkstra’s or Floyd’s algorithm.

• Initialize

dG(i, j) =

{
dx(i, j), if xi and xj are linked by an edge;
∞, otherwise;

• Compute

dG(i, j) = min{dG(i, j), dG(i, k) + dG(k, j)}

for k = 1, . . . , N .

Given the geodesic distances between any two points, we construct a matrix with

the squares of the estimated geodesic distances as follows.

DG = {d2G(i, j)}.

Then we can apply MDS to discover the low dimensional parametrization for the data

set. Set J = I − 1
N
eeT . Let the eigendecomposition of matrix H ≡ −1

2
JDJ be

H = Udiag(λ1, . . . , λm)U
T ,

12



where U ∈ R
N×m is an orthonormal matrix and λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Then we

set

T = diag(λ
1
2
1 , . . . , λ

1
2
d )U

T
d ,

where Ud is the matrix consisting of the column vectors of U corresponding to the

eigenvalues λ1, . . . , λd. The column vectors of T are the low dimensional parametriza-

tion of the data points. One disadvantage for Isomap is that it is not computationally

efficient since it needs to solve an eigenvector problem of a dense matrix instead of a

sparse matrix.

2.2.2 Locally Linear Embedding

Assume we have a set of high dimensional data points that lies closely on a low

dimensional manifold. We consider that there is a locally linear mapping between

the high dimensional data points and its low dimensional parametrization in a small

neighborhood. The idea of the locally linear embedding method (LLE) is to minimize

a convex error function constructed from the neighborhood of each data point [22].

We present the main procedure of LLE as follows.

Given a set of data points {xi}, xi ∈ Rm, 1, . . . , N , the first step of LLE is to find

a neighborhood Ni for each xi by choosing the k nearest neighbors of xi. Then we

construct the weight W = (Wij)N×N by minimizing the following error

e(W ) =
∑

i

‖xi −
∑

j

Wijxj‖22.

LLE considers reconstructing xi from its neighbors, so they enforce Wij = 0 when xj

is not in the neighborhood of xi. To get rid of the scaling freedom, it further requires

that
∑

j Wij = 1. If there are more neighbors than the dimension of the data sets, the

optimal Wij is not unique.
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For the second step, it finds the low dimensional parametrization τi ∈ R
d, 1, . . . , N ,

using the weights from the first step. The weights constructed from the high dimen-

sional space provide a good reconstruction of the coordinates on low dimensional

manifold. Then it can set up a cost function by minimizing the reconstruction error

for the low dimensional parametrization τi using the weights Wij constructed from

the high dimensional data below.

Φ(T ) =
N∑

i=1

‖τi −
∑

j

Wijτj‖22. (2.2)

To remove the rotational freedom in the final embedding, it further requires

N∑

i=1

τi = 0, τTi τj = 0 for (i 6= j) and ‖τi‖2 = 1. (2.3)

We notice that the optimization problem is similar to the first step whereas the

weights are fixed here and we try to find the coordinates τi, i = 1, . . . , N .

We rewrite the problem of (2.2) and (2.3) as

min
TTT=I

Φ(T ) = min
TTT=I

Trace
(
T (I −W )(I −W )TT T

)

where T = [τ1, . . . , τN ]. Then the optimal d-dimensional parametrization is found

by computing the eigenvectors corresponding to the smallest d + 1 eigenvalues of

the matrix (I − W )(I − W )T . We notice that vector e is always the eigenvector

corresponding to eigenvalue 0 of the matrix (I−W )(I−W )T . Then the eigenvectors

corresponding to the 2nd to d+1-st smallest eigenvalues are the matrix T T . Therefore,

we find the d-dimensional parametrization T = [τ1, . . . , τN ] for the data set.

2.2.3 Laplacian Eigenmaps

Laplacian Eigenmaps, like Isomap, is another nonlinear dimensionality reduction

method based on a weighted graph for neighborhoods of high dimensional data points.
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The idea of Laplacian Eigenmaps is preserving the geometric properties of high di-

mensional data from low dimensional parametrization.

Given a set of data points {xi}, xi ∈ R
m, 1, . . . , N , the first step of Laplacian

Eigenmaps is constructing the adjacency graph. If any two points are in the neigh-

borhood of each other, there is an edge between those two points. As LLE and Isomap,

we can define the neighborhoods as ǫ-neighborhoods or k-neighborhoods, which are

both decided by the Euclidean distance between two points. For the ǫ-neighborhood

of xi, it consists of xj ∈ Ni, i.e., the neighborhood of xi if ‖xi − xj‖2 < ǫ. For the

k-neighborhoods of xi, it considers the k nearest points in the neighborhood of xi,

including xi. Next, we need to choose the weights for the edges. For Laplacian Eigen-

maps, there are two ways to assign the weights Wij between two connected vertices

xi and xj . We present them as follows.

• Heat Kernel.

Wij =

{
e−

‖xi−xj‖
2

4t , if xi and xj are connected by an edge;
0, otherwise.

Here t > 0 is the parameter and does not affect the eigenvectors of the discrete

Laplacian [1].

• Simple-minded.

Wij =

{
1, if xi and xj are connected by an edge;
0, otherwise.

The third step of Laplacian Eigenmaps is to compute the low dimensional parametriza-

tion by solving a generalized eigenvector problem. We set up an objective function

to minimize the sums of weighted squared distance between the low dimensional

parametrization of any two points. The objective function is

∑

ij

‖τi − τj‖22Wij,
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where τi is the low dimensional parametrization for xi. Let D be a diagonal matrix,

whose entries are the column sums of weight matrix W = (Wij)N×N of last step. Let

D = (Dij)N×N , where

Dij
def
=

{ ∑
kWkj, if i = j;

0, if i 6= j.

The Laplacian matrix is defined as L = D−W . Then the minimization problem can

be rewrite in the matrix form as below.

arg min
TDTT=I

Trace(TLT T ),

where T = [τ1, . . . , τN ]. We impose the restriction TDT T = I since this objective

function is invariant to linear transformation and a scale of the parametrization has

to be fixed here. Then the low dimensional parametrization can be achieved by

computing the eigenvectors of the following generalized eigenvalue problem

LY = λDY,

where Y = T T . Noticing vector e being always the eigenvector corresponding to the

eigenvalue zero, we take the eigenvectors corresponding to the 2nd to (d+1)-st eigen-

values as T T . Then the column vectors of T are the low dimensional parametrization

of the data set.

2.2.4 Local Tangent Space Alignment

Local Tangent Space Alignment method (LTSA) is another nonlinear dimensionality

reduction algorithm. The idea of the LTSA method [34] is to construct global co-

ordinates through first constructing the local coordinates on the local tangent space

and then aligning those local coordinates to form a global coordinates. We preset the

LTSA method as follows.
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Given a set of data points {xi} sampled with noise from an underlying nonlinear

manifold, xi ∈ Rm, 1, . . . , N , set the matrix X = [x1, . . . , xN ]. For each xi, let

Xi = [xi1 , . . . , xik ] be a matrix consisting of its k nearest neighbors including xi in the

Euclidean distance. Consider computing the best d-dimensional linear approximation

for the data points in Xi,

min
x,Θ,Q

k∑

j=1

‖xij − (x+Qθj)‖22 = min
x,Θ,Q

‖Xi − (xeT +QΘ)‖22,

where Q is of d columns and is orthonormal, and Θ = [θ1, . . . , θk]. This is the same

problem as PCA. The optimal solution is as follows.

x = x̄i, Θi = QT
i

(
I − 1

k
eeT
)

= [θ
(i)
1 , . . . , θ

(i)
k ], θ

(i)
j = QT

i (xij − x̄i),

where x̄i =
1
k

∑k
j=1 xij , θ

(i)
j is the local coordinate of xij in the neighborhood of xi

and Qi is the matrix consisting of d left singular vectors of matrix Xi(I − 1
k
eeT ) cor-

responding to its d largest singular values. Next, we construct the global coordinate

τi, i = 1, . . . , N , in the low dimensional feature space based on the local coordinates

θ
(i)
j . Assume that in each neighborhood, the corresponding global coordinates differ

from the local coordinates by a local affine transformation.

τij = τ̄i + Liθ
(i)
j + ǫ

(i)
j , j = 1, . . . , k, i = 1, . . . , N,

where τ̄i is the mean of τij ’s, Li is a local affine transformation matrix that needs to

be determined, and ǫ
(i)
j is the local reconstruction error. Denoting Ti = [τi1 , . . . , τik ],

we have the local reconstruction error

k∑

j=1

‖τij − (τ̄i + Liθ
(i)
j )‖2F = ‖Ti − (τ̄ie

T + LiΘi)‖2F .

To preserve as much of the local geometry in the low-dimensional feature space, we

seek to find τi and Li to minimize the reconstruction errors ǫ
(i)
j , i.e.,

min
∑

i

‖Ti
(
I − 1

k
eeT − LiΘi

)
‖2F
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Obviously, the optimal alignment matrix Li is given by

Li = Ti

(
I − 1

k
eeT
)
Θ†

i .

Then we have

Ti

(
I − 1

k
eeT − LiΘi

)
= Ti

(
I − 1

k
eeT
)
(I −Θ†

iΘi),

where Θ†
i is the Moore-Penrose generalized inverse of Θi.

Let T = [τ1, . . . , τN ] and Ei be the 0-1 selection matrix such that TEi = Ti. We

need to find T to minimize the overall construction error

∑

i

‖Ti
(
I − 1

k
eeT
)
(I −Θ†

iΘi)‖2F = ‖TEW‖2F ,

where E = [E1, . . . , EN ] and W = diag(W1, . . . ,WN) with

Wi =

(
I − 1

k
eeT
)
(I −Θ†

iΘi).

Imposing the constraints TT T = I and Te = 0, we can determine T uniquely. Set

Φ ≡ EWW TET .

The optimal T T is given by the d eigenvectors of Φ corresponding to the 2nd to (d+1)-

st smallest eigenvalues. e corresponding to the eigenvalue 0, which is determined by

the structure of Φ. In the subsection below, we shall state a full LTSA algorithm.

2.2.4.1 Analysis of Alignment Matrix of LTSA

The LTSA method provides a numerical procedure to compute the low dimensional

representation for the high dimensional data set and the representation preserves the

local geometry of the data points. However, what we obtained globally is not clear.

In [30], Ye and etc. presents the insightful theoretical analysis of the global alignment

procedure for LTSA. We introduce the analysis as follows.
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Consider the data set (1.1). We are interested in computing a set of low dimen-

sional parametrization τi’s from the high dimensional data xi’s. First, the data set is

partitioned into several subsets called local patch (neighborhood) of the manifold. On

each of the patches, a local coordinate system is computed, from which we construct

an alignment matrix and recover the global parametrization. Next, we introduce the

alignment matrix in detail.

The analysis begins with the construction of the alignment matrix based on τi’s.

Consider Si = {τ1, . . . , τN} and let {Si, 1 ≤ i ≤ s} be a collection of s subsets of S.

Write

Si = {τi1 , . . . , τiki}, i1 < i2 < · · · < iki , (2.4)

and set

T = [τ1, · · · , τN ] ∈ R
d×N , Ti = [τi1 , · · · , τiki ]. (2.5)

Let Pi be orthogonal projection onto the orthogonal complement of span([e, T T
i ]), i.e.,

null(Pi) = span([e, T T
i ]). Let

Ei = [ei1 , . . . , eiki ] ∈ R
N×ki, (2.6)

where ei ∈ RN is the i-th column of IN (the N ×N identity matrix). Define

Φi = EiPiE
T
i ; (2.7)

and

Φ =
s∑

i=1

Φi. (2.8)

Φ is the alignment matrix of the collection {Ti}.

In practice, only an approximate isometric coordinates {θ(i)1 , . . . , θ
(i)
ki
} can be com-

puted from each local patch instead of {τi1 , . . . , τiki}. {θ(i)1 , . . . , θ
(i)
ki
} are the local

coordinates of Si. It has been shown [30, 32] that the global coordinates τi’s can be
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constructed from the local coordinates through an alignment process as follows. Set

Θi =
[
θ
(i)
1 , . . . , θ

(i)
ki

]
. (2.9)

and define Qi to be the orthogonal projection onto the orthogonal complement of

span{
[
e,ΘT

i

]
} in Rki . Let

Ψi = EiQiE
T
i , Ψ =

s∑

i=1

Ψi. (2.10)

Note that Ψi is the embedding of Qi into an N × N matrix such that the (ip, iq)th

element of Ψi is the (p, q)th element of Qi. Ψ is called the alignment matrix for

{Si, 1 ≤ i ≤ s}. We can recover T from the null space of Φ under certain condition

called fully overlap. For the ease of references, we state the alignment process as

follows.

Algorithm 2.1. Alignment Algorithm:

Given X = {x1, · · · , xN} ⊂ R
m.

1. Construct a fully overlapped covering {Xi, i = 1, . . . , s} with X i = {xi1 , . . . , xiki}.

2. For each X i, construct its local coordinates θ
(i)
1 , . . . , θ

(i)
ki
.

3. Construct Ψ from Θi = [θ
(i)
1 , . . . , θ

(i)
ki
] as in (2.10)

4. compute [e/
√
N,QT ] as an orthonormal basis of the spectral subspace of Ψ corre-

sponding to the smallest d+ 1 eigenvalues, where QT ∈ R
N×d.

5. Recover T as T = WQ, where W = ΘpẐ
†
p and Ẑp = ZEi(I − 1

ki
eeT ).

To introduce the main theorem of this section, we present some definitions and

preliminary results at first.

Definition 2.1. Let Sx = {x1, . . . , xm} and Sy = {y1, . . . , yn} be two subsets of Rd.

Denote by Sz = Sx

⋂
Sy = {z1, . . . , zk} the set of column vectors that are in the

intersection of Sx and Sy. We say the two sets Sx and Sy are fully overlapped if

span(z1 − z̄, z2 − z̄, . . . , zk − z̄) = R
d, (2.11)

where z̄ = (
∑k

i=1 zi)/k.
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We notice that condition (2.11) is equivalent to

[e, ZT ] having full column rank. (2.12)

Definition 2.2. This definition is recursive. Let Si, 1 ≤ i ≤ s, be s subsets of Rd.

The collection {Si, 1 ≤ i ≤ s} is fully overlapped if it can be partitioned into two

nonempty disjoint collections, say, {Si, i = 1, . . . , p} and {Si, i = p + 1, . . . , s}, each

which is a fully overlapped collection, and if the union sets of the two collections

Ŝ1 ≡
⋃p

i=1Si and Ŝ2 ≡
⋃s

i=p+1Si are fully overlapped.

Next, we present the definition for the covering of a set S.

Definition 2.3. The collection {Si, 1 ≤ i ≤ s} is a covering of S if
⋃s

i=1 Si = S,

and a fully overlapped covering if the collection is a covering and fully overlapped.

Under the condition of fully overlap for the covering {Si, 1 ≤ i ≤ s}, two impor-

tant theorems are shown in [30].

Theorem 2.1. Let Φi and Φ be defined as in (2.7) and (2.8), respectively, and

let {Si, i = 1, . . . , s} be a covering of S. If it is fully overlapped, then null(Φ) =

span([e, T T ]).

However, in practice, τi is not available, but we have the local coordinate Θi for the

points the neighborhood of xi. The following theorem shows that the same alignment

matrix is constructed with the local coordinates and the global coordinates. Then

the global coordinates T is recovered from the null space of the alignment matrix.

Theorem 2.2. Let {Si, i = 1, . . . , s}, given by (2.4), be a covering of S, and let

{θ(i)1 , . . . , θ
(i)
ki
} ∈ Rd which is isometric in the Euclidean distance to {τi1 , · · · , τiki}.

Then

Ψ = Φ,
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where Ψ is defined according to (2.10) and Φ is the alignment matrix for {Si, 1 ≤

i ≤ s} defined according to (2.8). In particular, span{[e, T T ]} ⊂ null(Ψ) and, if

{Si, i = 1, . . . , s} is fully overlapped, then null{Ψ} = span{[e, T T ]}.

Hence, the global coordinates τi’s can be obtained from computing null(Ψ), up to

an orthogonal transformation (a rigid motion).

2.2.4.2 Eigenvalues of Alignment Matrix of LTSA

From the theoretical analysis [30] discussed above, we note that recovering the low di-

mensional representation of the high dimensional data set is equivalent to finding the

null space of the alignment matrix constructed from the local coordinates. To com-

putationally separate the null space, it is important to have a sufficient gap between

the smallest positive eigenvalue and the zero eigenvalues. The spectral properties of

alignment matrix for LTSA have been characterized in [16]. In Chapter 4, we gener-

alize these results and derive a new lower bound for the smallest positive eigenvalue

of alignment matrix when there are large local errors due to different dimensions of

manifold sections.

