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ABSTRACT OF DISSERTATION

SUBSPACE PROJECTION METHODS FOR THE

QUADRATIC EIGENVALUE PROBLEM

Model reduction of the quadratic eigenvalue problem is an area of considerable recent

interest. Such eigenvalue problems arise in control theory applications, acoustics, and

structural analysis, where the dominant behavior of the system is determined by a

relatively small number of eigenvalues. As such models can be very large, directly

computing all eigenpairs is impractical. Instead, the system is reduced to a matrix

equation of much smaller degree which is computationally amenable. Customarily,

this is done through a linearization procedure.

In this thesis, we present model reduction techniques that construct a reduced-

order model which is also given by a quadratic eigenvalue problem. In chapter 2, we

describe a Krylov-type projection method that reduces a symmetric monic quadratic

eigenvalue problem to another symmetric QEP of banded structure. We also describe

a Rayleigh-Ritz procedure for subspace enlargement which accelerates convergence

of the projected problem to a desired eigenpair. In chapter 3, we examine several

linearization techniques and their expected rates of convergence using a moment-

matching result of Grimme. In addition, we develop a variant of nonsymmetric Lanc-



zos that reduces a monic QEP to one of triangular-Hessenberg form, with optimal

orders of moment-matching.

Keywords: quadratic eigenvalue problem, structure-preserving model reduction,

linearization, moment matching, Krylov methods.
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Chapter 1

Preliminaries

1.1 Introduction

Quadratic eigenvalue problems arise in many engineering fields, such as acoustics,

structural analysis, and control theory. In many applications, the behavior of the

physical phenomenon in question can be described by a second-order differential

equation. By using a discretization technique, the continuous form of this differ-

ential equation can be approximated by a second-order discrete (matrix) formulation.

The numerical solution is then a vector-valued function of time y(t), satisfying

Ay′′ + By′ + C = f(t)

y(0) = g

y′(0) = h

where f(t) is a time-dependent input and g, h are the initial conditions at time t = 0.

Here, A, B, and C are matrices obtained from the discretization process. Separating

y(t) = eλtx gives the customary formulation of the quadratic eigenvalue problem: find

a constant vector x 6= 0 and a scalar λ so that

(λ2A + λB + C)x = 0. (1.1)

Here, λ is called an eigenvalue, and x is its corresponding eigenvector.
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The behavior of the solution over time is apparent from its eigenvalue; oscillatory

behavior is determined by the imaginary part, and exponential growth/decay of the

solution is determined by the real part. Exponential growth is undesirable; in a

structure such as a bridge, this indicates a dangerous resonant frequency that could

even result in the structure’s total collapse under the right conditions. In a model

of an aircraft, the pilot could lose control altogether during turbulence. Therefore,

the eigenvalues with largest real part are of primary importance; by computing such

eigenvalues, dangerous flaws in an engineering project can be found and corrected

during the design stage.

The challenge is to solve a given quadratic eigenvalue problem as accurately and

efficiently as possible. Problems of interest in industry tend to be quite large, currently

of order ten million or more. The QR method for the linear eigenvalue problem Ax =

λx and the related QZ method for the generalized eigenvalue problem Ax = λBx

use matrix operations to transform the eigenvalue problem to a simple form, from

which the eigenvalues are easily found. These methods, called direct methods because

they almost always converge within a given number of iterations (determined by

the desired tolerance and matrix size), are reasonably robust, well understood, and

reliable. Unfortunately, direct methods are too expensive to be practical for problems

of this scale. Instead, we construct another eigenvalue problem which approximates

the original, but has much smaller order; this idea is called model reduction. This

reduced-order problem then can be solved with direct methods at a modest cost.

Traditionally, a quadratic eigenvalue problem is handled by constructing an equiv-

alent linear eigenvalue problem of twice the dimension, a process called linearization.
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There are a number of ways to do this, for example

(
0 I
−C −B

)(
x
y

)
= λ

(
x
y

)
. (1.2)

If λ, x, y satisfy Equation (1.2), then λ, x also satisfy Equation (1.1). Thus, a lin-

earization of a quadratic eigenvalue problem has the same spectrum as the original.

Once a linearization has been constructed, we may construct a reduced-order

model of the linearization which is solved by a direct method. There are some dis-

advantages to introducing the additional linearization step, however. Doubling the

dimension means that the corresponding storage requirement for every vector is also

doubled. The quadratic eigenvalue problem often has special structure arising from

its application, e.g. in structural mechanics, A could be symmetric positive definite

while B and C and symmetric positive semi-definite; the linearized problem may fail

to preserve the special structure. This raises the following question: can we find

efficient model reduction techniques which operate directly on a quadratic eigenvalue

problem to yield another, smaller rank quadratic problem? In this work, we present

several approaches for model reduction which attempt to answer this question.

One model reduction technique discussed in this thesis is the idea of subspace

projection. In a projection method, an orthonormal basis Qm is constructed by a

suitable means, and Equation (1.1) is approximated by the quadratic eigenvalue prob-

lem QT
m(µ2A + µB + C)Qmu = 0. This reduced-order problem has Ritz values µ and

Ritz vectors Qmu which approximate the eigenvalues and eigenvectors, respectively,

of Equation (1.1). An appealing feature of projection methods is that the symmetry

or skew-symmetry of A,B,C is preserved in the model reduction, as are the spec-
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tral characteristics possessed by quadratic eigenvalue problems with such structure

(for example, the eigenvalues of symmetric quadratic eigenvalue problems occur in

conjugate pairs). Projection techniques are discussed in Chapters 2-3.

The organization of the thesis is as follows. Chapter 1 is dedicated to background

material. Section 1.2 covers necessary reference material from numerical linear alge-

bra, including symmetric matrix factorizations and a review of Krylov methods for

linear problems. Section 1.3 gives an overview of Raviart-Thomas basis elements and

the finite element method, a discretization technique commonly used for construct-

ing a discrete model of a physical problem domain (and used to generate the test

problems from our numerical examples).

Chapter 2 begins by describing current research into the quadratic eigenvalue

problem, in particular the linearization-based algorithms by Tisseur and Mehrmann

et al. The remainder of the chapter describes new projection methods for model

reduction of the quadratic eigenvalue problem. In Section 2.2, we present our recent

work on a Krylov-type subspace projection method operating directly on a monic

quadratic eigenvalue problem (with A = I) rather than a linearization. As in the

case of the Lanczos or Arnoldi methods applied to a linear eigenvalue problem, the

resulting reduced-order eigenvalue problem has a special structure. For the symmetric

quadratic eigenvalue problem, a Lanczos-type method is presented which produces a

reduced-order symmetric eigenvalue problem where each matrix has a banded struc-

ture. In the nonsymmetric case, analogous Arnoldi-type and nonsymmetric Lanczos-

type algorithms are constructed which produce reduced-order eigenvalue problems

with a Hessenberg-like or banded structure, respectively.
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The Krylov-type methods in Section 2.2 determine each vector of Qm by the type of

recurrence and the desired structure of the reduced-order problem. In Section 2.3, we

present three projection methods that use different applications of the Arnoldi method

to enlarge the basis Qm. These methods offer greater flexibility in the construction of

the projected subspace, although some of the structure in the reduced-order problem

is lost. A discussion of spectral transformation for the quadratic eigenvalue problem

appears in Section 2.4.

Section 2.5 generalizes the methods from Sections 2.2, 2.3 and presents a unified

projection algorithm. In each iteration, the subspace spanned by Qm is enlarged using

the following selection criterion: choose qm+1 so that the “best” solution to the order

m reduced eigenvalue problem has as large a residual as possible when substituted

into the subsequent reduced-order eigenvalue problem. Here, “best” can be defined in

various ways; the natural choice of a Ritz pair is demonstrated to give good results.

Chapter 3 gives a moment-matching result of Villemagne and Skelton for the gen-

eralized eigenvalue problem, and applies it to a linearization of the QEP. The methods

in this chapter are model reductions that attempt to match as many as possible of the

moments of the original eigenvalue problem. Bai’s SOAR algorithm (Section 3.2.1)

and the Q-Arnoldi algorithm of Meerbergen and Robbé (Section 3.2.2) are projection

methods which use the Arnoldi method to obtain m matching moments. Section 3.2.3

gives a modification of SOAR for the symmetric quadratic eigenvalue problem that

offers comparable moment-matching and reduced storage costs. Section 3.3 presents

a model reduction method based on nonsymmetric Lanczos; while not a projection

method, the resulting reduced-order problem preserves a triangular-Hessenberg struc-

5



ture, and matches the optimal number of 4m moments. Lastly, Chapter 4 contains

numerical examples comparing and contrasting the behavior of the algorithms on

a sample problem in dissipative acoustics. The best results are obtained with the

method suggested in Section 2.5. Among moment-matching techniques, the fastest

eigenvalue convergence is obtained with the triangular-Hessenberg model reduction

from Section 3.3.

1.2 Review of numerical linear algebra

The background material in this section can be found in any standard numerical

linear algebra text [22, 16, 24]; see also Parlett [41], Cullum and Willoughby [11].

1.2.1 Cholesky factorization

A symmetric matrix A has a Cholesky factorization if it can be written as the product

A = LLT , where L is a nonsingular lower triangular matrix (called the Cholesky

factor of A). It is easy to see that if A has a Cholesky factorization, then A must

be symmetric positive definite; in fact, the converse is also true. This provides a

convenient and numerically reliable characterization of symmetric positive definite

matrices.

Theorem 1.2.1. If A is a symmetric positive definite matrix, then there exists a

unique lower triangular L with positive diagonal elements so that A = LLT .

Proof. The proof is by induction. Clearly the result holds for n = 1. Suppose the

result holds for k. Write the symmetric positive definite matrix Ak+1 as

Ak+1 =

(
Ak b
bT c

)
.
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By induction, Ak = LkL
T
k has a unique Cholesky factorization. Let d = L−1

k b and

v =

(
L−T

k d
−1

)
. Since v is nonzero, the quantity s = vT Ak+1v = c − dT d must be

positive. Then it is easy to check that
(

Lk

dT
√

s

) (
LT

k d√
s

)
=

(
Ak b
bT s + dT d

)

= Ak+1.

Note that with the requirement that the Cholesky factor has only positive elements

on the diagonal, the factorization is uniquely determined.

Furthermore, we have a constructive technique for computing the Cholesky fac-

torization. After step k, we have computed the first k rows of L. Then, we compute

the (k + 1)-st row of L by setting j = 1, 2, . . . , k + 1, and solving the identity

ak+1,j =

j∑
m=1

lk+1,mljm (1.3)

for the element lk+1,j.

Additionally, this provides a simple test for positive definiteness: if we attempt to

solve Equation (1.3) for the diagonal element lk+1,k+1, only to find that

l2k+1,k+1 = ak+1,k+1 −
k∑

m=1

l2k+1,m

is negative, then the matrix A is not positive definite. This test is not too expensive,

and is numerically reliable [24, Section 10.1].

Fill-in of the Cholesky factor

In practice, we would want a computed Cholesky factor of a sparse matrix to remain

sparse, if at all possible. For banded matrices of low bandwidth, the Cholesky factor

does remain small: if A = LLT has bandwidth 2d + 1 (i.e. aij = 0 for all |i− j| > d),

7
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Figure 1.1: Sparse matrix B (sparsity approx. 1.5%)

then L must have bandwidth at most d + 1. Note, however, that if the bandwidth of

A is large then the Cholesky factor may be dense, even if A is very sparse. Consider

the following example. Let A be the five-point finite difference discretization of the

Laplacian on an 18 × 18 square mesh (an order 324 sparse matrix). Construct a

symmetric positive definite B by tiling A in a 5× 5 array, and adding an identity:

B =




A A A A A
A A A A A
A A A A A
A A A A A
A A A A A




+ I.

This matrix is depicted in Figure 1.1.

Although B is sparse (containing less than 1.5% nonzeros), computing its fac-

torization directly produces a very dense Cholesky factor consisting of 82% nonzero

elements (Figure 1.2(a)). Such a matrix would be costly to compute and store in a

large-scale computation.