[30] considers the alignment matrix in a more general setting. Given a matrix

Z ∈ RN×(d+1) and s submatrices Zj ∈ Rkj×(d+1) (for 1 ≤ j ≤ s) consisting of certain

rows of Z, let

T =
[
τ1, · · · , τN

]
, Z = [e, T T ]

and

Tj =
[
τj1 , · · · , τjkj

]
and Zj = [e, T T

j ].

We can study the eigenstructure of the alignment matrix Φ defined on {Zj} and Z.

In this analysis, we first define the alignment matrix in a general setting that

the first column of Z does not have to be all ones. Given an N × ℓ matrix Z, let
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Zj ∈ R
kj×ℓ (for 1 ≤ j ≤ s) be s submatrices consisting of certain rows of Z, i.e.

Zj = ET
j Z (2.13)

for some Ej = [ej1, . . . , ejkj ] ∈ R
N×kj (with 1 ≤ j1 < j2 < · · · < jkj ≤ N), where

ei ∈ RN is the i-th column of IN (the N × N identity matrix). Let PZj
= ZjZ

†
j be

the orthogonal projector in R
kj onto the column space of Zj, and let P⊥

Zj
= I − PZj

.

Embed P⊥
Zj

into RN×N according to the position of the rows of Zj in Z and denote

the resulting N ×N matrix by Φj , i.e. Φj = EjP
⊥
Zj
ET

j . Then the matrix

Φ :=

s∑

j=1

Φj . (2.14)

is called the alignment matrix for {Zj : 1 ≤ j ≤ s}, see [16, 30]. It is easily seen from

P⊥
Zj
Zj = 0 that ΦjZ = 0 and hence

ΦZ = 0 or span(Z) ⊂ null(Φ) (2.15)

where span(Z) is the span of the columns of Z. In the context of dimensionality

reduction, the rows of Z are the low dimensional coordinates (parametrization) of

the data points that we wish to find. We present the definition of fully overlap for

the general settings.

Definition 2.4. This definition is recursive.

1. Zj always fully overlaps itself regardless of its rank;

2. Zi and Zj for i 6= j are fully overlapped, if Z(Ii

⋂
Ij ,:) has full column rank;

3. The collection Z = {Zj , 1 ≤ j ≤ s} for s ≥ 3 is fully overlapped, if it can

be partitioned into two nonempty disjoint subsets Z1 and Z2 each of which

is a fully overlapped collection and that Z
(Ĩ1,:)

and Z
(Ĩ2,:)

are fully overlapped,

where

Ĩ i =
⋃

Zj∈Z i

Ij. (2.16)
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Theorem 2.3. If {Zj, 1 ≤ j ≤ s} is fully overlapped, then null(Φ) = span(Z).

Theorem 2.3 is an extension of Theorem 2.1.

Corollary 2.1. Under the conditions of Theorem 2.3,

λ+min(Φ)P
⊥
Z ≤ Φ ≤ λmax(Φ)P

⊥
Z ,

where λ+min(Φ) is the smallest nonzero eigenvalue of Φ, and λmax(Φ) is the largest

eigenvalue of Φ.

Corollary 2.1 is used in Chapter 4. In the case of two submatrices for Z, we define

Z1 =




ℓ

m11 Z11

m12 Z12


, Z2 =




ℓ

m21 Z21

m22 Z22


, (2.17)

where Z12 = Z21 is the common part in Z1 and Z2, m12 = m21. Then

Φ =




m11+m12 m22

m11+m12 P⊥
Z1

0

m22 0 0


 +




m11 m12+m22

m11 0 0

m12+m22 0 P⊥
Z2


. (2.18)

For this general settings, we have the following theorems from [16].

Theorem 2.4. Assume m12 ≥ 1, m11 ≥ 1, and m22 ≥ 1. Z11, Z12 = Z21 and Z22

admit the following decompositions

Z11 = U2 ×




r1 r2 ℓ−r1−r2

r2 M̃1 Σ2 0

m11−r2 M1 0 0


 ×




r1 ℓ−r1

I 0

0 V ∗
2


 V ∗

1 ,

Z12 = Z21 = U1 ×




r1 ℓ−r1

r1 Σ1 0

m12−r1 0 0


 V ∗

1 ,

Z22 = U3 ×




r1 r3 ℓ−r1−r3

r3 M̃2 Σ3 0

m22−r3 M2 0 0


 ×




r1 ℓ−r1

I 0

0 V ∗
3


 V ∗

1 ,
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where U1(m12×m12), U2(m11×m11), U3(m22×m22), V1 (ℓ× ℓ), and V2 and V3 (both

(ℓ− r1)× (ℓ− r1)) are unitary, Σ1 and Σ2 are diagonal with positive diagonal entries.

In particular

r1 = rank(Z12), r2 = rank((Z11V1)(:,r1+1:ℓ)), r3 = rank((Z22V1)(:,r1+1:ℓ)). (2.19)

Theorem 2.5. Let all symbols keep their assignments as Theorem 2.4. Then

1. dim (null(Φ)) = r1 + r2 + r3;

2. Suppose Z1 and Z2 have full column rank. Then null(Φ) = span(Z) if and only

if Z1 and Z2 are fully overlapped.

Theorem 2.6. The nonzero eigenvalues of Φ is no smaller than 1− τ where

τ ≡ ‖Z11Z
†
12‖2√

1 + ‖Z11Z
†
12‖22

‖Z22Z
†
12‖2√

1 + ‖Z22Z
†
12‖22

. (2.20)

Its largest eigenvalue is no greater than 1 + τ if m12 = r1 and it is 2 if m12 > r1,

where r1 = rank(Z12).

Theorem 2.7. Let τ be defined by (2.20). If Z1 and Z2 are fully overlapped, then

(1− τ)P⊥
Z ≤ Φ ≤

{
(1 + τ) if m12 = ℓ,
2 if m12 > ℓ.

}
P⊥
Z . (2.21)

Furthermore,

λ+min(Φ) ≥
1

2

(
σ2
min(Z12)

σ2
max(Z11)

+
σ2
min(Z12)

σ2
max(Z22)

)/(
1 +

σ2
min(Z12)

σ2
max(Z11)

+
σ2
min(Z12)

σ2
max(Z22)

)
, (2.22)

where σmin and σmax denote the smallest and the largest singular value respectively.

For the case of more than two submatrices for Z, we can bound the smallest

positive eigenvalue λ+min(Φ) recursively from below. Given

Z̃i = Z
(Ĩi,:),

i = 1, 2,
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define a function τ

τ(Z̃1, Z̃2)
def
=

t1√
1 + t21

t2√
1 + t22

, ti = ‖Z(J i,:)Z
†
(Ĩ1∩Ĩ2,:)

‖2, (2.23)

where J i is the complement set of Ĩ1 ∩ Ĩ2 in Ĩi.

Assume the collection Z is fully overlapped and partitioned into two disjoint

subsets Z1 and Z2 each of which is a fully overlapped collection. The following

procedure recursively computes α(Z) that satisfies α(Z)P⊥
Z ≤ Φ:

α({Zi}) = 1, (2.24)

α({Zi, Zj}) = 1− τ(Zi, Zj), (2.25)

α(Z) =
[
1− τ(Z̃1, Z̃2)

]
min{α(Z1), α(Z2)}. (2.26)

The smallest positive eigenvalue λ+min(Φ) is then no smaller than α(Z).

Theorem 2.8. Suppose Z = {Z1, Z2, . . . , Zs} is a fully overlapped collection, where

Zj are submatrices of Z ∈ CN×ℓ as defined by (2.13). Let α(Z) be computed recur-

sively by (2.24) – (2.26). Then α(Z)P⊥
Z ≤ Φ, where alignment matrix Φ is defined

by (2.14).

2.2.5 Hessian Eigenmaps

In this section, we introduce the Hessian Eigenmaps. We first describe the Hessian

Eigenmaps method of Donoho and Griems [8] in the continuous setting. Given that

the map ψ defined in (1.1) is a local isometric embedding, the map φ = ψ−1 :

M ⊂ R
m → R

d provides a (locally) isometric coordinate system for M. The local

isometry means that in a small neighborhood of each point x, geodesic distances

to nearby points x′ ∈ M in M are identical to Euclidean distances between the

corresponding parameter points τ and τ ′, i.e. ‖τ − τ ′‖2 = dM(x, x′), where dM(·, ·)

is the geodesic distance along M. The parameters τ and τ ′ are called the locally
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isometric coordinates for x′ and x, respectively. Each component of φ is a function

defined on M that provides one coordinate. The main idea of the Hessian Eigenmaps

is to introduce a Hessian operator and a functional called the H-functional defined

for functions on M, for which the null space consists of the d coordinate functions

and the constant function.

Let f : M 7→ R be a function defined on M and let x0 be an interior point

of manifold M. We can define a function h : C 7→ R as h(τ) = f(ψ(τ)), where

C = φ(M) ⊂ Rd and τ = [t1, . . . , td]
T ∈ C. Let τ0 = φ(x0). We call the Hessian

matrix of h at τ0 the Hessian matrix of function f at x0 in the isometric coordinate

and we denote it by H iso
f (x0). Then

(H iso
f )i,j(x0) =

∂2h(τ0)

∂ti∂tj
(2.27)

From the Hessian matrix, we define a H-functional of f in isometric coordinates,

denoted by Hiso(f), as

Hiso(f) =

∫

M
‖H iso

f (x)‖2
F
dx,

where dx is a probability measure onM which has strictly positive density everywhere

on the interior of M. It is clear from this definition that the H-functionals of the

d components of φ in isometric coordinates are zero. Indeed, Hiso(·) has a d + 1-

dimensional null space, consisting of the span of the constant functions and the d

component functions of φ; see [8, Corollary 4].

The Hessian matrix and the H-functional in isometric coordinates introduced

above are unfortunately not computable without knowing the isometric coordinate

system φ first. To obtain a functional with the same property but independent of

the isometric coordinate system φ, a Hessian matrix and the H-functional in local

tangent coordinates systems are introduced in [8]. We describe it now.
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For a smooth manifold M and an interior point x0 ∈ M, let Tx0(M) denote the

tangent space at x0. Let Nx0 be the set of points x ∈ M in a small neighborhood

of x0. Consider the tangent space as a plane at x0 (or a linear subspace R
n with

the origin at x0). There is an orthonormal basis {vi, 1 ≤ i ≤ d} for Tx0(M), where

vi ∈ Rm. If Nx0 is a sufficiently small neighborhood, then for any point x ∈ Nx0 ,

there is a unique point v(x) ∈ Tx0(M) that is closest to x. For x0, the closest point

in Tx0(M) is x0 itself. We can write v(x) in the basis {vi} as

v(x) = θ
(tan,x0)
1 (x)v1 + · · ·+ θ

(tan,θ0)
d (x)vd.

In this way, each x ∈ Nx0 is uniquely defined by

θ(tan,x0)(x) = [θ
(tan,x0)
1 (x), . . . , θ

(tan,x0)
d (x)]T ∈ R

d. (2.28)

which we call a local tangent coordinate (parametrization) of x ∈ Nx0.

Now, let f ∈ C2(M) : M 7→ R. It induces a function g(θ) : θ ∈ U0 → R defined

as

g(θ) = f(x), (2.29)

where θ = θ(tan,x0)(x) ∈ R
d for x ∈ Nx0 and U0 ⊂ R

d is a small neighborhood of

0 ∈ Rd such that there is a one-to-one correspondence between θ ∈ U0 and x ∈ Nx0 .

From this, we define the Hessian matrix of f at x0 in the local tangent coordinates

as the ordinary Hessian matrix of g(θ) at 0 ∈ Rd and denote it by H tan
f (x0) =

(
(H tan

f )i,j(x0)
)
d×d

. Then,

(H tan
f )i,j(x0) =

∂2g

∂θi∂θj
(θ)|θ=0 i, j = 1, . . . , d. (2.30)

While the definition of the Hessian above is dependent of the coordinate systems and

the basis chosen for the tangent space, it is easy to see that the Hessians defined

under different coordinate systems are orthogonally similar. Thus, up to an orthog-
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onally similarity transformation, the Hessian matrix in the local tangent coordinates

is uniquely defined.

We now define a H-functional on a function f ∈ C2(M) as

H(f) =

∫

M
‖H tan

f (x)‖2
F
dx,

where dx is a probability measure onM which has strictly positive density everywhere

on the interior of M. It can be shown that H(f) = Hiso(f)., from which the following

main theorem of [8] follows. Then we have the following theorem for H(f) defined

on the tangent coordinates.

Theorem 2.9. (Donoho and Grimes [8]) Suppose M = ψ(C) where C is an open

connected subset of Rd, and ψ is a locally isometric embedding of C into Rn. Then

H(f) has a d + 1 dimensional null space consisting of the constant function and a

d-dimensional space of functions spanned by the original isometric coordinates (i.e

the component functions of φ).

This theorem shows that we can recover the isometric coordinates of the manifold

M from the null space of the H-functional H(f). The original isometric coordinates

can be recovered up to a rigid motion, by identifying a suitable basis for the null

space of H(f).

In the discrete setting where we are given N high dimensional data points X =

{x1, · · · , xN} ⊂ Rn, the following numerical procedure called Hessian LLE is intro-

duced to implement Theorem 2.9.

Step 1 Identify Neighbors. For every xi, we identify a neighborhood Nxi
with ki

nearest point Let Nxi
= {xi1 , . . . , xiki}, Xi = [xi1 , . . . , xiki ]

T and X̄i = (I −
1
ki
eeT )Xi = [xi1 − x̄i, . . . , xiki − x̄i]

T , where x̄i =
1
ki

∑ki
j=1 xij .
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Step 2 Obtain Tangent Coordinates. Let the singular value decomposition of M̄i

be

X̄i = U (i)Σ(i)V (i)T , (2.31)

where U (i) = [u
(i)
1 , . . . , u

(i)
ki
] ∈ Rki×ki, Σ(i) = diag(σ1, . . . , σki) ∈ Rki×m with

σ1 ≥ σ2 ≥ · · · ≥ σki and V (i) ∈ R
m×m. The first d columns of V (i) span

approximately the tangent space at xi and the tangent coordinates of points in

Nxi
are

[θ
(i)
i1
, . . . , θ

(i)
iki
] := diag(σ1, . . . , σd)[u

(i)
1 , . . . , u

(i)
d ]. (2.32)

Step 3 Develop Hessian Estimator. For the points in Nxi
, we construct a matrix

X(i) =




1 d p

1 θ
(i)
i1

T
θ
(i)
i1

T ⊙
θ
(i)
i1

T

1 θ
(i)
i2

T
θ
(i)
i2

T ⊙
θ
(i)
i2

T

...
...

1 θ
(i)
iki

T
θ
(i)
iki

T ⊙
θ
(i)
iki

T




, (2.33)

where p = d(d + 1)/2 and the operation
⊙

is defined according to (1.2). We

perform the Gram-Schmidt orthonormalization for X(i), yielding a matrix X̃i ∈

Rki×q consisting of the orthonormal basis of X(i), where

q = (d+ 2)(d+ 1)/2.

Taking the (d+2)-th column to the rank(X(i))-th column of X̃i as G
T
i ∈ Rki×pi

with pi =
[
rank(X(i))− (d+ 1)

]
, we say Gi is a Hessian estimator for the neigh-

borhood Nxi
.

Step 4 Develop Quadratic Form. From the Hessian estimator Gi of the neigh-

borhood Nxi
, we define the matrix Ψ that corresponds to the H-functional as

follows . Let G̃i be the embedding Gi into Rpi×N , i.e.

G̃i = GiE
T
i , (2.34)
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where Ei = [ei1 , . . . , eiki ] ∈ R
N×ki and where ei ∈ R

N is the i-th column of IN .

Then

Ψ = ΣN
i=1G̃

T
i G̃i.

Step 5 Find Approximate Null Space. Compute the d + 1 dimensional subspace

corresponding to the d+1 smallest eigenvalues of Ψ. The vector e is the eigen-

vector of Ψ corresponding to the eigenvalue 0. Let T T be the matrix consisting

of the d eigenvectors corresponding to the 2nd to (d+ 1)-st eigenvalues, where

T ∈ Rd×N . Then columns of T consist the isometric coordinates that we look

for.

Copyright c© Weifeng Zhi, 2012.
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Chapter 3 Alignments of Manifold Sections of Different Dimensions

In this chapter, we consider the alignment algorithm for reconstructing global co-

ordinates from local coordinates as derived in the LTSA method. We show that,

under certain conditions, the alignment algorithm can successfully recover global co-

ordinates from local neighborhood sections of different dimensions. Our main results

generalize the analysis of [30] to allow alignment of sections of different dimension-

s. We shall also consider an application to a semi-supervised learning problem [10]

where one wishes to find full association of two data sets that are partially associated.