This difficulty can often be remedied by choosing a suitable permutation P so that

the nonzero elements of P T AP are closer to the diagonal, and utilizing the Cholesky

8



(a) Factor of unpermuted B
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(b) Factor of permuted B

Figure 1.2: Cholesky factors, with and without permutation

decomposition of the permuted matrix P T AP instead. Such Cholesky factors are

generally no denser than AT A. Efficient algorithms for choosing such a permutation

have been devised by Tim Davis [1] and others.

The difference in sparsity can be dramatic; constructing a permutation of B us-

ing the symmmd function from Matlab and factoring P T BP = LLT produces the

Cholesky factor containing 5% nonzeros shown in Figure 1.2(b).

1.2.2 LDLT factorization of indefinite matrices

A natural idea would be to try to find an extension of the Cholesky factorization to

symmetric but indefinite matrices. One might look for a factorization of the form

A = LDLT , where D is a diagonal matrix and L is lower triangular. Unfortunately,

such a factorization need not exist, or might be highly unstable. As an example,

consider the matrix

(
ε 1
1 ε

)
; for small ε > 0, we get ill-behaved factors

D =

(
ε 0
0 ε− 1/ε

)
, L =

(
1 1/ε
0 1

)
,

9



while the factorization does not exist at all for ε = 0. Observe also that applying a

symmetric permutation to this matrix leaves it unchanged; therefore, pivoting alone

is not sufficient to fix the situation. However, if we allow D to be block diagonal with

1 × 1 or 2 × 2 blocks, then a permutation P can be found so that the factorization

P T AP = LDLT exists. Without loss of generality, we can scale D, L so that L is unit

triangular (for convenience).

Proof. The following argument is called the diagonal pivoting method in the book by

Higham [24, Section 10.4]. Choose a permutation P so that P T AP =

(
D CT

C B

)
,

where D is a 1× 1 or 2× 2 nonsingular block. Such a permutation must exist unless

A is identically zero (a trivial case). Then we can factor

P T AP =

(
I 0

CD−1 I

)(
D 0
0 B − CD−1CT

)(
I D−1CT

0 I

)
.

The submatrix B − CD−1CT can be permuted and factored similarly. This process

is repeated until A is factored completely.

For numerical stability, however, the precise choice of P is important. Higham [24]

discusses a complete pivoting strategy by Bunch and Parlett, and an O(n2) partial

pivoting strategy by Bunch and Kaufman. It turns out that while complete pivoting

guarantees stability, the cheaper partial pivoting strategy also works well in practice.

1.2.3 Krylov methods

Krylov methods are a class of algorithms which apply the Rayleigh-Ritz procedure

to a particular natural choice of subspace (the Krylov subspace). Recall that the

Rayleigh-Ritz procedure approximates a large real matrix A by projecting it onto a

10



given subspace S of relatively small dimension m. Letting Qm be an orthonormal

basis of S, we can construct the m × m matrix Am = QT
mAQm. The eigenvalues

θ1, . . . , θm of Am, also called Ritz values, approximate some of the eigenvalues of A.

In the case of Krylov methods, the subspace used for the projection is the Krylov

subspace of dimension m

Km(A, q) = span{q, Aq, . . . , Am−1q}

where q 6= 0 is an initial vector, often randomly chosen. Note that the above basis

is never used numerically since it is poorly conditioned; Amq approaches a dominant

eigenvector as m increases, so successive vectors Amq and Am+1q will be nearly par-

allel. Instead, practical Krylov-based algorithms produce bases which are equivalent

in exact arithmetic and better conditioned.

The Arnoldi method

The simplest Krylov method for a nonsymmetric matrix A is the Arnoldi method.

For i = 1, 2, . . . , m − 1, we inductively produce an orthonormal basis {q1, . . . , qi}

of Ki+1(A, q) from the previous basis of Ki(A, q). Clearly q1 = q/‖q‖ is a basis of

K1(A, q). For each i, we have Ki+1 = span{Ki, Aqi}; to extend {q1, . . . , qi} to a basis

of Ki+1, we need to compute the product r = Aqi, project off its components in Ki

using the Gram-Schmidt process, and set qi+1 equal to the resulting unit vector. In

matrix form, after m steps we have

AQm = QmHm + hm+1,memqT
m+1 (1.4)

where Hm is an upper Hessenberg matrix whose entries were determined from the

Gram-Schmidt reorthogonalization at each step i. Hm is clearly the desired projection

11



of A onto the Krylov subspace of dimension m; computing the eigenvalues of Hm by

a direct method (i.e. QR iteration) is not too expensive as long as m is small.

There are several disadvantages to the Arnoldi method when m is of even mod-

erate size. All of the previous basis vectors q1, q2, . . . , qm must be kept available at

each step of the algorithm, driving up storage costs. The O(m3) cost of comput-

ing the Ritz values can become large. Nonetheless, the Arnoldi method is useful in

many applications, especially with restarting. One widely used and publicly-available

implementation appears in ARPACK [32].

The Lanczos method

In the special case when A is symmetric, the Arnoldi method reduces to a simplified

algorithm known as the Lanczos method. Instead of a Hessenberg matrix Hm, a

symmetric tridiagonal matrix Tm is obtained. This is clear intuitively; using the

corresponding Arnoldi relation

AQm = QmTm + tm+1,memqT
m+1 (1.5)

it follows that Tm = QT
mAQm is both symmetric and Hessenberg, and therefore tridi-

agonal. Then the construction in Equation (1.5) can be written as the following

three-term recurrence. Letting q1 = q/‖q‖ be an initial unit vector with α1 = qT
1 Aq1

and β1 = 0, we have for j = 1, . . . ,m− 1,

βj+1qj+1 = Aqj − αjqj − βjqj−1

αj+1 = qT
j+1Aqj+1

(1.6)

12



where {α1, . . .} and {β2, . . .} are the diagonal and off-diagonal entries of Tm

Tm =




α1 β2

β2 α2
. . .