3.1 Alignment Algorithms

Consider the data set (1.1). Let X = {x1, · · · , xN} and let {X i, i = 1, . . . , s} be a

collection of subsets of X with X i = {xi1 , . . . , xiki} (i1 < i2 < · · · < iki). Assume

that ∪iX i = X, in which case we say {X i, i = 1, . . . , s} is a covering of X. In the

context of LTSA, each X i is a small local neighborhood so that a coordinate system

on the local tangent space can be approximately constructed. In general, we assume

that X i is any subset such that an isometric coordinate {θ(i)1 , . . . , θ
(i)
ki
} ⊂ Rd can be

constructed, i.e. ‖θ(i)p −θ(i)q ‖2 = dM(xip , xiq) (for any 1 ≤ p, q ≤ ki) where dM( · , · ) is

the geodesic distance alongM. In practice, only an approximate isometric coordinate

can be computed.

It has been shown [32, 30] that the global coordinates τi’s can be constructed from

the local coordinates through an alignment process as follows. Set

Θi =
[
θ
(i)
1 , . . . , θ

(i)
ki

]
. (3.1)

and define Qi to be the orthogonal projection onto the orthogonal complement of
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span{
[
e,ΘT

i

]
} in R

ki . Let Ei = [ei1 , . . . , eiki ] ∈ R
N×ki, where ei ∈ R

N is the i-th

column of IN (the N ×N identity matrix). Let

Ψi = EiQiE
T
i , Ψ =

s∑

i=1

Ψi. (3.2)

Note that Ψi is the embedding of Qi into an N × N matrix such that the (ip, iq)th

element of Ψi is the (p, q)th element of Qi. Ψ is called the alignment matrix for {Θi}.

Under a condition called fully overlap for the covering {X i}, it is shown in The-

orem 2.7 of [30] that

null{Ψ} = span{
[
e, T T

]
}

where T = [τ1, · · · , τN ]. Hence, the global coordinates τi’s can be obtained from

computing null{Ψ}, up to an orthogonal transformation (a rigid motion).

The fully overlapped condition guarantees sufficient intersection (overlap) among

X i’s to allow alignments. In the case of two subsets X1 and X2, it requires that the

intersection X1

⋂
X2 is of dimension d (see Definition 3.1 below or [30] for details).

This immediately requires that all subsetsX i to have the same dimension d. However,

the structure of the data set X may contain lower dimensional branches. In the next

section, we generalize the analysis of [30] to include such cases. Interestingly, the

alignment algorithm still works as long as a generalized fully overlapped condition

holds.

3.2 Alignment of Sections of Different Dimensions

First we define the dimension of a data set or its coordinate set.

Definition 3.1. A data set X0 = {xi1 , . . . , xik} and the corresponding coordinate

set S0 = {τi1 , . . . , τik} are said to be of dimension p if

rank[τi1 − τ̄ , τi2 − τ̄ , . . . , τik − τ̄ ] = p (3.3)
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where τ̄ = (Σk
j=1τij )/k. We write dim(X0) = dim(S0) = p.

The following lemma is shown in [30].

Lemma 3.1. dim(S0) = p if and only if

rank(
[
e, T T

0

]
) = 1 + p,

where T0 = [τi1 , . . . , τik ]; see [30].

We construct the alignment matrix based on τi’s first. Let S = {τ1, τ2, · · · , τN} ⊂

Rd and let {Si, 1 ≤ i ≤ s} be the collection corresponding to {X i, 1 ≤ i ≤ s}, where

Si, T and Ti are defined according to (2.4) and (2.5). Let Pi be orthogonal projection

onto the orthogonal complement of span([e, T T
i ]), i.e., null(Pi) = span([e, T T

i ]). Define

Φi and Φ according to (2.7) and(2.8). Then Φ is the alignment matrix of the collection

{Ti}. If Θi is isometric to X i (and hence to Si), then it can be shown that Ψ = Φ,

see [30].

First, we extend the definition of fully overlap to sets with different dimensions.

Definition 3.2. Let S1 and S2 be two subsets of S ⊂ Rd. We say S1 and S2 are

fully overlapped if

min{dim(S1), dim(S2)} = dim(S1 ∩ S2).

Definition 3.3. This definition is recursive. Let Si, 1 ≤ i ≤ s, be s subsets of Rd.

The collection {Si, 1 ≤ i ≤ s} is fully overlapped if it can be partitioned into two

nonempty disjoint collections, say, {Si, i = 1, . . . , p} and {Si, i = p + 1, . . . , s} each

of which is a fully overlapped collection, and if the union sets of the two collections

Ŝ1 := ∪p
i=1Si and Ŝ2 := ∪s

i=p+1Si are fully overlapped.

Definition 3.4. The collection {Si, 1 ≤ i ≤ s} is a covering of S if ∪s
i=1Si = S, and

a fully overlapped covering if the collection is a covering and fully overlapped.
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We now show that this fully overlapped condition is sufficient to guarantee recon-

struction of T from Φ or Ψ. First, the following is a lemma from [30].

Lemma 3.2. Let {Si, 1 ≤ i ≤ s} be a covering of S, and let Φi and Φ be defined as

in (2.7) and (2.8). Then

null(Φi) = {x|ET
i x ∈ span([e, T T

i ])}

null(Φ) =
s⋂

i=1

null(Φi).

Theorem 3.1. Let {S1,S2} be a fully overlapped covering of S and let Φi and Φ

be defined as in (2.7) and (2.8). We have null{Φ} = span[e, T T ].

Proof: Without loss of generality, we assume that d2 := dim(S2) < d1 := dim(S1).

Then rank([e, T T
2 ]) = d2 + 1. There is a nonsingular matrix U , such that [e, T T

1 ]U =

[e, T̃ T
1 ] and [e, T T

2 ]U = [e, T̃ T
2 ] with the last d − d2 columns of T̃ T

2 being all zero.

Suppose there are k vectors in S1 ∩ S2. Without loss of generality, we assume that

the last k columns of T1 and the first k columns of T2 are the vectors in S1 ∩ S2.

Then we write

T̃1 =


d2 T̃

(1)
11 T̃12

d−d2 T̃
(2)
11 0


; T̃2 =


d2 T̃21 T̃22

d−d2 0 0




where T̃12 = T̃21. Next, let the columns of Q form a basis of null(Φ). We have

span(Q) ⊂ {x|ET
i x ∈ span([e, T̃ T

i ])} for each i. Then we can find a matrix Wi ∈

R(d+1)×m, where m = dim(null(Φ)), such that ET
i Q = [e, T̃ T

i ]Wi. Let

Wi =


d2+1 W

(1)
i

d−d2 W
(2)
i


.

Comparing the common rows of ET
1 Q and ET

2 Q, we have

[e,
(
T̃ T
12 0

)
]W1 = [e,

(
T̃ T
21 0

)
]W2.
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From the first d2 + 1 columns of last equation, we obtain that

[e, T̃ T
12]W

(1)
1 = [e, T̃ T

21]W
(1)
2 .

Since S1 and S2 are fully overlapped, we have that [e, T̃ T
12] has full column rank.

From

[e, T̃ T
12](W

(1)
1 −W

(1)
2 ) = 0,

it follows

W
(1)
1 −W

(1)
2 = 0.

Noting that

[e, T̃ T
2 ]W2 =

[
e,

(
T̃ T
21 0

T̃ T
22 0

)](
W

(1)
2

W
(2)
2

)

=

[
e,

(
T̃ T
21 0

T̃ T
22 0

)](
W

(1)
1

W
(2)
1

)

= [e, T̃ T
2 ]W1,

we have

ET
i Q = [e, T T

i ]UW1.

So we can write Q as

Q = [e, T T ]UW1.

Thus

null{Φ} = span[e, T T ].

Theorem 3.2. Let {Si, i = 1, . . . s} be a fully overlapped covering of S and let Φi

and Φ be defined as in (2.7) and (2.8). Then null{Φ} = span[e, T T ].

Proof: This is proved by virtually the same induction as in the proof of Theorem

2.6 [30] using Theorem 3.1 and Definition 3.3. We omit the details.
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In practice, when we have a neighborhood consisting of points lying on a lower

dimensional branches, their coordinates are likely computed with large errors in the

components that are supposed to be zero. Amazingly, with a slightly extra condition,

this does not affect the result of the alignment process. Before we present an analysis,

we first illustrate with an example.

Example 3.1. Let a, b, c, d, f, g, u, v, w, x be distinct numbers, such (c− b)(w− u)−

(d− b)(v − u) 6= 0, b 6= 0 and g 6= 0, and

S =

{[
a
g

]
,

[
b
0

]
,

[
c
0

]
,

[
d
0

]
,

[
f
0

]}
.

Assume that we have two subsets

S1 =

{[
a
g

]
,

[
b
0

]
,

[
c
0

]
,

[
d
0

]}

and

S2 =

{[
b
0

]
,

[
c
0

]
,

[
d
0

]
,

[
f
0

]}
.

Then dim(S1) = 2 and dim(S2) = dim(S1∩S2) = 1. By Theorem 3.1, we can recover

T from Φ as constructed from T1 and T2.

In practice, however, we can only compute two coordinate sets Θ1 and Θ2 that

are (approximately) isometric to S1 and S2. However, large errors could be present

in the second components of S2. For example, when computing S
T
2 from local first

order approximation [34], they are computed as 2 singular vectors and the second

components derived from a singular vector corresponding to a tiny singular value

may effectively be random. S1 can be computed accurately, however. Suppose the

computed coordinates for the two sections are

Θ1 =

[
a b c d
g 0 0 0

]
; Θ2 =

[
b c d f
u v w x

]
.
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Now, constructing Ψ from Θi as in (3.2). Using Maple, we can compute Ψ and verify

that null{Ψ} = span{[e, T T ]}. Hence, even when the second components in Θ2 are

computed completely wrong, original T can still be recovered from Ψ!

The phenomenon explained in the example above is true in general as shown in

the following theorem.

Theorem 3.3. Let {S1,S2} be a fully overlapped covering of S ⊂ Rd with dim(S1) =

d1 and dim(S2) = dim(S1 ∩ S2) = d0 < d1. Assume that the vectors in S2 have

vanishing last d− d0 components. Let Θ1 = S1 and

Θ2 = {


d0 τ̂i

d−d0 ρ̂i


 :


d0 τ̂i

d−d0 0


 ∈ S2}.

Let Ψi and Ψ be defined from Θi as in (3.2). If the points of Θ2 that correspond to

S1 ∩ S2 form a d-dimensional set, i.e.

dim

({(
τ̂i
ρ̂i

)
∈ Θ2 :

(
τ̂i
0

)
∈ S1 ∩ S2

})
= d (3.4)

then we have null{Ψ} = span[e, T T ].

Proof: Without loss of generality, we assume that the last k columns of T1 and

the first k columns of T2 are the vectors in S1 ∩ S2. Write

T1 =


d0 T

(1)
11 T

(1)
12

d−d0 T
(2)
11 0


 and T2 =


d0 T

(1)
21 T

(1)
22

d−d0 0 0


,

where T
(1)
12 = T

(1)
21 . Let Θ1 and Θ2 be the matrices whose columns are the vectors in

Θ1 and Θ2 respectively, i.e. we write

Θ1 = T1 =


d0 T

(1)
11 T

(1)
12

d−d0 T
(2)
11 0


 and Θ2 =


d0 T

(1)
21 T

(1)
22

d−d0 T
(2)
21 T

(2)
22


.
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Let Q be such that its columns form a basis for null(Ψ).We have span(Q) ⊂ {x|ET
i x ∈

span([e,ΘT
i ])}. Then we can find a matrix Wi ∈ R(d+1)×m, where m = dim(null(Φ)),

such that ET
i Q = [e,ΘT

i ]Wi. Let

Wi =


d0+1 W

(1)
i

d−d0 W
(2)
i


.

Then we have

[
e,
(
T

(1)T

12 0
)]
W1 =

[
e,
(
T

(1)T

21 T
(2)T

21

)]
W2.

Equivalently,

[e, T
(1)T

12 ]W
(1)
1 = [e, T

(1)T

21 ]W
(1)
2 + T

(2)T

21 W
(2)
2 .

Noting T
(1)T

12 = T
(1)T

21 , we have

[e, T
(1)T

21 ](W
(1)
1 −W

(1)
2 ) = T

(2)T

21 W
(2)
2 .

Using (3.4), we see that [e, T
(1)T

21 , T
(2)T

21 ] has full column rank. It follows from

[e, T
(1)T

21 ](W
(1)
1 −W

(1)
2 )− T

(2)T

21 W
(2)
2 = 0

that

[e, T
(1)T

21 ](W
(1)
1 −W

(1)
2 ) = 0, T

(2)T

21 W
(2)
2 = 0.

This further implies that

W
(1)
1 −W

(1)
2 = 0, W

(2)
2 = 0.

Thus W
(1)
1 =W

(1)
2 . Then we can write

ET
2 Q = [e, ST

2 ]W2 = [e, T T
2 ]W1.
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This together with ET
1 Q = [e, T T

1 ]W1 implies that

Q = [e, T T ]W1.

Therefore,

null{Ψ} = span[e, T T ].

Remark 3.1. For the last example, we see dim(S2) = 1 < dim(S1) = 2 and

{(
τ̂i
ρ̂i

)
∈ Θ2 :

(
τ̂i
0

)
∈ S1 ∩ S2

}
= span

([
b c d
u v w

])
.

We notice dim

(
span

([
b c d
u v w

]))
= 2. Then Θ1 and Θ2 satisfy the condition of

the theorem and we have null{Ψ} = span[e, T T ], which verifies the theorem.

3.3 Semi-supervised Alignment of Manifolds

The results in the previous section show that the alignment algorithm is capable

of dealing with sections of different dimensions. Other than reconstruction of global

coordinates, this result has application in other contexts. Here we consider a problem

in semi-supervised learning of manifolds that has been discussed in [10] and [28].

Assume that there are two data sets that admit a pairwise correspondence, some

of which are known. The objective is to generate full association (correspondence) of

the data sets from the partial association of samples. One approach to this problem

is to first generate a common low-dimensional embedding for those two data sets.

From the common embedding, we can associate samples between the two data sets.

This semi-supervised learning problem has many applications, including the image

comparison [10], cross-lingual information retrieval, bioinformatics [28], and speech

analysis [20]. For example, in the image comparison, we have several sets of pictures

of different objects taken by a camera from various positions and angles and we wish
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to match images taken from the same or similar positions/angles, provided matching

of the samples is available.

Consider two data sets X1 andX2 that are sampled from two d-dimensional man-

ifolds and are represented by vectors in two matrices X1 and X2. Let X1 = [Xℓ
1, X

u
1 ]

and X2 = [Xℓ
2, X

u
2 ] and assume that Xℓ

1 and Xℓ
2 are already known to be in pair-

wise association. We want to determine any possible pairwise associations between

Xu
1 and Xu

2 . This can be done by finding a joint low dimensional parametrization

(embedding) for X1 and X2, in which the corresponding vectors in Xℓ
1 and Xℓ

2 are

mapped to the same coordinates.

First, assume that a low dimensional parametrization for each of X i is available

and let Z1 = [Zℓ
1, Z

u
1 ] and Z2 = [Zℓ

2, Z
u
2 ] be the parameterizations. To find a joint

parametrization, we find T1 = [T ℓ
1 , T

u
1 ] and T2 = [T ℓ

2 , T
u
2 ] that are respectively affine

transformations of Z1 and Z2 such that T ℓ
1 = T ℓ

2 . Then, T = [T ℓ, T u
1 , T

u
2 ] defines a

joint parametrization for X1 and X2, where T
ℓ = T ℓ

1 = T ℓ
2 . Hence any association

between vectors in Xu
1 and Xu

2 can be derived from that between T u
1 and T u

2 . Clearly,

this is an alignment problem and T can be computed from the null space of

Ψ = E1P1E
T
1 + E2P2E

T
2 ,

where Pi is the orthogonal projection onto the orthogonal complement of span{[e, ZT
i ]},

and Ei is the selection matrix, such that TEi = Ti.

Note that as in the derivation of LTSA [34], the alignment algorithm can also be

regarded as solving

min
ci,Li,T

∑

i=1,2

‖[T ℓ, T u
i ]− (cie

T + LiZi)‖2F ,

which is reduced to minTTT=I,T e=0 ‖ΨT‖2F , or computing the null space of Ψ.

In practice, if we do not have a low dimensional parametrization Zi available, we
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can compute them first using the LTSA algorithm, but this can be combined with

the alignment process as follows.

We partition X1 and X2 into several small neighborhoods {X(1)
i , i = 1, . . . , s1}

and {X(2)
i , i = 1, . . . , s2}. For each small neighborhood, we compute a local parametriza-

tion and let S
(j)
i be the matrix of local coordinate vectors for X

(j)
i . Then a joint

parametrization T = [T ℓ, T u
1 , T

u
2 ] can be found by aligning all {S(1)

i , 1 ≤ i ≤ s1} and

{S(2)
i , 1 ≤ i ≤ s2} together using the alignment algorithm. Specifically, let P

(j)
i be

orthogonal projection onto the orthogonal complement of span([e, S
(j)
i ]) and let

Ψ
(j)
i = E

(j)
i P

(j)
i E

(j)
i

T
(3.5)

where E
(j)
i is the selection matrix, such that TE

(j)
i = T

(j)
i with the columns of T

(j)
i

corresponding to the vectors in X
(j)
i . Then, T is computed from the null space (or

the d+ 1 smallest eigenvectors) of

Ψ =

s1∑

i=1

Ψ
(1)
i +

s2∑

i=1

Ψ
(2)
i . (3.6)

Since we have shown in Section 3 that the alignment algorithm works for neighbor-

hoods of different dimension, the above alignment process for semi-supervised learning

is applicable to the manifolds or neighborhoods of different dimension. Furthermore,

the idea can be easily generalized to matching of n data sets. We state it as the

following algorithm.

Algorithm 3.1. Semi-supervised Alignment Algorithm for n Manifolds

Given Xj ⊂ R
m, j = 1, . . . , n.

1. Construct a fully overlapped covering {X(j)
i , i = 1, . . . , si} for Xj , j=1, . . . , n.

2. For each X
(j)
i , construct its local coordinates S

(j)
i .

3. Construct Ψ
(j)
i from Θ

(j)
i , i = 1, . . . , si as in (3.5).

4. Construct the matrix Ψ as in (3.6).

5. compute [e, T T ] as an orthogonal basis of the spectral subspace of Ψ corresponding
to the smallest d+ 1 eigenvalues.
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Figure 3.1: The generating coordinates of the data set.

Remark 3.2. Several algorithms have been proposed for this semi-supervised learn-

ing problem, such as [10] and [28]. However, they are not capable of working with

manifolds of different dimensions, as shown by examples in Section 5. The alignment

algorithm that we propose has some other advantages as well. For example, it appears

the method of [28] can work with two data sets only. It is also more computationally

intensive since it requires computing SVD for the data points already in pairwise

correspondence.

3.4 Numerical Examples

In this section, we present two examples to show the alignment algorithm works well

with sections having different dimensions. The first example is a manifolds learning

problem. We have a set of face images generated from a 3D face model depending on

two parameters. We try to find the low-dimensional parametrization for this image

set.

Example 3.2. Consider that the data set consists of N = 2715 face images generated

based on the 3D face model in [3]. The set contains 64× 64 images of the same face,

which are obtained by varying pan and tilt angles for the observer. For 2700 images,

they vary from −30 to 45 degrees of pan angles and −10 to 10 degrees for tilt angles.

For 15 images, they vary from −45 to −30 degrees of pan angles and have 0 degree
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Figure 3.2: The reconstructed coordinates of the data set by LTSA with ki = 15 and d = 2.

of tilt angles. We are interested in finding the low-dimensional parametrization for

these face images. The original coordinates of all those 2715 pictures are showed in

Figure 3.1, where the x-axis is the pan angle and the y-axis is the tilt angle. From

Figure 3.1, we can see that those 2700 images lie on a manifold with dimensionality

d = 2, whereas the other 15 images with the same tilt angles lie on a branch with

dimensionality d = 1.

We implement LTSA algorithm with fifteen neighbors of each xi (ki = 15) and

dimension two (d = 2) to recover the parameters of the images. We notice that

for those 15 images with the same tilt angles, their local coordinates should have

intrinsic dimensionality one with this example, but our algorithm will treat it as

if it were dimension two, having the second components derived from a singular

vector corresponding to a tiny singular value. The reconstructed coordinates of all

these 2715 images after LTSA are showed in Figure 3.2. Though one set of these

data points is of intrinsic dimensionality one and the other set of data points is of

intrinsic dimensionality two, LTSA recover the parametrization correctly. The lower

dimensional branch is clearly identified in Figure 3.2.

Our second example is a semi-supervised learning problem concerning two sets of

face images generated from different face models. We are interested in matching the
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face images shoot from the same tilt and pan angles.

Example 3.3. We have two sets of pictures generated from two different 3D face

models in [3]. The pictures of two different persons are taken from different pan and

tilt angle. We are interested in matching the images with the same pan and tilt

angles from different image sets. This problem can be solved by computing a joint

low dimensional parametrization (Algorithm 3.1) that we discussed in the previous

section.

The first data set X consists of 100 pictures coming from face model A and all

these pictures have the same tilt angle of 0 degree and pan angles varying from −45

to 45 degrees. The second data set Y contains 2720 pictures generated from face

model B. These pictures have pan angles varying from −45 to 45 degrees and tilt

angle varying from −10 to 10 degrees . The goal is to match the images with the

same tilt angle and the same pan angle. First, 20 matching pairs of pictures in X and

Y are manually chosen so that each pair of images are shoot from the same tilt angle

and pan angle. These 20 pictures are labeled samples. We implement the alignment

algorithms in [10], [28] and Algorithm 4. Each of these algorithms requires setting

the number of points in neighborhoods. For our test, we have used ten or twelve

points (ki = 10 or ki = 12) and the dimension is set to 2.

For the data set X, we notice that the intrinsic dimensionality should be one,

whereas we treat them as having dimension two which is necessary in order to carry

out alignment. In the left three plots of Figure 3.3, we show the computed joint

parametrization of data sets X and Y with 10 neighbors (ki = 10) and dimensions

two (d = 2) by the algorithms in [10] (top), in [28] (center) and Algorithm 3.1

(bottom). The right three plots of Figure 3.3 show the corresponding results when

we use 12 neighbors (ki = 12) and dimensions two (d = 2). The red circle line

are the joint parametrization of the images in X. The blue points are the joint
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parametrization of the images in Y . Our semi-supervised alignment algorithm works

well with data sets of different dimensions.

Given one unlabeled sample picture xi from the data set X as input, which has

a parameter zxi
from joint parametrization, we find an image yj ∈ Y that associates

to xi by solving

yj = argj min ‖zxi
− zyj‖2,

where zyj is the parameter for yj. For this test, we take five unlabeled sample pictures

from X data as the input, which are shown in Figure 3.4(a). The best matching data

for Y found by algorithms in [10], in [28] and Algorithm 3.1 are shown in Figure

3.4(b), Figure 3.4(c) and Figure 3.4(d). There is a clear match in the pan and tilt

angle for the pairs by our algorithm, while the other two methods obviously have at

least some of the pictures mismatched.

Copyright c© Weifeng Zhi, 2012.
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Figure 3.3: Comparison of three algorithms with ki = 10 (left) and ki = 12 (right).
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(a) Input pictures from X

(b) Matched pictures of data set Y by algorithm in [10]

(c) Matched pictures of data set Y by algorithm in [28]

(d) Matched pictures of data set Y by Algorithm 3.1

Figure 3.4: Original pictures and matched pictures from three algorithms.
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Chapter 4 Eigenvalue Bounds for an Alignment Matrix in Manifold

Learning

In this chapter, we generalize the results of Section 2.2.4.2 to a general case where

some Zj may be rank deficient and the computed local coordinates (an approxima-

tion of PZj
) may contain large errors in its vanishing components. In this case, the

alignment matrix Ψ constructed from the perturbed local coordinates may be signif-

icantly different from Φ. We present some characterizations of the eigenvalues of Ψ,

from which the null space is determined and a lower bound on the smallest positive

eigenvalue is derived. Our results show that Ψ has spectral properties similar to Φ.

4.1 Alignment Matrix for Dimensionality Reduction

In this section, we describe how the alignment matrix arises in the manifold learning

problem. We also set the related notation.

Consider the data set (1.1). The LTSA (Local Tangent Space Alignment) method

[34] is based on partitioning the points into small local neighborhoods, then construct-

ing coordinates for points in each local neighborhood through linear approximation,

and finally aligning the locally constructed coordinates into (global) coordinates for

all points. This last step is accomplished through the alignment matrix as follows.

Let X = {x1, · · · , xN} and let {Xj , j = 1, . . . , s} be a collection of subsets of X

with Xj = {xj1, . . . , xjkj} (j1 < j2 < · · · < jkj ). Assume that ∪jXj = X. Each Xj

consists of points in a small neighborhood so that a local coordinate system can be

approximately constructed through the projection on the local tangent space. More

generally, we only need to assume that Xj is any subset for which a local isometric

coordinate {θ(j)1 , . . . , θ
(j)
kj
} ⊂ Rd can be constructed, i.e. ‖θ(j)p − θ

(j)
q ‖2 = ‖τjp − τjq‖2
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(for any 1 ≤ p, q ≤ kj). From this isometric property and provided that [τj1 , · · · , τjkj ]

has full row rank, it can be shown [30] that the two coordinate sets differ by a rigid

motion, i.e. there is an orthogonal matrix Vj and some cj ∈ R
d such that

Θj = VjTj + cje
T . (4.1)

where

Θj =
[
θ
(j)
1 , . . . , θ

(j)
kj

]
, Tj =

[
τj1 , · · · , τjkj

]
. (4.2)

In practice, Θj is constructed by computing a basis for a local tangent space through

the singular value decomposition(SVD) of [xj1 − x̄, · · · , xjkj − x̄] where x̄ = (xj1 +

· · ·+ xjkj )/kj. The local coordinate θ
(j)
p is the projection of xjp − x̄ in this basis; see

[34].

Let

T =
[
τ1, · · · , τN

]
, Z = [e, T T ], (4.3)

and

Yj = [e,ΘT
j ] and Zj = [e, T T

j ]. (4.4)

We have defined the alignment matrix for {Zj} in the introduction. The alignment

matrix for {Yj} can be defined similarly. Namely, let PYj
= YjY

†
j be the orthogonal

projector in Rkj onto span(Yj) and let P⊥
Yj

= I − PYj
. Let Ψj be the embedding of

P⊥
Yj

into RN×N i.e. Ψj = EjP
⊥
Yj
ET

j ∈ RN×N . Note that Ej is defined through the

positions of Zj in Z as in (2.6). Then

Ψ =
s∑

j=1

Ψj . (4.5)

is called the alignment matrix for {Yj}.

It follows from (4.1) that PYj
= PZj

. Therefore Φ = Ψ and

null(Ψ) = span(Z) (4.6)
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provided that {Zj, 1 ≤ j ≤ s} satisfies a condition called fully overlapped [30]. In the

case of two submatrices, the condition can be easily stated as follows (the case of s

submatrices is defined recursively, see Definition 2.4)

Definition 4.1. Two submatrices Z1 and Z2 of Z are said to be fully overlapped if

the matrix consisting of their common rows has full column rank.

This definition necessarily implies that each Zj has full column rank. This is

equivalent to that the data points in a local neighborhood has dimension ℓ (or their

projections into the local tangent space span a full tangent space). Here, we are

interested in a practical situation where the local neighborhood may consist of points

lying (or nearly lying) in a lower dimensional branch of the manifold. In that case,

Zj will be (or nearly) column rank deficient. Furthermore, the computed Θj may not

satisfy (4.1) but may contain some large errors in the vanishing components of τj . In

that case, Ψj need not be the same as Φj . In a recent paper [31], we have considered

some manifold learning problems giving rise to this situation and we have shown that

with a proper generalization of the fully overlapped condition, the main result (4.6)

on the null space remains intact.

In the next section, we study the spectral properties of Ψ, generalizing the result

of Section 2.2.4.2 for Φ to allow the cases that Zj may be rank deficient or the

computed local coordinates may have large error components. As pointed out in the

introduction, it is important to bound the smallest positive eigenvalue away from 0

for the computation of the null space (4.6).

4.2 Eigenvalues of Alignment Matrix

In this chapter, we consider a more general fully overlapped condition defined below.

Recall that Z ∈ R
N×ℓ with N > ℓ and Zj ∈ R

kj×ℓ (for 1 ≤ j ≤ s) are submatrices of
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Z. Let

Ij = {j1, j2, . . . , jkj} (4.7)

be the index set for the rows of Zj , i.e.,

Zj = Z(Ij ,:) = (IN)(Ij ,:) × Z ∈ R
kj×ℓ. (4.8)

Assume throughout this chapter that
⋃s

j=1 Ij = {1, 2, . . . , N}.

Definition 4.2. This definition is recursive.

1. Zi always fully overlaps itself regardless of its rank;

2. Zi and Zj for i 6= j are fully overlapped, if one of them has full column rank

and min{rank(Zi), rank(Zj)} = rank(Z(Ii

⋂
Ij ,:));

3. The collection Z = {Zj , 1 ≤ j ≤ s} for s ≥ 3 is fully overlapped, if it can

be partitioned into two nonempty disjoint subsets Z1 and Z2 each of which

is a fully overlapped collection and that Z
(Ĩ1,:)

and Z
(Ĩ2,:)

are fully overlapped,

where Ĩi =
⋃

Zj∈Z i
Ij.

We shall first present our main results for the case of two submatrices and then

discuss how to obtain a bound recursively in the general case in three subsections in

Section 4.2. We present some numerical examples to illustrate our bounds in Section

4.3.

4.2.1 Case of Two Submatrices for Φ

As in Section 2.2.4.2, we first analyze Φ as constructed from two submatrices Z1

and Z2, but here we only assume the more general definition of the fully overlapped

condition (Definition 4.2). Most results follow directly by adapting those of Section
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2.2.4.2 to this more general case; we therefore only present the result concerning the

null space as an illustration.

Let Z1 and Z2 be two fully overlapped submatrices and, without loss of generality,

we assume rank(Z1) = ℓ ≥ rank(Z2) = rank(Z(I1
⋂
I2,:)) = d1. Furthermore, upon

permuting rows of Z, we may write

Z1 =




ℓ

m11 Z
(1)
1

m12 Z
(1)
2


, Z2 =




ℓ

m21 Z
(2)
1

m22 Z
(2)
2


, (4.9)

where Z
(1)
2 = Z

(2)
1 is the common rows in Z1 and Z2 and m12 = m21.

We shall always consider the nontrivial case that m12 ≥ 1, m11 ≥ 1, and m22 ≥ 1.

We first show that, using Theorem 2.5, the original theorem on the null space of Φ

extends to our more general definition of the fully overlapped condition (Definition

4.2).

Theorem 4.1. Let Z1 and Z2 be two fully overlapped submatrices of Z. We have

null(Φ) = span(Z).

Proof: First, applying Theorem 2.4, we have the following decompositions

Z
(1)
1 = U2 ×




d1 r2 ℓ−d1−r2

r2 M̃1 Σ2 0

m11−r2 M1 0 0


 ×




d1 ℓ−d1

I 0

0 V ∗
2


 V ∗

1 , (4.10)

Z
(2)
1 = Z

(1)
2 = U1 ×




d1 ℓ−d1

d1 Σ1 0

m12−d1 0 0


 V ∗

1 , (4.11)

Z
(2)
2 = U3 ×




d1 r3 ℓ−d1−r3

r3 M̃2 Σ3 0

m22−r3 M2 0 0


 ×




d1 ℓ−d1

I 0

0 V ∗
3


 V ∗

1 , (4.12)
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where U1 ∈ R
(m12×m12), U2 ∈ R

(m11×m11), U3 ∈ R
(m22×m22), V1 ∈ R

(ℓ×ℓ), and V2 ∈

R(ℓ−d1)×(ℓ−d1) and V3 ∈ R(ℓ−d1)×(ℓ−d1) are orthogonal matrices, Σ1, Σ2 and Σ3 are

diagonal matrices with positive diagonal entries. In particular

d1 = rank(Z
(2)
1 ), r2 = rank((Z

(1)
1 V1)(:,d1+1:ℓ)), r3 = rank((Z

(2)
2 V1)(:,d1+1:ℓ)). (4.13)

It follows from the fully overlapped condition that rank(Z
(1)
2 ) = rank(Z2) and hence

r3 = 0. Now, using Theorem 2.5, we have dimnull(Φ) = d1 + r2. Since span(Z) ⊂

null(Φ) and rank(Z) = d1 + r2, we obtain null(Φ) = span(Z).

4.2.2 Case of Two Submatrices for Ψ

In the application of dimensionality reduction, we do not have Zj’s (and Tj ’s). In-

stead, we construct Θj ’s (and hence Yj ’s) through singular value decompositions (see

Section 4.1). If Zj has full column rank, Yj = ZjHj for some Hj. However, if Zj

is rank deficient, say, rank(Zj) = d1 < d, then the corresponding data points lie on

a d1-dimensional branch. When constructing local coordinates for these points, we

can only compute the first d1 coordinates correctly while the remaining coordinates

computed are essentially noise. For example, in a typical situation like this, Zj has

the last ℓ− d1 columns zero, but Yj, as computed from the corresponding data, may

have random nonzero vectors in its last ℓ− d1 columns that result from errors, i.e.