. . . . . . βm

βm αm


 . (1.7)

More formally, it is not difficult to use the defining recurrence in (1.6) to prove that

the generated basis Qm is orthonormal and Equation (1.5) holds.

The Lanczos method offers significant improvements in speed and efficiency over

the Arnoldi method, and is well suited to large, sparse problems. Memory usage

is minimal; at step m we require storage for the 2m + 1 distinct nonzero elements

of Tm+1 and the three Lanczos vectors qm−1, qm, qm+1. Furthermore, the eigenvalues

and eigenvectors of the tridiagonal Tm can be computed cheaply by means of Sturm

sequencing and inverse iteration [12], respectively.

Eigenpairs of a symmetric tridiagonal matrix matrix

In this section, we consider the problem of computing the eigenpairs of the sym-

metric tridiagonal matrix Tm. First, we will show how to find the eigenvalues using

bisection. Suppose that Tk+1 has the matrix Tk as its principal minor, and neither

matrix is singular. Recall that determinants are invariant under similarity trans-

formations; in particular, the determinant of a symmetric matrix T = QT ΛQ is

simply the product of its eigenvalues. Therefore, if Tk has j negative eigenvalues then

sign(det(Tk)) = (−1)j. By the interlacing property, Tk+1 must have either j or j + 1

negative eigenvalues. Thus, either the signs of det(Tk), det(Tk+1) match and Tk, Tk+1

have the same number of negative eigenvalues, or the signs differ and Tk+1 has one

additional negative eigenvalue.
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If the determinants of a nested series T1, . . . , Tm of principal minors are available,

then counting the number of times consecutive determinants change sign gives the

number of negative eigenvalues of Tm. Replacing Tm with the shifted matrix (Tm −

σIm) gives the following statement:

Definition 1.2.2 (Sturm Sequencing). Let T1, T2, . . . , Tm be the principal mi-

nors of a symmetric matrix Tm. For a fixed σ, construct the sequence {ai(σ)},

i = 0, 1, . . . , m so that a0 = 1 by definition and ai(σ) = det(Ti − σ) for i > 0.

The number of times consecutive terms in this sequence differ in sign equals the

quantity of eigenvalues of Tm which are less than σ.

In general, determinants can be expensive to compute and numerically unstable,

which would appear to be a problem. For our purpose, however, it is sufficient to

compute the ratios of consecutive determinants, which are less prone to over- or

underflow. For tridiagonal Tm labelled as in Equation (1.7), the determinants satisfy

det(Tk+1) = αk+1 det(Tk)− β2
k+1 det(Tk−1).

Dividing by det(Tk) gives an identity in terms of ratios:

[
det(Tk+1)

det(Tk)

]
= αk+1 − β2

k+1

[
det(Tk−1)

det(Tk)

]
.

Replacing Tk by the shifted matrix Tk − σIk gives a stable recurrence for the ratios

of consecutive determinants ri(σ) = ai(σ)/ai−1(σ):

ri(σ) =

{
(α1 − σ), i = 1,

(αi − σ)− β2
i /ri−1(σ), i = 2, . . . , m.

(1.8)

Thus, the number of eigenvalues of Tm which are smaller than σ can be determined

in O(m) time using (1.8) by counting how many negative values appear in the set
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{r1(σ), r2(σ), . . . , rm(σ)}. A bisection procedure (used, for example, in EISPACK

[50]) can then be used to isolate each eigenvalue within a desired tolerance. Note

that this parallelizes well, since after an initial rough subdivision of the spectrum

into intervals, each processor can find all of the eigenvalues in its interval without

additional communication (see also [15]).

Once an approximate eigenvalue µk ≈ λk of T has been computed, inverse iteration

is an effective method for finding the corresponding eigenvector xk (provided that λk

is sufficiently well separated from other eigenvalues). The idea is that if the vector

vi is not orthogonal to xk, then solving (T − µk)vi+1 = vi produces a vector vi+1 in

which the xk component is magnified. More precisely, if v0 =
∑m

i=1 αixi, then

v1 = (T − µk)
−1v0

=
n∑

i=1

(
αi

λi − µk

)
xi

(1.9)

and after j iterations we obtain

vj =
n∑

i=1

(
αi

(λi − µk)j

)
xi. (1.10)

The angle between vj and the desired eigenvector is bounded by

cos2〈xk, vj〉 =

(
αk

(λk − µk)j

)2 / n∑
i=1

α2
i

(λi − µk)2j

≥ α2
k∑

i6=k α2
i δ

2j + α2
k

=
1

1 + δ2j tan2〈v0, xk〉

(1.11)

where δ =
|λk − µk|

mini6=k |λi − µk| is the relative gap between µk and the second-closest

eigenvalue of T . Thus, convergence is guaranteed (in exact arithmetic) if δ < 1 and

v0 is not orthogonal to xk. In practice, we often have δ ¿ 1 when λk is distinct, and
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almost any randomly-chosen initial vector v0 will be adequate. Therefore, convergence

generally occurs after only a few iterations.

The last technical question is how to perform the linear solves economically. Cul-

lum [11, 12] uses the QR factorization of (T − µkI). For our special case with T

tridiagonal, the triangular matrix R has bandwidth three and the factorization can

be computed in O(m) time (e.g. by zeroing the subdiagonal entries with Givens ro-

tations). Once the factorization is computed, each solve is performed in O(m) time

by solving Rvj+1 = QT vj by back substitution. Thus, this method is economical even

for large tridiagonal matrices.

Note that inverse iteration still converges even though T − µk is near singular.

Indeed, the error in computing vj tends to be quite large, but most of this error is in

the direction of the eigenvector xk and therefore doesn’t affect convergence adversely

[41]. In the case of clustered eigenvalues, inverse iteration may not distinguish the

eigenvectors sufficiently accurately. Work by Dhillon [43, 17] uses careful shifting

and twisted factorization to compute eigenvalues and eigenvectors to high relative

accuracy.

Theorem 1.2.3. Suppose a real symmetric n × n matrix A has eigenvalues λ1 ≥

λ2 ≥ . . . ≥ λn with corresponding orthonormal eigenvectors x1, x2, . . . , xn. Let Tk be

obtained from k steps of Lanczos method with the initial unit vector q1 (assuming no

breakdown occurs). Then the gap between the largest Ritz value θ1 of Tk and λ1 is

bounded by

0 ≤ λ1 − θ1 ≤ (λ1 − λn) tan2〈q1, x1〉 min
p∈Pk

p(λ1)=1

max
i=2,3,...,n

|p(λi)|2.
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Proof. We know that λ1 − θ1 ≥ 0 using the Cauchy criterion. Then

λ1 − θ1 = λ1 −max
x∈Kk
x6=0

xT Ax

xT x

= λ1 − max
p∈Pk

p(A)q1 6=0

qT
1 p(A)2Aq1

qT
1 p(A)2q1

,

writing x ∈ Kk(A, q1) as p(A)q1 for some polynomial p of degree k. Now expressing

q1 =
∑n

k=1 αixi as a linear combination of the eigenvectors of A, we have

λ1 − θ1 = λ1 − max
p∈Pk

p(A)q1 6=0

∑n
i=1 α2

i p(λi)
2λi∑n

i=1 α2
i p(λi)2

= min
p∈Pk

p(A)q1 6=0

∑n
i=1 α2

i p(λi)
2(λi − λ1)∑n

i=1 α2
i p(λi)2

≤ (λ1 − λn) min
p∈Pk

p(A)q1 6=0

∑n
i=2 α2

i p(λi)
2

∑n
i=1 α2

i p(λi)2

≤ (λ1 − λn) min
p∈Pk

p(A)q1 6=0

(1− α2
1) maxi=2,...,n p(λi)

2

∑n
i=1 α2

i p(λi)2

Lastly, with the assumptions that p(λi) 6= 0 for an optimal choice of polynomial p,

and the initial vector q1 is not orthogonal to x1, we can bound the denominator below

by α2
1p(λ1)

2 to get

λ1 − θ1 ≤ (λ1 − λn)
1− α2

1

α2
1

min
p∈Pk

p(A)q1 6=0

(
maxi=2,...,n p(λi)

2

p(λ1)2

)

= (λ1 − λn) tan2〈q1, x1〉 min
p∈Pk

p(λ1)=1

max
i=2,3,...,n

|p(λi)|2.

Thus, the largest Ritz value approximates the largest eigenvalue well if there exists

a degree k polynomial p which equals 1 at λ1 and is small at all the other eigenvalues

of A. This is the case when λ1 is well-separated from the other eigenvalues. However,

if λ1 is tightly clustered, then convergence can be very slow. This is in fact the
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case in practice: well-separated extreme eigenvalues tend to converge very quickly,

while clustered and/or interior eigenvalues converge more slowly (if at all). If a small

number of tightly-clustered extreme eigenvalues are at the same time well-separated

from the rest of the spectrum, block Lanczos methods remedy this problem somewhat

at the expense of higher memory usage; these methods will be discussed later.

To obtain a more explicit bound, the inequality in Theorem 1.2.3 can be relaxed

further by replacing the minimax expression with a Chebyshev polynomial. A similar

argument can be used to bound the gaps between the smallest eigenvalue and Ritz

value; a more complicated expression determining the convergence of interior Ritz

values appears in Saad [49].

Other characteristic properties of the Lanczos method include:

• Shifting and scaling the original matrix does not affect the convergence of the

Ritz values (this is easy to check). Accelerating the convergence of interior,

clustered Ritz values is done by a spectral transformation (as in shift-and-invert

Lanczos).

• Convergence to the desired eigenpair λ1, x1 may not occur if the initial vector q1

is orthogonal or nearly orthogonal to x1. Similarly, multiplicity of eigenvalues

cannot be determined reliably with single-vector Lanczos.

• While breakdown can occur (the succeeding off-diagonal element βm+1 may be

zero), this is beneficial; such a breakdown indicates that an invariant subspace

has been found and all Ritz pairs have converged.
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Variations on Lanczos method

Several variations on the original symmetric Lanczos method are worth mentioning

at this point. These include nonsymmetric Lanczos methods, generalized symmetric

Lanczos, and block Lanczos.

The nonsymmetric Lanczos method is an iterative method that produces a tridi-

agonal projection of a nonsymmetric matrix A using the Krylov spaces of both A and

its transpose. Start with vectors u1, v1 satisfying uT
1 v1 = 1. It is generally possible

to extend u1, v1 to biorthogonal Um, Vm (meaning that UT
mVm = I) and the following

recurrences are satisfied:

AVm = VmTm + βm+1vm+1e
T
m (1.12)

AT Um = UmT T
m + γm+1um+1e

T
m. (1.13)

The columns of Um, Vm thus generated form bases of the left and right Krylov spaces

Km(AT , u1), Km(A, v1) respectively. This fact will be used later in section 3.3.

There are a number of differences in behavior between the symmetric and nonsym-

metric Lanczos behavior. One can observe that the biorthogonality constraint and

Equations (1.12)–(1.13) determine Um, Vm only up to scale; in most implementations,

this ambiguity is resolved by scaling the Lanczos vectors so that 0 ≤ βi = ±γi for each

i. Also, there are now several ways in which the recurrence can fail. If one or both of

the vectors um+1, vm+1 are very small, then the near-zero vector(s) can be replaced

by a new randomly-chosen vector (suitably orthogonalized). If um+1, vm+1 are nearly

orthogonal, then the algorithm as described must terminate. Lookahead [45] and

new-start [57] are approaches to correct for this breakdown. Lookahead temporarily

19



enlarges the block size so that the pivot element is replaced by a nonsingular block.

New-start corrects the breakdown by adding a new Lanczos vector and increasing the

length of the recurrences (1.12), (1.13). In both cases, the projection Tm is no longer

strictly tridiagonal; instead, it acquires a bulge or increases bandwidth.