Yj =




d1 ℓ−d1

m21 Z
(j)
11 Y

(j)
12

m22 Z
(j)
21 Y

(j)
22


, if Zj =




d1 ℓ−d1

m21 Z
(j)
11 0

m22 Z
(j)
21 0


, (4.14)

where Y
(j)
12 , Y

(j)
22 are error components. Therefore, when Zj is rank deficient, it is no

longer reasonable to assume and indeed we do not have in practice that Yj = ZjRj .

What we have is that span(Yj) contains span(Zj), but it may also contain some other

components. We shall therefore assume that

span(Zj) ⊂ span(Yj),
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which is equivalent to (4.14) after a column transformation as shown in the lemma

below.

For two fully overlapped submatrices Z1 and Z2 in the form (4.9), we note that,

with a column transformation Z1R and Z2R for some nonsingular matrix R, we can

write Z1 and Z2 as

Z1 =




d1 ℓ−d1

m11 Z
(1)
11 Z

(1)
12

m12 Z
(1)
21 0


, Z2 =




d1 ℓ−d1

m21 Z
(2)
11 0

m22 Z
(2)
21 0


, (4.15)

where Z
(1)
21 = Z

(2)
11 and d1 = rank(Z2).

Lemma 4.1. Let Z1 ∈ Rk1×ℓ and Z2 ∈ Rk2×ℓ be two submatrices of Z in the form

(4.15) with rank(Z2) = d1 ≤ rank(Z1) = l. Let Y1 ∈ Rk1×ℓ and Y2 ∈ Rk2×ℓ be such

that span(Zj) ⊂ span(Yj). Then, there are some nonsingular matrices H1 and H2

such that

Y1 = Z1H1, Y2 =




d1 ℓ−d1

m21 Z
(2)
11 Y

(2)
12

m22 Z
(2)
21 Y

(2)
22


H2. (4.16)

Proof: Since rank(Z1) = ℓ, we have span(Z1) = span(Y1) and then Y1 = Z1H1 for

some nonsingular H1 ∈ R
ℓ×ℓ. For Y2, let Ŷ2 ∈ R

k2×p with p ≤ ℓ− d1 be such that the

nonzero columns of Z2 and the columns of Ŷ2 form a basis for span(Y2). Then there

is some full row rank matrix Ĥ2 such that

Y2 =




d1 ℓ−d1

m21 Z
(2)
11 Y

(2)
12

m22 Z
(2)
21 Y

(2)
22


Ĥ2 where Ŷ2 =

(
Y

(2)
12

Y
(2)
22

)
.

Now, if p = ℓ− d1 the lemma is proved with H2 = Ĥ2. If p < ℓ− d1, we can append

ℓ − d1 − p zero columns to Ŷ2 and correspondingly some rows to Ĥ2 to obtain the

equation (4.16) for Y2 with a nonsingular H2. The lemma is proved.
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We now proceed to calculate span(Yj) and hence Ψj through a sequence of sim-

plifications of Yj using column transformations. First, the following lemma follows

directly from the QR factorization with column pivoting.

Lemma 4.2. Let W ∈ Rp×q and rank(W ) = r. Then there exist Q ∈ Rp×r with

orthonormal columns and a nonsingular matrix R ∈ Rq×q such that

WR =
[ r n−r

Q, 0
]
. (4.17)

Lemma 4.3. Under the assumptions of Lemma 4.1, there are two nonsingular ma-

trices R1 and R2 such that

Y1R1 =W1 :=




d̃1 ℓ−d̃1

m11 W
(1)
11 W

(1)
12

m12 W
(1)
21 0


,

and

Y2R2 =W2 :=




d̃1 ℓ−d̃1

m21 W
(2)
11 W

(2)
12

m22 W
(2)
21 W

(2)
22


,

where W
(1)
21 = W

(2)
11 , W

(2)
12 =

[ d̃2−d̃1 ℓ−d̃2

W̃
(2)
12 , 0

]
with

[
W

(2)
11 , W̃

(2)
12

]
having orthonormal

columns, d̃1 = rank(Z
(2)
11 ), and d̃2 = rank([Z

(2)
11 , Y

(2)
12 ]).

Proof: With Lemma 4.1, we can assume without loss of generality that

Y1 =




d1 ℓ−d1

m11 Z
(1)
11 Z

(1)
12

m12 Z
(1)
21 0


, Y2 =




d1 ℓ−d1

m21 Z
(2)
11 Y

(2)
12

m22 Z
(2)
21 Y

(2)
22


. (4.18)

From Lemma 4.2, there is a nonsingular matrix R̃1 such that

Z
(2)
11 R̃1 =

[ d̃1 d1−d̃1

W
(2)
11 , 0

]
,
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where W
(2)
11 has orthonormal columns. Furthermore, we also have a nonsingular

matrix R2 such that

[
Z

(2)
11 , Y

(2)
12

]
R2 =

[ d̃1 d̃2−d̃1 ℓ−d̃2

W
(2)
11 , W̃

(2)
12 , 0

]
,

with [W
(2)
11 , W̃

(2)
12 ] having orthonormal columns. Then the lemma follows with

R1 =




d1 ℓ−d1

d1 R̃1 0

ℓ−d1 0 I


.

Lemma 4.4. Under the assumptions and notation of Lemma 4.3, letW
(1)
1 =

[
W

(1)
11 , W

(1)
12

]
,

W
(1)
2 =

[
W

(1)
21 , 0

]
, W

(2)
1 =

[
W

(2)
11 , W

(2)
12

]
and W

(2)
2 =

[
W

(2)
21 , W

(2)
22

]
. Then,

we have the following decompositions

W
(1)
2 = U1 ×




d̃1 ℓ−d̃1

d̃1 I 0

m12−d̃1 0 0


 (4.19)

W
(2)
1 = U1 ×




d̃2 ℓ−d̃2

d̃2 I 0

m12−d̃2 0 0


 (4.20)

W
(1)
1 = U2 ×




d̃1 r1 ℓ−d̃1−r1

r1 M̃1 Σ1 0

m11−r1 M1 0 0


 ×




d̃1 ℓ−d̃1

I 0

0 V ∗
2


 (4.21)

W
(2)
2 = U3 ×




d̃2 r2 ℓ−d̃2−r2

r2 M̃2 Σ2 0

m22−r2 M2 0 0


 ×




d̃2 ℓ−d̃2

I 0

0 V ∗
3


 (4.22)

where U1 ∈ R(m12×m12), U2 ∈ R(m11×m11), U3 ∈ R(m22×m22), V2 ∈ R(ℓ−d̃1)×(ℓ−d̃1) and

V3 ∈ R(ℓ−d̃2)×(ℓ−d̃2) are orthogonal matrices, Σ1 and Σ2 are diagonal matrices with

57



positive diagonal entries. In particular,

r1 = rank
(
(W

(1)
1 )(:,d̃1+1:ℓ)

)
, r2 = rank

(
(W

(2)
2 )(:,d̃2+1:ℓ)

)
. (4.23)

Proof: Let Q be such that U1 :=
[
W

(2)
11 , W̃

(2)
12 , Q

]
∈ Rm21×m21 is a square

orthogonal matrix. This immediately leads to (4.19) and (4.20). Let

W
(1)
12 = U2 ×




r1 ℓ−d̃1−r1

r1 Σ1 0

m11−r1 0 0


 V ∗

2 (4.24)

be the SVD ofW
(1)
12 . Now noting that U∗

2W
(1)
1 =

[
U∗
2W

(1)
11 , U

∗
2W

(1)
12

]
and using (4.24),

we have (4.21) with M̃1 and M1 being the top r1 rows and the bottom m11 − r1 rows

of U∗
2W

(1)
11 , respectively. Similarly let the SVD of the submatrix consisting of the last

ℓ− d̃2 columns of W
(2)
2 be

(W
(2)
2 )(:,d̃2+1:ℓ) = U3 ×




r2 ℓ−d̃2−r2

r2 Σ2 0

m22−r2 0 0


 V ∗

3 (4.25)

This leads to (4.22) with M̃2 and M2 being the top r2 rows and the bottom m22 − r2

rows of U∗
3 (W

(2)
2 )(:,1:d̃2), respectively.

We now calculate the spaces spanned by W1 and W2. Note that span(Yj) =

span(Wj) by Lemma 4.3. Below, recall that we use Y
cols⇔ Z to denote span(Y ) =

span(Z).

First, from Lemma 4.4, (4.11) and the fact that




d̃1 ℓ−d̃1

d̃1 I 0

m12−d̃1 0 0


 ×




d̃1 ℓ−d̃1

I 0

0 V ∗
2


 =




d̃1 ℓ−d̃1

d̃1 I 0

m12−d̃1 0 0


,

we have

W
(1)
2 = U1 ×




d̃1 ℓ−d̃1

d̃1 I 0

m12−d̃1 0 0


 ×




d̃1 ℓ−d̃1

I 0

0 V ∗
2


 . (4.26)
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Then we obtain

(
U∗
2

U∗
1

)(
W

(1)
1

W
(1)
2

)
cols⇔




d̃1 r1

r1 M̃1 Σ1

m11−r1 M1 0

d̃1 I 0

m12−d̃1 0 0




cols⇔




d̃1 r1

r1 M̃1 I

m11−r1 M1 0

d̃1 I 0

m12−d̃1 0 0




cols⇔ F1 :=




d̃1 r1

r1 0 I

m11−r1 M1 0

d̃1 I 0

m12−d̃1 0 0




(
E1

I

)
, (4.27)

where

E1 = (I +M∗
1M1)

−1/2. (4.28)

It is easy to check that

F⊥
1 :=




m11−r1 m12−d̃1

r1 0 0

m11−r1 I 0

d̃1 −M∗
1 0

m12−d̃1 0 I




(
D1

I

)
with D1 = (I +M1M

∗
1 )

−1/2

has orthonormal columns and spans the orthogonal complement of span(F1). Then(
U2

U1

)
F⊥
1 spans the orthogonal complement of span(W1).

Similarly, for W2, we have

W
(2)
1 = U1 ×




d̃2 ℓ−d̃2

d̃2 I 0

m12−d̃2 0 0


 ×




d̃2 ℓ−d̃2

I 0

0 V ∗
3


 . (4.29)
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By (4.22) and (4.29),

(
U∗
1

U∗
3

)(
W

(2)
1

W
(2)
2

)
cols⇔




d̃2 r2

d̃2 I 0

m12−d̃2 0 0

r2 M̃2 Σ2

m22−r2 M2 0




cols⇔ F2 :=




d̃2 r2

d̃2 I 0

m12−d̃2 0 0

r2 0 I

m22−r2 M2 0




(
E2

I

)
,

(4.30)

where

E2 = (I +M∗
2M2)

−1/2. (4.31)

Let

F⊥
2 :=




m22−r2 m12−d̃2

d̃2 −M∗
2 0

m12−d̃2 0 I

r2 0 0

m22−r2 I 0




(
D2

I

)
with D2 = (1 +M2M

∗
2 )

−1/2.

Then, F⊥
2 has orthonormal columns and spans the orthogonal complement of

span(F2). It follows that

(
U1

U3

)
F⊥
1 spans the orthogonal complement of span(W2).

Let

G1 =


m11+m12 F⊥

1

m22 0


, G2 =


m11 0

m12+m22 F⊥
2


,

and let

G = (G1 G2) =




m11−r1+d̃2−d̃1 m12−d̃2 m22−r2 m12−d̃2

r1 0 0 0 0

m11−r1 D 0 0 0

d̃2 M 0 −M∗
2D2 0

m12−d̃2 0 I 0 I

r2 0 0 0 0

m22−r2 0 0 D2 0




,
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where

D =

(m11−r1 d̃2−d̃1

m11−r1 D1 0

)

and

M =




m11−r1 d̃2−d̃1

d̃1 −M∗
1D1 0

d̃2−d̃1 0 I


.

Set

Q :=




m11 m12 m22

m11 U2

m12 U1

m22 U3



. (4.32)

Then Q is an orthogonal matrix and it can be checked QGiG
∗
iQ

∗ = Ψi. Let

Ψ̃ := Q∗ΨQ = Q∗Ψ1Q +Q∗Ψ2Q = G1G
∗
1 +G2G

∗
2 = GG∗. (4.33)

Then the null space of Ψ̃ is the same as the null space of G∗, which is the same as

the orthogonal complement of the column space of G.

We construct the orthogonal complement of span(G). Let

G3 =




r1 d̃1 r2

r1 I 0 0

m11−r1 0 M1 0

d̃1 0 I 0

m12−d̃1 0 0 0

r2 0 0 I

m22−r2 0 (M2)(:,1:d̃1) 0




.

Note that in G, the 4th block column is the same as the 2nd one, and the first 3 block

columns are linearly independent. Therefore rank(G) = m11+m12+m22−(r1+r2+d̃1)

which implies dimnull(G∗) = r1+r2+d̃1. Evidently, rank(G3) = r1+r2+d̃1. Therefore
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null(Ψ̃) = null(G∗) = span(G3) because G
∗G3 = 0. We have proved the first two parts

of the following theorem on the null space of Ψ.

Theorem 4.2. Under the assumptions of Lemma 4.1, let all symbols keep their

assignments so far in this section. Then

1. dimnull(Ψ) = dimnull(Ψ̃) = r1 + r2 + d̃1;

2. null(Ψ̃) is the column space of G3 and null(Ψ) = Q null(Ψ̃);

3. null(Ψ) = span(Z) if and only if rank(Y
(2)
1 ) = rank(Y2) where

Y2 =




ℓ

m21 Y
(2)
1

m22 Y
(2)
2


. (4.34)

Proof: We only need to prove part 3. If rank(Y
(2)
1 ) = rank(Y2), then rank(W

(2)
1 ) =

rank(W2) = d̃2. Combining this with Lemma 3.4, we have r2 = 0, which implies

dimnull(Ψ) = r1 + d̃1 by part 1. Since Y1 has full column rank, r1 + d̃1 = ℓ. Now

dimspan(Z) = ℓ and span(Z) ⊂ null(Ψ) imply null(Ψ) = span(Z). On the other

hand, suppose rank(Y
(2)
1 ) < rank(Y2). It implies r2 > 0. Then we have dimnull(Ψ) =

d̃1 + r1 + r2 > d̃1 + r1. Thus null(Ψ) 6= span(Z).

Note that Part 3 (the if part) has been shown in [31] directly. Next, we discuss

the eigenvalues of Ψ or GG∗ (see (4.32)), which has the same nonzero eigenvalues as

G∗G. We note that

G∗G =




m11−r1+d̃2−d̃1 m12−d̃2 m22−r2 m12−d̃2

m11−r1+d̃2−d̃1 I 0 −MM∗
2D2 0

m12−d̃2 0 I 0 I

m22−r2 −D2M2M
∗ 0 I 0

m12−d̃2 0 I 0 I



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is permutationally similar to a direct sum of

(
I I
I I

)
and

(
I −MM∗

2D2

−D2M2M
∗ I

)
.

The former matrix has positive eigenvalue 2 with multiplicity m12 − d̃2; the latter

matrix has eigenvalues 1± σj for ≤ j ≤ k, where σ1, . . . , σk are the nonzero singular

values of D2M2M
∗, and the remaining eigenvalues equal to 1. Thus we have proved

the following main theorem of this paper.

Theorem 4.3. Under the assumptions of Lemma 4.1, let all symbols keep their

assignments so far in this section. Let the nonzero singular values of D2M2M
∗ be

σ1, σ2, . . . , σk. Then the eigenvalues of Ψ are

1± σj for 1 ≤ j ≤ k

2 with multiplicity m12 − d̃2
1 with multiplicity m11 +m22 − r1 − r2 + d̃2 − d̃1 − 2k

0 with multiplicity r1 + d̃1 + r2

Using this theorem, we can bound the smallest positive eigenvalue of Ψ as follows.

For the singular value σj of D2M2M
∗, we have

σj ≤ ‖D2M2M
∗‖2

≤ ‖D2M2‖2 ‖M‖2,

≤ ‖M2‖2√
1 + ‖M2‖22

. (4.35)

By Lemma 3.3, Y
(2)
i R2 = W

(2)
i . If we make additional assumption that rank(Y

(2)
1 ) =

rank(Y2) = ℓ, then d̃2 = ℓ and W
(2)
1 has orthonormal columns. Then (Y

(2)
1 )† =

R2(W
(2)
1 )T . It follows from (4.20) and (4.22) with r2 = 0 that

Y
(2)
2 (Y

(2)
1 )† = W

(2)
2 (W

(2)
1 )† = U3M2U

∗
1 .