Another modification of the Lanczos algorithm, the symmetric indefinite Lanczos

method [42, 31], approximates a symmetric indefinite matrix pencil Ax = λBx by a

symmetric tridiagonal equation Tmu = µDmu. Note that this algorithm isn’t used

for pencils where A and/or B are definite; in that case, the implicit application of

a Cholesky factorization to the definite matrix reduces the problem to the usual

symmetric eigenvalue problem. This process generates a basis Wm of the Krylov

space Km(B−1A,w1) so that W T
mAWm = Tm and W T

mBWm = Dm is diagonal (but

not necessarily the identity). The appropriate recurrence is

B−1AWm = WmD−1
m Tm + (βm+1/dm+1)wm+1e

T
m. (1.14)

This method can be viewed as a special case of nonsymmetric Lanczos; observe that

Um = BWmD−1
m , Vm = Wm form a biorthogonal basis which tridiagonalizes B−1A.

Therefore, symmetric indefinite Lanczos inherits the features of the nonsymmetric

Lanczos algorithm, such as breakdown (when some di = 0). See section 3.2.3 for an

application of nonsymmetric Lanczos to a linearized quadratic eigenvalue problem.

Lastly, the block Lanczos method replaces each Lanczos vector qi in the symmetric

Lanczos method with a block Qi of orthonormal vectors. Starting with an initial

orthonormal block Q1, the block equivalent of Equations (1.5), (1.7) is

A[Q1, . . . , Qm] = [Q1, . . . , Qm]Tm + Qm+1C
T
m+1[0, . . . , 0, I] (1.15)
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where Tm is a symmetric block tridiagonal matrix:

Tm =




B1 C2

CT
2 B2

. . .
. . . . . . Cm

CT
m Bm


 . (1.16)

The block structure introduces a few technical questions. Equation (1.15) directly

constructs the product Rm+1 = Qm+1C
T
m+1, from which the orthonormal block Qm+1

is recovered; the choice of Qm+1 is not unique, however. If Rm+1 is full rank, then

any orthonormal basis can be chosen for Qm+1; often a QR factorization is applied to

Rm+1. If Rm+1 is not full rank, then the block size may be reduced, or kept constant

by padding Qm+1 with additional basis vectors. The block sizes may also be increased

when necessary to resolve clustered eigenvalues.

Baglama et al. [3, 4] present a block Lanczos method with constant block sizes

and implicit shifting at Leja points. Cullum [11] uses a hybrid procedure where the

first block Q1 has degree k, and all succeeding blocks Qi are single vectors; in this

variation, explicit orthogonalization against certain vectors in Q1 is necessary. The

ABLE method by Bai, Day, and Ye [5] combines a block nonsymmetric Lanczos

method with a criterion for block enlargement and biorthonormality correction.

1.3 The finite element method

1.3.1 Overview

The finite element method is a discretization approach used in the numerical solution

of differential equations. The general idea is to restrict the search space to one spanned

by an easily-constructed set of basis functions. By using a variational principle, the

solution to the differential equation is a linear combination of basis functions (or
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elements) that must satisfy a certain constraint when integrated against any single

basis function. Taken together, this system of constraints form a matrix equation

whose solutions approximate those of the original differential equation.

To describe this more concretely, suppose that for a given linear differential op-

erator L, we are solving the nonhomogeneous equation L(u) = f . Suppose also that

the desired solution u is contained within a known space V . Then, we construct a

finite-dimensional subspace Vh approximating V ; a space of continuous real-valued

functions might be approximated by a space of piecewise-linear functions, for exam-

ple. Generally, this finite-dimensional discretization is achieved by partitioning the

domain Ω into an ordered mesh. Any function in Vh is then determined by its value

on the edges and/or vertices of this mesh. Then, we can express an approximate

solution uh =
∑N

i=1 xiφi as a linear combination of basis functions {φ1, φ2, . . . , φN},

which are chosen so that each basis function has support limited to a small number

of mesh elements.

Since L(u) = f everywhere inside the domain Ω, it follows that

∫

Ω

L(u)φ dx =

∫

Ω

fφ dx (1.17)

for any test function φ ∈ V . If uh ≈ u is a good approximation, then we also have

∫

Ω

L(uh)φi dx ≈
∫

Ω

fφi dx (1.18)

or equivalently
N∑

j=1

(∫

Ω

L(φj)φi dx

)
xj ≈

∫

Ω

fφi dx (1.19)

for all i = 1, 2, . . . , N . Each choice of i in Equation (1.19) gives rise to a linear
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equation in the coefficients x1, x2, . . . , xN . Therefore, this system is simply a matrix

equation of order N of the form Ax = b, where aij =
∫

Ω
L(φj)φi dx and bi =

∫
Ω

fφi dx.

A key practical feature of this approach is that A is generally a sparse matrix.

With a natural choice of basis, the support of a basis element φi is restricted to a

small number of adjacent mesh cells; therefore, aij is zero for all except a small set

of elements {φj} whose support overlaps the support of φi. Additionally, for regular

meshes and suitably symmetric bases, the nonzero elements of A are determined from

a single stencil of overlapping elements. In this case, the stencil can be computed once

and the entire matrix A completed inexpensively.

The chief difficulty is that the order N can be very large if a fine mesh is used,

driving up the cost of solving the resulting system; several approaches are taken to

reduce this cost. In most applications, the solution has more complicated behavior

restricted to a relatively small portion of the domain. The order N is reduced by

using an adaptively-sized mesh which is coarser in the areas of simpler behavior; of

course, the classical stencil cannot be used with an adaptive mesh.

Further enhancements, domain decomposition and multigrid, are active areas of

research. Domain decomposition partitions the domain in a number of pieces, each

of which is modeled separately. The problem reduces to a series of subproblems that

connect to the others through the subdomain boundaries; each subproblem is solved

simultaneously on a parallel computer. Multigrid methods [39] approach the problem

of determining mesh resolution by utilizing a series of coarse and fine meshes. After

solving the problem to low accuracy with a coarse mesh, the mesh is refined where

necessary and solved again in a “W”-shaped series of coarsenings and refinings. When
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the mesh refinement is determined based only on the discretized problem (rather than

the underlying physical characteristics), then the method is called algebraic multigrid.