It follows that

σj ≤
‖Y (2)

2 (Y
(2)
1 )†‖2√

1 + ‖Y (2)
2 (Y

(2)
1 )†‖22

.
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We have proved the following corollary that bounds the smallest positive eigenvalue

in terms of ‖Y (2)
2 (Y

(2)
1 )†‖2.

Corollary 4.1. Under the assumptions of Lemma 4.1, let all symbols keep their

assignments so far in this section. Assume that rank(Y
(2)
1 ) = rank(Y2) = ℓ. Then the

positive eigenvalues of Ψ is no smaller than 1− τ where

τ
def
=

‖Y (2)
2 (Y

(2)
1 )†‖2√

1 + ‖Y (2)
2 (Y

(2)
1 )†‖22

. (4.36)

Its largest eigenvalue is no greater than 1 + τ if m12 = d̃2 and it is 2 if m12 > d̃2. In

particular,

λ+min(Ψ)P⊥
Z � Ψ � λmax(Ψ)P⊥

Z ,

where λ+min(Ψ) is the smallest positive eigenvalue of Ψ, and λmax(Ψ) is the largest

eigenvalue of Ψ.

Let t = 1/‖Y (2)
2 (Y

(2)
1 )†‖2 ≤ σmin(Y

(2)
1 )/σmax(Y

(2)
2 ). Then t is a measure of “amoun-

t” of overlap. We can write (4.36) as

λ+min(Ψ) ≥ 1− 1√
1 + t2

≥ t2

2(1 + t2)
.

The lower bound implies that if Y
(2)
1 has full column rank but with nearly linearly

dependent columns, σmin(Y
(2)
1 ) is small and the smallest positive eigenvalue λ+min(Ψ)

may be nearly zero. In particular, λ+min(Ψ) may be of order t2.

4.2.3 Case of s Submatrices

We now generalize the result of Section 4.2.2 to the case of s submatrices Z =

{Zj, 1 ≤ j ≤ s} where Zj = Z(Ij ,:) ∈ R
kj×ℓ is a submatrix of Z; see (4.8). Assume

that Z = {Zj, 1 ≤ j ≤ s} is a fully overlapped collection. From Definition 4.2,
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through the recursive process, for each Zj, there is a subset Zj ⊂ Z such that Zj

and Z
(Ĩj ,:)

are fully overlapped where

Ĩj =
⋃

Zi∈Zj

Ii. (4.37)

We also consider s matrices {Yj, 1 ≤ j ≤ s} with Yj ∈ Rkj×ℓ such that span(Zj) ⊂

span(Yj) for all j. Note that the index set for the rows of Yj that correspond to the

common rows of Zj and Z(Ĩj ,:)
is

Kj = {k : jk ∈ Ij ∩ Ĩj}, (4.38)

where Ij = {j1, j2, · · · , jkj}, see (4.7).

Theorem 4.4. Assume that {Zj, 1 ≤ j ≤ s} is a fully overlapped collection and

{Yj, 1 ≤ j ≤ s} is a collection of matrices such that span(Zj) ⊂ span(Yj) for all j.

For each Zj that is rank deficient, let Ĩj be defined as in (4.37) and assume that

rank(Yj(Kj ,:)
) = rank(Yj). Then we have null(Ψ) = null(Φ) = span(Z).

Proof: First null(Φ) = span(Z) is proved by virtually the same proof as the one

for Theorem 2.1 [30] by using Theorem 4.1 for the more general fully overlapped

condition. We omit the details. null(Ψ) = span(Z) is also proved similarly by an

induction in s as follows.

The case s = 2 has already been proved in Theorem 4.2. So suppose the theorem

is true for any collection with at most s− 1 submatrices. We now prove the theorem

is true for a fully overlapped collection Z = {Zj, 1 ≤ j ≤ s} with s ≥ 3. From

Definition 4.2, we can partition Z into two nonempty disjoint subsets, say, Ẑ1 =

{Zj, i = 1, . . . , p} and Ẑ2 = {Zj, j = p + 1, . . . , s}, such that both Ẑ1 and Ẑ2 are

fully overlapped and {Z
(Î1,:)

, Z
(Î2,:)

} are fully overlapped, where

Î i =
⋃

Zj∈Ẑ i

Ij . (4.39)
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Let Ẑi = Z
(Îi,:)

.

We first consider the case that 2 ≤ p ≤ s−2. Then Ẑ1 and Ẑ2 each has less than

s− 1 submatrices and has more than 1 submatrix. Let Ψ̂1 and Ψ̂2 be the alignment

matrices for {Yj, j = 1, . . . , p} and {Yj, j = p+ 1, . . . , s}, respectively. Then we have

null(Ψ̂1) = span(Ẑ1), null(Ψ̂2) = span(Ẑ2),

by the induction assumption. For the collection {Ẑ1, Ẑ2}, let P⊥
Ẑi
, Φ̂i and Φ̂ be the

matrices defined according to (2.14). Then Φ̂i =
[
(IN)(Îi,:)

]T
× P⊥

Ẑi
× (IN)(Îi,:)

and

Φ̂ =
∑2

i=1 Φ̂i. Since {Ẑ1, Ẑ2} being fully overlapped, we obtain

null(Φ̂) = null(Φ̂1)
⋂

null(Φ̂2) = span(Z),

by Theorem 3.1. Now Ψ =
∑s

j=1Ψj is the alignment matrix for {Yj, j = 1, . . . , s}

with Ψj defined according to (4.5). We notice that

p∑

j=1

Ψj =
[
(IN)(Î1,:)

]T
× Ψ̂1 × (IN )(Î1,:)

and
s∑

j=p+1

Ψj =
[
(IN)(Î2,:)

]T
× Ψ̂2 × (IN )(Î2,:)

.

Noting that null(Ψ̂i) = span(Ẑi) and null(P⊥
Ẑi
) = span(Ẑi), we see

null

([
(IN)(Îi,:)

]T
× Ψ̂i × (IN)(Îi,:)

)
= null

([
(IN)(Îi,:)

]T
× P⊥

Ẑi
× (IN)(Îi,:)

)
= null(Φ̂i).

(4.40)

Then we have

null(Ψ) = null(Ψ1 + · · ·+Ψp)
⋂

null(Ψp+1 + · · ·+Ψs)

= null

([
(IN )(Î1,:)

]T
× Ψ̂1 × (IN)(Î1,:)

)⋂
null

([
(IN)(Î2,:)

]T
× Ψ̂2 × (IN)(Î2,:)

)

= null(Φ̂1)
⋂

null(Φ̂2)

= span(Z).
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The theorem is proved in this case

We now consider the case that p = 1 or p = s− 1. Then one of {Zj, j = 1, . . . , p}

and {Zj, j = p + 1, . . . , s} has only one submatrix. Without loss of generality, we

assume p = 1, and let Z̃2 = Z
(Ĩ2,:)

where

Ĩ2 =
s⋃

j=2

Ij . (4.41)

Then, {Z1, Z̃2} is fully overlapped. Since Z̃2 contains at least two submatrices that are

fully overlapped and one of which is of full column rank, then Z̃2 has full column rank.

Let Ψ̂2 be the alignment matrices for {Yj, j = 2, . . . , s}. We have null(Ψ̂2) = span(Z̃2)

by the induction assumption. Furthermore,

s∑

j=2

Ψj =
[
(IN)(Î2,:)

]T
× Ψ̂2 × (IN)(Î2,:)

.

Thus

null(Ψ) = null(Ψ1)
⋂

null(Ψ2 + · · ·+Ψs)

= null(Ψ1)
⋂

null

([
(IN )(Ĩ2,:)

]T
× Ψ̂2 × (IN)(Ĩ2,:)

)

= null(Ψ1)
⋂

null

([
(IN )(Ĩ2,:)

]T
× P⊥

Z̃2
× (IN)(Ĩ2,:)

)
. (4.42)

For the collection {Z1, Z̃2}, {Y1, Ỹ2} with Ỹ2 = Z̃2 satisfies the assumption of Theorem

4.2. Let Ψ̃2 =
[
(IN)(Ĩ2,:)

]T
× P⊥

Ỹ2
× (IN )(Ĩ2,:)

. Them, by Theorem 4.2, we have

null(Ψ1+Ψ̃2) = span(Z). Thus, it follows from (4.42) null(Ψ) = null(Ψ1)
⋂
null(Ψ̃2) =

span(Z). The theorem is proved in this case too.

Corollary 4.2. Under the assumption of Theorem 4.4, we have

λ+min(Ψ)P⊥
Z � Ψ � λmax(Ψ)P⊥

Z ,

where λ+min(Ψ) is the smallest positive eigenvalue of Ψ, and λmax(Ψ) is the largest

eigenvalue of Ψ.
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Under the assumption of Theorem 4.4, we now show how to construct a lower

bound for λ+min(Ψ) recursively for the case s > 2. As in the proof of Theorem 3.4, Z

can be partitioned into two nonempty disjoint subsets Z1 and Z2 such that

Z̃1 = Z
(Ĩ1,:)

and Z̃2 = Z
(Ĩ2,:)

(4.43)

are fully overlapped, where Zi = {Zi1, Zi2, . . . , Ziki
}. Let Y i = {Yi1, Yi2, . . . , Yiki}

and let Ψ̃i be the alignment matrix for Y i as defined in (4.5). The alignment matrix

Ψ for {Yj, 1 ≤ j ≤ s} is

Ψ =
[
(IN )(Ĩ1,:)

]T
× Ψ̃1 × (IN)(Ĩ1,:)

+
[
(IN)(Ĩ2,:)

]T
× Ψ̃2 × (IN )(Ĩ2,:)

. (4.44)

Since Z is fully overlapped, we have either one of Z1 and Z2 contains only one

submatrix which is rank deficient, say Z1 = {Zj} for some j, or both Z̃1 and Z̃2 have

full column ranks. In the former case, using (4.44), we have

λ+min(Ψ̃2)

{[
(IN)(Ĩ1,:)

]T
× P⊥

Yj
× (IN )(Ĩ1,:)

+
[
(IN)(Ĩ2,:)

]T
× P⊥

Z̃2
× (IN)(Ĩ2,:)

}
� Ψ.

(4.45)

In the latter case, we have

min
i=1,2

{λ+min(Ψ̃i)}
{[

(IN)(Ĩ1,:)

]T
× P⊥

Z̃1
× (IN)(Ĩ1,:)

+
[
(IN)(Ĩ2,:)

]T
× P⊥

Z̃2
× (IN )(Ĩ2,:)

}
� Ψ.

(4.46)

Define

τ(Z̃1, Z̃2)
def
=

{ 1√
1+t2

, if Z1 or Z2 is {Zj} and rank(Zj) < ℓ;
1√
1+t21

1√
1+t22

, if rank(Z̃1) = rank(Z̃2) = ℓ; (4.47)

where t =
∥∥∥Yj(J j ,:)

Yj
†
(Kj ,:)

∥∥∥
−1

2
, ti =

∥∥∥Z(Li,:) Z
†
(Ĩ1

⋂
Ĩ2,:)

∥∥∥
−1

2
, J j is the complement set of

Kj (see (4.38)) in {1, 2, . . . , kj}, and Li is the complement set of Ĩ1

⋂
Ĩ2 in Ĩ i . Here

we note that in the first case that Z1 or Z2 is {Zj}, α(Z1,Z2) is defined implicitly

from Z1 and Z2 through Yj that corresponds to Zj. Bounding (4.45) using Corollary
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4.1 and bounding (4.46) using Theorem 3.6 of [16], we have

min{λ+min(Ψ̃1), λ
+
min(Ψ̃2)}

[
1− τ(Z̃1, Z̃2)

]
P⊥
Z � Ψ,

where we note that λ+min(P
⊥
Yj
) = 1. Then we can construct the lower bound for λ+min(Ψ)

recursively by the method similar to Theorem 2.8. We calculate α(Z) that satisfies

α(Z)P⊥
Z � Ψ by the following three equations recursively:

α({Zi}) = 1, (4.48)

α({Zi, Zj}) = 1− τ(Zi, Zj), (4.49)

α(Z) =
[
1− τ(Z̃1, Z̃2)

]
min{α(Z1), α(Z2)}. (4.50)

The smallest positive eigenvalue λ+min(Ψ) is then no smaller than α(Z).

Theorem 4.5. Under the assumption of Theorem 4.4, let α(Z) be computed recur-

sively by (4.48) – (4.50). Then α(Z)P⊥
Z � Ψ, where alignment matrix Ψ is defined

by (4.5).

We illustrate the recursive computation of the bound with an example.

Example 4.1. Consider a fully overlapped set {Z1, Z2, Z3}. Suppose Z3 and Z̃2
def
=

Z(I1
⋃
I2,:) are fully overlapped. Then write Z1 = {Z3} and Z2 = {Z1, Z2}. Let

Ĩ2
def
= I1

⋃
I2. rank(Z3) < rank(Z1) = rank(Z2). We have a lower bound for λ+min(Ψ)

by Corollary 4.1.

[
1− τ(Z3, Z̃2)

]
P⊥
Z � (IN )

T
(I3,:)

× P⊥
Y3

× (IN)(I3,:) + (IN)
T

(Ĩ2,:)
× P⊥

Z̃2
× (IN)(Ĩ2,:)

,

and

[1− τ(Z1, Z2)] (IN)
T

(Ĩ2,:)
× P⊥

Z̃2
× (IN )(Ĩ2,:)

�
2∑

j=1

(IN )
T
(Ij ,:)

× P⊥
Yj
× (IN)(Ij ,:).

Put the two inequalities together to get α(Z)P⊥
Z � Ψ with

α(Z) =
[
1− τ(Z3, Z̃2)

]
[1− τ(Z1, Z2)] . (4.51)
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4.3 Numerical Examples

In this section, we present two numerical examples to illustrate the lower bound of

the smallest positive eigenvalue λ+min(Ψ). In particular, we study the dependence of

the smallest positive eigenvalue on the number of overlapped rows and the “amount”

of overlap t.

Consider the following matrix

Z =




1 1 1 1 1 1 1 1
1 2 3 4 5 6 · · · N
a b c d e 0 · · · 0




T

∈ RN×3 (4.52)

where a, b, c, d, e are distinct random numbers.

Example 4.2. Let Z1 = Z(1:N−5,:) be the matrix consisting of the first N − 5 rows

of Z and Z2 = Z(j:N,:) be the matrix consisting of the last N − j + 1 rows of Z (for

some j with 6 ≤ j ≤ N). Then we have rank(Z1) = 3 and rank(Z2) = 2. Z1 and Z2

have no overlap if j > N − 5. Z1 and Z2 are fully overlapped if j < N − 6.

Let Y1 = Z1 and let Y2 be the matrix such that its first two columns of Y2 are the

same as Z2 (i.e. Y2(:,1:2) = Z2(:,1:2)) and its third column Y2(:,3) is random numbers

uniformly distributed between 0 and 1. Noticing that Z1(j:N−5,:) = Z2(1:N−j−4) is the

common part of Z1 and Z2, from (4.36), our bound (4.49) on the smallest positive

eigenvalue of Ψ as constructed from Y1 and Y2 is

λ+min(Ψ) ≥ 1− 1√
1 + t2

where t = 1/‖Y2(N−j−3:N−j+1,:)(Y2(1:N−j−4,:))
†‖2. We compare this bound with the

computed fourth smallest eigenvalue of Ψ for varying values of j, which changes the

number of rows in the overlap or the amount of overlap t. For all of our test cases, the

first three computed eigenvalues are less than 10−13, confirming that the null space

of Ψ is of dimension 3.
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Figure 4.1: λ+
min(Ψ) (∗-line) and its bound (solid line) vs. number of rows overlapped

In Figure 4.1, we present the results for two tests (two sets of different Z and

Y2) with N = 30, one on the left and the other on the right. Here, we plot λ+min(Ψ)

and its lower bound 1− 1√
1+t2

against the number of overlapped rows in the overlap.

To investigate the dependence of λ+min(Ψ) on the amount of overlap t, we also plot

λ+min(Ψ) against t for the same problems in Figure 4.2.

We observe that our lower bound on λ+min(Ψ) is indeed correct. The figures also

clearly show that the bound as well as the smallest positive eigenvalue increases as

the overlap increases. Although it is a bit pessimistic, it tracks the changing behav-

ior of the eigenvalue very well, namely the point at which the eigenvalue increases

significantly (Figure 4.1). Furthermore, Figure 4.2 also demonstrates near quadratic

dependence on the amount of overlap t.