1.3.2 A finite element example

To illustrate the idea, consider solving the two-dimensional Poisson’s equation

{ −∆u = f in Ω
u = 0 on ∂Ω

(1.20)

where Ω is the square domain (0, 1)× (0, 1) ∈ R2 with boundary ∂Ω, and f ∈ C2(Ω)

is a given real-valued function. Let V be the space of C2 functions on Ω which also

attain zero on ∂Ω; it is well known [18] that there exists a unique u ∈ V satisfying

Equation (1.20).

For this problem, a natural choice would be to partition Ω into a uniform n × n

mesh, with a node located at (i/n, j/n) for each i, j = 0, . . . , n. Each of the (n− 1)2

interior nodes are labeled p1, p2, . . . , pN . Additional edges are added to triangulate

the mesh, as in Figure 1.3.

Next, we define a suitable finite-dimensional subspace Vh approximating the sub-

space V . For the mesh chosen above, we choose Vh to be the space of continuous

functions which attain zero on ∂Ω and are piecewise linear on each triangle. Such

a function can be determined uniquely from its values on each of the interior nodes

{p1, . . . , pN}. Construct a set of piecewise linear functions {φ1, . . . , φN} satisfying

φi(pj) =

{
1, i = j

0, i 6= j.
(1.21)

It is easy to see that this set {φ1, . . . , φN} forms a natural basis of Vh.

Lastly, we use the basis functions {φi} to convert the model equation (1.20) into
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(0, 0)

(1, 1)(0, 1)

(1, 0)

Figure 1.3: A triangulated square mesh, n = 10.

a matrix formulation. Since f + ∆u ≡ 0 inside Ω, integrating this quantity against

any test function will yield zero. In particular,

0 =

∫

Ω

(f + ∆u)φi dx (1.22)

for any i = 1, . . . , N .

Integrating by parts and using the boundary condition from (1.20) gives

0 =

∫

Ω

(f + ∆u)φi dx

=

∫

Ω

fφi dx−
∫

Ω

∇u · ∇φi dx +

∫

∂Ω

φi
∂u

∂ν
dS

=

∫

Ω

fφi dx−
∫

Ω

∇u · ∇φi dx.

(1.23)

At this point, we make the assumption that u is contained in the approximate sub-

space Vh, and write u ≈ uh =
∑N

j=1 xjφj. Equation (1.23) thus gives the system of

equations
N∑

j=1

xj

(∫

Ω

∇φj · ∇φi dx

)
=

∫

Ω

fφi dx, i = 1, . . . , N. (1.24)
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(b) A lowest-order Raviart-
Thomas finite element

Figure 1.4: Two choices of finite element

This is the linear matrix equation Ax = b, where aij =
∫

Ω
∇φj · ∇φi dx and bi =

∫
Ω

fφi dx.

1.3.3 Basis elements for the finite element method

The simplest type of space V〈 to construct using finite elements would be the space

of continuous functions which are piecewise-linear on each triangle of the mesh (as

used in the previous example). The natural basis is then the set of piecewise-linear

functions {φi} satisfying Equation (1.21). Each basis element φj corresponds to a

node pj of the given mesh, with support restricted to the adjacent triangles of the

mesh. An illustration of this “tent”-shaped basis element appears in Figure 1.4(a).

An alternative type of finite element was introduced by Raviart and Thomas [46].

These elements are used to approximate the space of vector-valued functions

H(div, Ω) = {u ∈ [H(Ω)]n : div u ∈ H(Ω)} . (1.25)

Let Th be the collection of triangles forming the mesh partition of Ω. The Raviart-

Thomas space of order k is a function φ ∈ H(div, Ω) satisfying two properties: on

any triangle T ∈ Th, div φ is a polynomial of degree less than or equal to k, and the

restriction of φ · νT to any side of T is a polynomial of degree less than or equal to k.
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Therefore, the lowest-order Raviart-Thomas space is

Vh =
{
φh(x) ∈ H(div, Ω) : φh

∣∣
T
∈ Pn

0 + Pox, ∀T ∈ Th

}
(1.26)

i.e. the space of piecewise-constant functions and scalar multiples of x. With this

definition, it is possible to construct a basis of finite elements which correspond not

to the nodes of the mesh, but rather to the edges; each finite element has nonzero

flux across exactly one edge. The support of the finite element is restricted to the

two triangles adjacent to its corresponding edge; the element has constant positive

divergence on one triangle and constant negative divergence on the other. See Fig-

ure 1.4(b) for an illustration in the two-dimensional case.

In second-order elliptic applications, Raviart-Thomas finite elements are less likely

than conventional piecewise-linear finite elements to produce spurious near-zero eigen-

modes. A mixed method combining piecewise-linear and Raviart-Thomas elements

in vibration analysis is discussed in Bermúdez [8]. Analysis indicating O(h2) con-

vergence (for meshes with maximum edge length h) appears in Rodŕıguez [47] and

Bermúdez and Durán [9]. Similar convergence results appear in Arbogast, Wheeler,

and Yotov [2], where Raviart-Thomas elements are applied in a cell-centered finite

difference model.
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Chapter 2

Techniques for quadratic
eigenproblems

2.1 Linearization

One approach to solving a matrix polynomial eigenvalue problem would be to convert

it to an equivalent generalized or linear eigenvalue problem. Indeed, an arbitrary

matrix polynomial λkI + λk−1Ak−1 + · · · + λA1 + A0 has an eigenpair (λ̂, x̂) if and

only if its companion matrix has a corresponding eigenpair:




I
. . .

I
−A0 −A1 · · · −Ak−1







x̂

λ̂x̂
...

λ̂k−1x̂


 = λ̂ ·




x̂

λ̂x̂
...

λ̂k−1x̂


 . (2.1)

This new eigenvalue problem could then be solved using an iterative method or direct

solver.