Example 4.3. We consider an example with s = 3. Let Z1 = Z(1:5,:) be the matrix

consisting of the first 5 rows of Z, Z2 = Z(3:N−5,:) be the matrix consisting of the 3rd

to the (N − 5)th rows and Z3 = Z(j:N,:) be the matrix consisting of the last N − j +1

rows of Z (for some j with 6 ≤ j ≤ N), where Z is given in (4.52). Then we have

{Zj, 1 ≤ j ≤ 3} is a fully overlapped collection if j < N − 6. We consider the case
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Figure 4.2: λ+
min(Ψ) (solid line) vs. amount of overlap t

that Y1 = Z1, Y2 = Z2 and Y3 is the matrix such that its first two columns are the

same as Z3 (i.e. Y3(:,1:2) = Z3(:,1:2)) and its third column Y3(:,3) is random numbers

uniformly distributed between 0 and 1, as in Example 4.1.

To determine a lower bound, we use Z1 = {Z3} and Z2 = {Z1, Z2}. Z3 and

Z̃2
def
= Z(I1

⋃
I2,:) are fully overlapped. We can find the lower bound for the smallest

positive eigenvalue of Ψ by (4.51). Noticing that Z1(3:5,:) = Z2(1:3,:) is the common

part of Z1 and Z2, from (4.47), our bound (4.49) as constructed from Y1 and Y2 is

1− τ(Z1, Z2) = 1− 1√
1 + t21

1√
1 + t22

,

where t1 = 1/‖Y1(1:2,:)(Y1(3:5,:))†‖2 and t2 = 1/‖Y2(4:N−7,:)(Y2(1:3,:))
†‖2. From Z2(j−2:N−7,:) =

Z3(1:N−j−4) being the common part of Z̃2 and Z3 and (4.51), our bound (4.50) on the

smallest positive eigenvalue of Ψ as constructed from {Yj, 1 ≤ j ≤ 3} is

λ+min(Ψ) ≥
(
1− 1√

1 + t2

)(
1− 1√

1 + t21

1√
1 + t22

)
, (4.53)

where t = 1/‖Y3(N−j−3:N−j+1,:)(Y3(1:N−j−4,:))
†‖2. We compare this bound with the

computed fourth smallest eigenvalue of Ψ for varying values of j, which changes the

number of rows in the overlap or the amount of overlap t. For all of our test cases, the
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Figure 4.3: λ+
min(Ψ) (∗-line) and its bound (solid line) vs. number of rows overlapped

first three computed eigenvalues are less than 10−13, confirming that the null space

of Ψ is of dimension 3.

In Figure 4.3, we present the results for two tests (two sets of different Z and Y3)

with N = 30, one on the left and the other on the right. Here, we plot λ+min(Ψ) and

its lower bound (4.53) against the number of overlapped rows in the overlap.

We observe that our lower bound on λ+min(Ψ) is indeed correct. The figures also

clearly show that the bound as well as the smallest positive eigenvalue increases as the

overlap increases. The bound is, however, much more pessimistic now. Nevertheless,

it tracks the changing behavior of the eigenvalue very well.

Copyright c© Weifeng Zhi, 2012.
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Chapter 5 Analysis of Discrete Hessian Eigenmaps Algorithm

In this chapter, we still consider a parameterized manifold of dimension d defined

by a mapping ψ: C ⊂ Rd → Rm, where the embedding space Rm obeys d < m and

C is open in Rd. The image M = ψ(C) is the manifold. Here Rm represents the

high-dimensional data space and Rd represents the low-dimensional parameter space.

Suppose we have a set of data points x1, . . . , xN sampled from the manifold M as

(1.1), i.e.,

xi = ψ(τi), i = 1, . . . , N,

for τi ∈ C. We recover the parameter points τ ′is from xi’s. We concentrate on the

noise-free data (1.1) and follow Donoho and Grimes [8] to assume ψ is a local isometry.

We present a discrete Hessian Eigenmaps method that is based on the numerical

procedure developed in [8]; see the Hessian LLE algorithm in Section 2.2.5. By defin-

ing a discrete Hessian operator and a generalized H-functional that we call Hessian

alignment matrix, we show that the null space of the Hessian alignment matrix re-

covers the locally isometric coordinates, provided local neighborhoods are sufficiently

“overlapped”.

5.1 Discrete Hessian Eigenmaps Method

In this section, we present a discrete version of the Hessian Eigenmaps method.

Specifically, we introduce discrete Hessian operator and a generalization of the H-

functional and prove a generalization of Theorem 2.9. The discrete Hessian Eigen-

maps method is essentially the same as the numerical procedure of Hessian LLE

described in Chapter 2, but is formulated as a direct generalization of the original
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Hessian Eigenmaps method. By establishing a discrete version of Theorem 2.9 with

analysis, we directly provide a theoretical basis of the discrete procedure.

We are interested in reconstructing the coordinate set {τ1, τ2, · · · , τN} for a given

data set X = {x1, . . . , xN}. We partition X into subsets {X i, i = 1, . . . , s} with

X i = {xi1 , . . . , xiki} (i1 < i2 < · · · < iki) consisting of points is a small neighborhood

so that a coordinate system on the local tangent space can be approximately obtained.

For theoretical purpose, we assume that X i is a subset such that it has an isometric

coordinates Si = {τi1, . . . , τiki} ⊂ Rd, i.e. ‖τip − τiq‖2 = dM(xip, xiq) (for any 1 ≤

p, q ≤ ki) where dM( · , · ) is the geodesic distance along M. For each Si, we can

compute a local isometric coordinate Θi = {θ(i)1 , . . . , θ
(i)
ki
} from the pairwise geodesic

distance such that ‖θ(i)p − θ
(i)
q ‖2 = dM(xip, xiq) (for any 1 ≤ p, q ≤ ki) (In the context

of Hessian Eigenmaps, the local tangent coordinate is an approximation for the local

coordinate defined here). We discuss how to reconstruct τi’s from the local coordinates

based on local Hessian operators.

5.1.1 Hessian Operator

Let S0 = {τ1, . . . , τk} ⊂ Rd be an ordered set and set

T0 = [τ1, . . . , τk].

For our purpose, S0 is a coordinate set and we define its dimension as in Definition

3.3.

Throughout this chapter, we consider ordered subsets of dimension d.

From S0 = {τ1, . . . , τk}, we define a Hessian operator as follows.

Definition 5.1. Let S0 = {τ1, . . . , τk} ⊂ Rd be an ordered subset of dimension d and

let T0 = [τ1, τ2, · · · , τk]. Let

Z0 = Y0 − [e, T T
0 ][e, T

T
0 ]

†Y0,
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where

Y0 =




τT1
⊙

τT1
τT2
⊙

τT2
...

τTk
⊙

τTk


 ∈ R

k×q with q =
d(d+ 1)

2
. (5.1)

and the operation
⊙

is defined in (1.2). We say

H0 = Z†
0 (5.2)

is the Hessian operator as defined by S0.

Remark 5.1. The Hessian operator H0 depends on the order in S0. If we permute

the vectors in S0 to get another ordered set Ŝ0 with a corresponding matrix T̂0 = T0P

for some permutation matrix P , it is easy to check that Ĥ0 = H0P where Ĥ0 is the

Hessian operator defined by Ŝ0.

Lemma 5.1. Let S0 = {τ1, . . . , τk} ⊂ R
d be an ordered subset of dimension d

and let T0 = [τ1, τ2, · · · , τk]. Let H0 be the Hessian operator for S0. We have

span([e, T T
0 ]) ⊂ null(H0).

Proof: From Definition 5.1, we have [e, T T
0 ]

TZ0 = 0 where Z0 = H†
0 = Y0 −

[e, T T
0 ][e, T

T
0 ]

†Y0 and Y0 is defined in (5.1). Then ZT
0 [e, T

T
i ] = 0. Hence Z†

0[e, T
T
i ] = 0.

We note that the columns of [e, T T
0 ] consists of the vectors [f(τi)]

k
i=1 with f :

Rd → R being the constant or the d linear functions. Y0 consists of [f(τi)]
k
i=1 with

f : Rd → R being the quadratic functions. We next present a result that justifies the

definition of Hessian operator .

Consider a function h(τ) : Rd 7→ R and we are interested in an approximation of

the Hessian of h at some point τ0 using the values of h(τi). Performing the Taylor

expansion for h(τ) at τ0, we have

h(τ) = h(τ0) + (τ − τ0)
T∇h(τ0) +

1

2
(τ − τ0)

THh(τ0)(τ − τ0) +R(τ − τ0),
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where R(τ−τ0) is the remainder term andHh(τ0) is the Hessian matrix of the function

h(τ) at τ = τ0. Let

hh(τ) = [a1(τ), . . . , ap(τ)]
T ∈ R

q, (5.3)

where

ak(k−1)
2

+ℓ
(τ) =

{
1
2

∂2h
∂tk∂tℓ

(τ) k = ℓ;
∂2h

∂tk∂tℓ
(τ) k > ℓ.

and q = d(d + 1)/2. Then hh(τ) is a vector form of the Hessian matrix containing

the entries of the lower triangular part (including diagonal) of the Hessian. Now,

considering the Taylor expansion of h(τi) for i = 1, 2, · · · , k and combining them

together, we can write




h(τ1)
h(τ2)
...

h(τk)


 =




1 (τ1 − τ0)
T (τ1 − τ0)

T
⊙

(τ1 − τ0)
T

1 (τ2 − τ0)
T (τ2 − τ0)

T
⊙

(τ2 − τ0)
T

...
...

...
1 (τk − τ0)

T (τk − τ0)
T
⊙

(τk − τ0)
T







h(τ0)
∇h(τ0)
hh(τ0)


+




r1
r2
...
rk


 .

(5.4)

where ri = R(τi − τ0). If h ∈ C3(Rd), |ri| ≤ C‖τi − τ0‖3 for some constant C > 0.

Proposition 5.1.1. Let h : Rd 7→ R and H0 be the Hessian operator as defined by

S0 = {τ1, . . . , τk}. Let hh(τ0) be the column form of the Hessian matrix of function

h(τ) at τ0 defined according to (5.3). If H0 has full row rank, we have

H0




h(τ1)
h(τ2)
...

h(τk)


 = hh(τ0) +H0




r1
r2
...
rk


 , (5.5)

where ri = R(τi − τ0).

Proof: Set

h =




h(τ1)
h(τ2)
...

h(τk)


 ∈ R

k, and r =




r1
r2
...
rk


 ∈ R

k.
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It follows from (5.4) that

h = [e, T T
0 − eτT0 ]

(
h(τ0)
∇h(τ0)

)
+ (Y0 + [e, T T

0 ]R0)hh(τ0) + r,

where R0 ∈ R(d+1)×p. Equivalently,

h = [e, T T
0 − eτT0 ]

(
h(τ0)
∇h(τ0)

)
+ (I − [e, T T

0 ][e, T
T
0 ]

†)(Y0 + [e, T T
0 ]R0)hh(τ0)

+[e, T T
0 ][e, T

T
0 ]

†(Y0 + [e, T T
0 ]R0)hh(τ0) + r.

(5.6)

Multiplying (5.6) by H0, we obtain

H0h = H0[e, T
T
0 − eτT0 ]

(
h(τ0)
∇h(τ0)

)
+H0(I − [e, T T

0 ][e, T
T
0 ]

†)(Y0 + [e, T T
0 ]R0)hh(τ0)

+H0[e, T
T
0 ][e, T

T
0 ]

†(Y0 + [e, T T
0 ]R0)hh(τ0) +H0r.

(5.7)

Noticing H0[e, T
T
0 ] = 0 and (I − [e, T T

0 ][e, T
T
0 ]

†)Y0 = H†
0, we have

H0h = H0H
†
0hh(τ0) +H0r. (5.8)

Since H0 has full row rank H0H
†
0 = I. (5.5) is proved.

For the rest of this paper, we are only interested in the null space (or the range

space) of the discrete Hessian operator. For this purpose then, instead of computing

the discrete Hessian operator, we find its range space, which can be easily constructed

as follows. Let

Y (0) = [e, T T
0 , Y0] ∈ R

k×q, (5.9)

where Y0 is given in (5.1) and perform Gram-Schmidt orthonormalization for Y (0),

yielding a matrix Ŷ0 ∈ Rk×q such that

Y (0) = Ŷ0R0P̄
T
0 , (5.10)

where Ŷ0 is a matrix with the first rank(Y (0)) columns being orthonormal, R0 ∈ R
q×q

is an upper triangle matrix and P̄0 is a permutation matrix. Since the first d + 1

columns of Y (0) are linearly independent by Lemma 3.1, we have

P̄0 =

(
Id+1 0

0 P̃0

)
, (5.11)

78



for some permutation matrix P̃0. Write

Ŷ0 =

( d+1 p0 q0

Y0,1, Q0, 0

)
, (5.12)

where

p0 =
[
rank(Y (0))− (d+ 1)

]
and q0 = q − rank(Y (0)). (5.13)

The following theorem shows that the columns of Q0 form an orthonormal basis for

span(HT
0 ).

Lemma 5.2. Given an ordered subset S0, let Q0 be defined according to (5.12). We

have span(Q0) = span(HT
0 ), i.e. the columns of Q0 form an orthonormal basis for HT

0 .

where H0 ∈ Rp×k is the Hessian operator for S0.

Proof: Let Y0,1 be defined according to (5.12). We notice that

span([Y0,1, Q0]) = span([e, T T
0 , Y0]) = span([e, T T

0 , Z0]) (5.14)

Noticing Y0,1 being orthonormal basis for span([e, T T
0 ]), we have span(Q0) = span(Z0) =

span(H†
0) = span(HT

0 ), we have span(Q0) = span(HT
0 ).

The Hessian operators is defined from a coordinate set but, as in the continuous

case, its column space is invariant under a linear transformation on the coordinate

set (or change of basis), as is shown in the next lemma.

Lemma 5.3. Let G0 and H0 be the Hessian operators for the ordered subsets Θ0 =

{θ1, . . . , θk} and S0 = {τ1, . . . , τk}, respectively. Set Θ0 = [θ1, . . . , θk] and T0 =

[τ1, . . . , τk]. If Θ0 = V1T0 + ceT , where c ∈ Rd and V1 ∈ Rd×d is a nonsingular matrix,

we have G0 = V2H0 for some nonsingular matrix V2.

Proof: We construct the matrices X(0) and Y (0) for subset Θ0 and S0 according

to (5.9), respectively, i.e.

X(0) = [e,ΘT
0 , X0] and Y (0) = [e, T T

0 , Y0],
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where

X0 =




θ1
T ⊙ θ1

T

θ2
T ⊙ θ2

T

...
θk0

T ⊙ θk
T


 and Y0 =




τ1
T
⊙

τ1
T

τ2
T
⊙

τ2
T

...
τk

T
⊙

τk
T


 .

We notice that

span(X0) = span(X̃0) and span(Y0) = span(Ỹ0), (5.15)

where

X̃0 =




θ1
T ⊗ θ1

T

θ2
T ⊗ θ2

T

...
θk0

T ⊗ θk
T


 and Ỹ0 =




τ1
T
⊗

τ1
T

τ2
T
⊗

τ2
T

...
τk

T
⊗

τk
T


 ,

since X̃0 has the same column vectors as X0 and Ỹ0 has the same column vectors as

Y0 excluding the repeated ones. We have θi = V1τi + c for i = 1, . . . , k. Then

θi
T
⊗

θi
T = (V1τi + c)T

⊗
(V1τi + c)T

= (τTi V
T
1 + cT )

⊗
(τTi V

T
1 + cT )

= (τTi
⊗

τTi )(V
T
1

⊗
V T
1 ) + cT

⊗
(τTi V

T
1 ) + (τTi V

T
1 )
⊗

cT + cT
⊗

cT ,

for i = 1, . . . , k, see [6, Lemma 6.3]. It follows

X̃0 = Ỹ0(V
T
1

⊗
V T
1 ) + [e, T T

0 ]R (5.16)

for some matrix R ∈ R(d+1)×d2 . Since V1 is a nonsingular matrix, we have V T
1

⊗
V T
1

is a nonsingular matrix by [6, Lemma 6.3]. It also follows from Θ0 = V1T0 + ceT that

I − [e,ΘT
0 ][e,Θ

T
0 ]

† = I − [e, T T
0 ][e, T

T
0 ]

†. (5.17)

Combining (5.16) and (5.17), we have

span

(
(I − [e,ΘT

0 ][e,Θ
T
0 ]

†)X̃0

)
= span

(
(I − [e, T T

0 ][e, T
T
0 ]

†)Ỹ0

)
. (5.18)

span
(
(I − [e,ΘT

0 ][e,Θ
T
0 ]

†)X0

)
= span

(
(I − [e, T T

0 ][e, T
T
0 ]

†)Y0
)
from (5.15) and (5.18).

Then span(G†
0) = span(H†

0). It follows span(GT
0 ) = span(HT

0 ). G0 = V2H0 for some

nonsingular matrix V2.
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5.1.2 Hessian Alignment Matrix

We now generalize the definition of the quadratic form of the H-functional to the

discrete case and present a generalization of Theorem 2.9. In the discrete setting, the

construction of the quadratic form or the corresponding symmetric matrix is more

closely related to that of the alignment matrix in the LTSA method [34, 30]. Indeed,

they have some similar spectral properties as well. Hence we call it the Hessian

alignment matrix.

Let {Si, 1 ≤ i ≤ s} be a collection of ordered subsets of a given ordered set

S = {τ1, . . . , τN}. Write

Si = {τi1 , . . . , τiki}, i1 < i2 < . . . < iki , (5.19)

and set

T = [τ1, · · · , τN ] ∈ R
d×N , and Ti = [τi1 , · · · , τiki ].

We say Ti is a section of T . We have TEi = Ti. Ei is called the selection matrix for

Si. Let

Ei = [ei1 , . . . , eiki ] ∈ R
N×ki, (5.20)

where ei ∈ RN is the i-th column of IN , i.e. the N ×N identity matrix.

In the context of manifold learning, each Si is a coordinate set for points in

a small neighborhood, from which a Hessian operator can be defined. Assembling

them together, the following is a generalization of the definition of the H-functional.

Definition 5.2. Given an ordered set S = {τ1, . . . , τN} and a collection of ordered

subsets {Si, 1 ≤ i ≤ s}, let

Φ =
s∑

i=1

EiH
†
iHiE

T
i , (5.21)
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where Hi (1 ≤ i ≤ s) is the Hessian operator for the subset Si (1 ≤ i ≤ s) and Ei is

the selection matrix for Si (see (5.20)). We call Φ the Hessian alignment matrix for

{Si, 1 ≤ i ≤ s}.

Remark 5.2. We note that the definition of Hi is dependent on the order of the

vectors in Si but EiH
†
iHiE

T
i is not. Hence Φ is independent of the order of the

vectors in Si. However, if we change the order of the column vectors of S to have

another ordered set Ŝ with corresponding matrix T̂ = TP for a permutation matrix

P , the Hessian alignment matrix Φ̂ defined on {Si, 1 ≤ i ≤ s} satisfies Φ̂ = P TΦP .

By setting

Pi = H†
iHi, (5.22)

we have Φ =
∑s

i=1EiPiE
T
i .

Lemma 5.4. Given an ordered set S = {τ1, . . . , τN} and a collection of subsets

{Si, 1 ≤ i ≤ s} with S =
⋃s

i=1 Si, and Si = {τi1 , . . . , τiki} (i1 < i2 < · · · < iki), let

Ti = [τi1 , . . . , τiki ], T = [τ1, . . . , τN ] and Ti = TEi with Ei being the selection matrix.

Let Hi be the Hessian operator for Si and Φ be the Hessian alignment matrix for

{Si, 1 ≤ i ≤ s}. Then, we have

null(HiE
T
i ) ⊃ {x|ET

i x ∈ span([e, T T
i ])} (5.23)

and

null(Φ) =

s⋂

i=1

null(HiE
T
i ). (5.24)

Moreover, we have span([e, T T ]) ⊂ null(Φ).

Proof: Let Qi be the matrix consisting of the orthonormal basis of span(HT
i ). We

have proved that Φi = QiQ
T
i . Noticing that span(QT

i ) = span(Hi), the rest of the

proof of this lemma is the same as the proof of Lemma 2.1 of [30]. We omit it here.
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The main result of this section is to determine under what conditions that span([e, T T ]) =

null(Φ). For that, we need to introduce some definitions.

Definition 5.3. Let S1 and S2 be two ordered subsets of Rd. Let T2 be the matrix

with its columns equal to the vectors in S2 in its given order and let H2 be the Hessian

operator for S2. Let H2\1 be the submatrix of H2 consisting of the columns of H2

that correspond1 to the vectors in S2 \ S1 (i.e. H2\1 = H2E2\1 where E2\1 is some

selection matrix defined in (5.20) such that T2E2\1 the submatrix of T2 constructed

from the column vectors that are in S2 \ S1), We say S1 is rigidly overlapped to S2

if H2\1 has full column rank.

Based on the above relation of two subsets, we can associate a directed graph on

{S1,S2, . . . ,Ss}.

Definition 5.4. We associate a collection of subsets {S1,S2, . . . ,Ss} with a directed

graph G constructed as follows: its s vertices represent the s subsets, where there is

an edge from vertex i to vertex j if the subset Si is rigidly overlapped to the subset

Sj .

Definition 5.5. We say the collection of subsets {Si, 1 ≤ i ≤ s} is rooted connected

and Sj is the root if its associated directed graph G is a rooted connected graph with

root j, i.e. there is a route from the vertex j to any vertex i (for 1 ≤ i ≤ s).

Definition 5.6. Given an ordered set S = {τ1, . . . , τN} and a collection of subsets

{Si, 1 ≤ i ≤ s} with S =
⋃s

i=1 Si, let Φ be the Hessian alignment matrix for

{S1, . . . ,Sℓ}. We say the collection {S1, . . . ,Sℓ} is a full spanning collection, if

rank(Φ) = N − (d+ 1).

1Note that each column of the discrete Hessian H2 corresponds to a column of T2 or a vector in
S2.
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Lemma 5.5. Let S = {τ1, . . . , τN} be an ordered set and let {Si, 1 ≤ i ≤ ℓ} be a

collection of subsets with S =
⋃ℓ

i=1 Si. If {Si, i = 1, . . . , ℓ − 1} is a full spanning

collection and there is a subset Sj (1 ≤ j ≤ ℓ − 1) that is rigidly overlapped to Sℓ,

we have {S1,S2, . . . ,Sℓ} is a full spanning collection .

Proof: Let Si = {τi1 , . . . τiki} and write Ti = [τi1 , . . . τiki ] and T = [τ1, . . . τN ]. Let

Hi (1 ≤ i ≤ ℓ) be the Hessian operator for Si. Let Ei be the selection matrix as in

(5.20) such that Ti = TEi and let H̃i be the embedding of Hi into Rp×N such that

Hi = H̃iEi. Set

H =




H̃1
...

H̃ℓ


 .

We have null(H) =
⋂ℓ

i=1 null(H̃i). It follows null(H) = null(Φ) by Lemma 5.4. Let Φi

(1 ≤ i ≤ ℓ) be defined for Si (1 ≤ i ≤ ℓ) as (5.22).

Let there be N − k column vectors in Ŝ1 =
⋃ℓ−1

i=1 Si and there be k (0 ≤ k < N)

column vectors in Ŝ2 =
⋃ℓ

i=1 Si \ Ŝ1. Without loss of generality, we assume that

Ŝ1 = {τ1, τ2, . . . , τN−k} and Ŝ2 = {τN−k+1, . . . , τN}. Set T̂1 = [τ1, τ2, . . . , τN−k] and

T̂2 = [τN−k+1, . . . , τN ]. Embedding Hi (1 ≤ i ≤ ℓ − 1) into R
k×(N−k) according to

the embedding of Ti into T̂1, we have Hi = ĤiÊi, where Êi is the selection matrix

such that Ti = T̂1Êi. Then Φ̂1 =
∑ℓ−1

i=1 ÊiPiÊ
T
i is the Hessian alignment matrix for

the collection {Si, 1 ≤ i ≤ ℓ − 1}, where Pi is defined according to (5.22). Since

{Si, 1 ≤ i ≤ ℓ− 1} being a full spanning collection, we have null(Φ̂1) = span([e, T̂ T
1 ]).

Let

H̄1 =




Ĥ1
...

Ĥℓ−1


 .

We have

null(H̄1) =
ℓ−1⋂

i=1

null(Ĥi) = null(Φ̂1). (5.25)
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We first consider the case k = 0, i.e. Ŝ1 = {τ1, . . . , τN}. In this case, we have

Êi = Ei and Ĥi = H̃i. Then null(Φ) =
⋂ℓ

i=1 null(H̃i) ⊂ ⋂ℓ−1
i=1 null(H̃i) = null(Φ̂1) =

span([e, T T ]). Noting also null(Φ) ⊃ span([e, T T ]) by Lemma 5.4, we have null(Φ) =

span([e, T T ]) and hence {S1,S2, . . . ,Sℓ} is a full spanning collection.

Next, we consider the case k > 0. Since {Si, i = 1, . . . , ℓ − 1} is a full spanning

collection, we have rank(Φ̂1) = (N − k)− (d+ 1). It follows

rank(H̄1) = (N − k)− (d+ 1) (5.26)

from (5.25). Let

H̃ℓ =

( N−k k

H̃ℓ,1, H̃ℓ,2

)
. (5.27)

Then we can rewrite H as follows.

H =




N−k k

H̄1 0

H̃ℓ,1 H̃ℓ,2


.

Since one subset Sj (1 ≤ j ≤ ℓ − 1) is rigidly overlapped to Sℓ, the submatrix of

H̃ℓ consisting of columns corresponding to the vectors in Sℓ \ Sj, of which H̃ℓ,2 is a

submatrix, has full column rank. Therefore H̃ℓ,2 has full column rank. It follows that

rank(H) ≥ N − (d + 1). Equivalently, dimnull(H) ≤ d + 1. Noticing span([e, T T ]) ⊂

null(H) by Lemma 5.4, we have dimnull(H) ≥ d + 1. Thus, null(H) = null(Φ) =

span([e, T T ]) by Lemma 5.4. The collection {Si, 1 ≤ i ≤ ℓ} is also a full spanning

collection.

We now proceed to prove our main theorem of this chapter.

Theorem 5.1. Let Φ be the Hessian alignment matrix for a collection of subsets

{S1,S2, . . . ,Ss} with
⋃s

i=1 Si = {τ1, . . . , τN}. Assume that there are two nonempty

collections, say, {Si, i = 1, . . . , p} and {Si, i = p + 1, . . . , s}, such that {Si, i =
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1, . . . , p} is a full spanning collection and {Si, i = 1, . . . , s} is rooted connected with

root Sj (for some j with 1 ≤ j ≤ p). Then we have null(Φ) = span([e, T T ]), where

T = [τ1, . . . , τN ].

Proof: By Lemma 5.5, we can expand {Si, i = 1, . . . , p} to obtain a new full

spanning collection collection by including every subset that is rigidly overlapped to

Sj (for some j with 1 ≤ j ≤ p). This can be expanded into the full collection since

every Si (for i = 1, . . . , s) is rooted connected with root Sj .

The previous theorem shows that we can recover T from the Hessian alignment

matrix provided the conditions on the the collection of subsets are satisfied. The Hes-

sian alignment matrix Φ here is constructed from the original coordinates τi’s in each

subset and this is a generalization of theH-functional in the isometric coordinateHiso.

In the next section, we consider a more general definition of the Hessian alignment

matrix constructed from some local coordinates, which generalize the H-functional

in the tangent coordinate H.

5.2 Analysis of Discrete Hessian Eigenmaps

We now discuss the problem of how to reconstruct the global coordinates τi’s for

a given data set from their local coordinates as outlined at the beginning of the

section using the Hessian alignment matrix. We outline the procedure as the following

algorithm that we call discrete Hessian Eigenmaps.

Algorithm 5.1. Discrete Hessian Eigenmaps
Given X = {x1, · · · , xN} ⊂ R

m.

1. Construct {Xi, i = 1, . . . , s} with Xi = {xi1 , . . . , xiki} consisting of points in a small
neighborhood and

⋃s
i=1 Xi = X.

2. For each Xi, construct its local coordinates Θi = {θ(i)1 , . . . , θ
(i)
ki
} ∈ R

d. This can be
done by the projection onto an approximate local tangent space as in (2.32)

3. Construct Qi = G†
iGi where Gi (1 ≤ i ≤ s) is the discrete Hessian operator for Θi

(1 ≤ i ≤ s).
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4. Construct

Ψ =
s∑

i=1

EiQiE
T
i . (5.28)

We call Ψ the Hessian alignment matrix for {Θi}.

5. Compute [e/
√
N,T T ] as an orthonormal basis of the spectral subspace of Φ corre-

sponding to the smallest d+1 eigenvalues, where T T ∈ R
N×d. The columns of T are

used as the coordinate set for X.

For the Discrete Hessian Eigenmaps method, we construct a local coordinate sys-

tem Θi = {θ(i)1 , . . . , θ
(i)
ki
} ∈ Rd for points in a local neighborhood X i, from which the

Hessian alignment matrix Ψ is constructed. This is similar to how the H-functional

in the tangent coordinate H is defined. As in the continuous case, assuming that

the local coordinate system is exact, we now show that the alignemnt matrices as

constructed from the local coordinates and the original coordinates are the same and

we still have null(Ψ) = span
(
[e, T T ]

)
.

Lemma 5.6. Let Gi and Hi be the Hessian operators for two ordered subsets Θi =

{θ(i)1 , . . . , θ
(i)
ki
} and Si = {τi1 , . . . , τiki}, respectively. Set Θi = [θ

(i)
1 , . . . , θ

(i)
ki
] and Ti =

[τi1 , . . . , τiki ]. If Θi = V Ti + ceT for some c ∈ R
d and some nonsingular matrix V , we

have G†
iGi = H†

iHi.

Proof: By Lemma 5.3, we have span(GT
i ) = span(HT

i ). Since G†
iGi and H†

iHi

are the orthogonal projections on span(GT
i ) and span(HT

i ) respectively, the lemma is

proved.

Theorem 5.2. Let Θi and Ψ be obtained from the Discrete Hessian Eigenmaps

method (Algorithm 5.1). Let xi = ψ(τi) and Si = {τi1 , . . . , τiki}. Let Φ be the

Hessian alignment matrix for the collection of subsets {Si, i = 1, . . . , s}. Assume

Θi = {θ(i)1 , . . . , θ
(i)
ki
} ⊂ Rd, is isometric in the Euclidean distance to {τi1 , . . . , τiki}.

Then

Ψ = Φ.
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In particular, if {Si, i = 1, . . . , s} is a full spanning collection, null(Ψ) = span
(
[e, T T ]

)
,

where T = [τ1, . . . , τN ].

Proof: Since {θ(i)1 , . . . , θ
(i)
ki
} is isometric to {τi1 , . . . , τiki}, it follows from the proof

of Theorem 2.4 of [30] that there exist an orthogonal matrix V̂i and a vector c ∈ Rd

such that

Θi = V̂iTi + ceT

Then we have G†
iGi = H†

iHi by Lemma 5.6. Thus

Ψ =

s∑

i=1

EiG
†
iGiE

T
i =

s∑

i=1

EiH
†
iHiE

T
i = Φ.

If {Si, i = 1, . . . , s} is full spanning collection, we have null(Ψ) = span
(
[e, T T ]

)
.

Copyright c© Weifeng Zhi, 2012.
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Chapter 6 Conclusions and Future Work

In this thesis, we have shown in Chapter 2 that the alignment algorithm can recover

global parametrization properly even when local neighborhoods/sections have differ-

ent intrinsic dimensions. This is a property not known for other manifold learning

algorithms and would be an advantage of the alignment algorithm. Our examples con-

firm our theoretical finding. We have also proposed an application of the alignment

algorithm to a semi-supervised learning problem. Our examples have demonstrated

that this approach compares very favorably with several other methods that have

been proposed.

In Chapter 3, we have presented some characterizations of eigenvalues of the

alignment matrix defined on local coordinates, from which we have derived the null

space and a lower bound of the smallest positive eigenvalue. The bound suggests a

quadratic dependence of the smallest positive eigenvalue on the amount of overlap,

which is confirmed in our numerical tests. Our results demonstrate the robustness of

using the alignment matrix for reconstructing global coordinates, in the sense that

most spectral properties of the alignment matrix are preserved even when the local

coordinates are computed with large errors in certain components. This together

with earlier analysis on the null space provides a solid theoretical basis for the LTSA

method.

In Chapter 4, we have also analyzed the discrete process of Hessian Eigenmaps

method by investigating the null space of Hessian operator and Hessian alignment

matrix coming from the local coordinates and isometric coordinates. We prove that

discrete Hessian Eigenmaps can recover the isometric coordinates of the manifold up

to a rigid motion under certain condition. Matrix analysis techniques such as spectral
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analysis will play an important role in the understanding of the performance of the

algorithms of manifold learning and dimensionality reduction.

We finally mention a few possible future works. Firstly, we may apply our the-

oretical analysis for the current methods such as LTSA and Hessian Eigenmaps to

the investigation of other nonlinear dimensionality reduction methods. Secondly, we

notice that one of the critical steps in the computation of both LTSA and Hessian

Eigenmaps is finding the null space of large sparse matrices. How to improve the

speed and accuracy of the null space computation for those large sparse matrices

is an important and interesting problem. We hope our understanding in the eigen-

structure of the alignment matrix could help build more efficient algorithms for this

computational problem.

Copyright c© Weifeng Zhi, 2012.
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