Linearizations other than (2.1) are used in various applications. Equation (2.3)

in the following section describes a linearization of a Hermitian quadratic eigenvalue

problem as a Hermitian generalized eigenvalue problem. Mehrmann and Watkins [36]

linearize a quadratic eigenvalue problem of the form (λ2M + λG + K)x = 0, where

M is symmetric positive definite, K is symmetric, and G is skew-symmetric, as the
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following skew-Hamiltonian/Hamiltonian matrix pencil:

λ

(
M G
0 M

)(
λx
x

)
=

(
0 −K
M 0

)(
λx
x

)
.

Recall that a matrix A is Hamiltonian if (AJ)T = AJ , where J =

(
0 I
−I 0

)
; sim-

ilarly, A is skew-Hamiltonian if (AJ)T = −AJ . An Arnoldi method called SHIRA

is then applied to the skew-Hamiltonian/Hamiltonian pencil. Hwang et al. [29] ap-

ply the same linearization to (λ2M + λ(G + εD) + K)x = 0 where D is symmetric,

by treating its linearized form as a perturbed skew-Hamiltonian/Hamiltonian sys-

tem, applying SHIRA, and using the Jacobi-Davidson algorithm to correct for the

perturbation. In another paper by Mehrmann and Watkins [37], an explicit lineariza-

tion technique is given to linearize a matrix polynomial of arbitrary degree k. They

show that if the coefficients of the original polynomial are alternately symmetric and

skew-symmetric, then the system can be linearized into an order nk symmetric/skew-

symmetric matrix pencil.

2.1.1 Tridiagonal-diagonal reduction

Recent work by Tisseur and others [54, 10] tackles the symmetric quadratic eigenvalue

problem by reducing a linearization to a tridiagonal-diagonal form, then solving the

reduced generalized eigenvalue problem. Suppose the quadratic problem is written as

(λ2M + λC + K)x = 0. (2.2)

Tisseur [10] suggests a linearization of Equation (2.2) which preserves symmetry, such

as

A =

(
0 K
K C

)
, B =

(
K 0
0 −M

)
. (2.3)
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Eigenvalues of Equation (2.2) are also eigenvalues of the generalized problem Ax =

λBx. Note that A,B are symmetric but need not be definite. Indeed, if either A

or B were definite, then it would follow that all eigenvalues were real (by taking a

Cholesky factorization of the definite matrix), which we know not to be the case in

general.

Therefore, we use an LDLT factorization to write P T BP = LDLT , with D a

diagonal matrix of 1 × 1 and 2 × 2 blocks. The eigendecomposition of D can be

written as D = XΛXT = X|Λ|1/2J |Λ|1/2XT , where J is a diagonal matrix with

entries ±1 and X is block diagonal; the 1×1 blocks of X are equal to 1, and the 2×2

blocks are in the form of Jacobi rotations,

(
c s
−s c

)
with c2 + s2 = 1. Thus, with

the choice M = PL−tX|Λ|−1/2, the symmetric-diagonal generalized pair (MT AM, J)

is congruent to (A,B) (assuming that B is nonsingular).

It remains to reduce Â = MT AM to a tridiagonal form, while keeping J diagonal.

This problem can be viewed as tridiagonalizing the matrix Â with respect to the J

inner product, and the usual techniques (Givens rotations, Householder reflectors,

and Lanczos method) generalize. A Givens-type approach (zeroing one entry of Â at

a time) would use Givens rotations whenever the corresponding entries of J have the

same sign, and hyperbolic transformations of the form

(
c −s
−s c

)
, s2 +c2 = 0 when

the signs of J differ. Analogously, hyperbolic Householder reflectors can be defined

by

H = P

(
J − 2vvT

vT Jv

)
,

where P is a permutation and vT Jv 6= 0. Also, a variation of Lanczos method can be
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used, where all inner products are computed with respect to J .

When the original problem has been reduced to the tridiagonal-diagonal eigenvalue

problem (S − λD)x = 0, the eigenvalues of T := D−1S are computed by finding the

roots of the characteristic polynomial p(λ) = det(T −λI) = 0. Starting with a vector

z(0) of initial approximations to the roots of p, the Ehrlich-Aberth iteration

z
(k+1)
j = z

(k)
j −

p(z
(k)
j )

p′(z(k)
j )

1− p(z
(k)
j )

p′(z(k)
j )

∑
k 6=j

1

z
(k)
j −z

(k)
k

converges at least linearly. In order to use this iteration effectively, one needs a reliable

way to compute the Newton correction

p(λ)

p′(λ)
=

−1

trace(T − λI)−1
.

Interestingly, this quantity can be computed stably and economically from the QR

factorization of T − λI – see [10] for details.

2.2 Krylov subspace projections

The linearization approach has certain drawbacks, especially for large problems. The

matrices involved have order kn, rather than n. Their eigenvectors are of the form

[x, λx, · · · , λk−1x]T , and therefore are poorly scaled when λ is very large or small;

this may be undesirable numerically. Furthermore, a projection of a linearized prob-

lem need not preserve the properties of the original problem, such as symmetry, or

possessing a field of values entirely in the left half-plane.

In this section, we focus on projection techniques that approximate a quadratic

eigenvalue problem with another quadratic eigenvalue problem of lower dimension.
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2.2.1 A Krylov subspace method for the monic QEP

In this section, we present a recent projection method [26, 34] to approximate a monic

quadratic eigenvalue problem (λ2I + λB + C)x = 0 with a lower-order quadratic

eigenproblem

(λ2Ik + λHB + HC)u = 0

where the k×k matrices HB, HC have a special form. An iterative method is described

for constructing an orthonormal basis Qk of a Krylov-type subspace so that QT
k BQk =

HB, QT
k CQk = HC . Arnoldi-like and Lanczos-like versions of this method can be

applied to nonsymmetric and symmetric quadratic matrix problems, respectively.

The Arnoldi-type process

Recall that applying k − 1 steps of the Arnoldi method to a single matrix A and a

starting vector q1 produces an orthonormal basis Qk = {q1, q2, . . . , qk} of the Krylov

space Kk = span{q1, Aq1, . . . , A
k−1qk} so that Hk = QT

k AQk is an upper Hessenberg

matrix (whose spectrum approximates that of A). In the quadratic case, we seek

a similar orthonormal matrix Qk that will reduce the matrices B,C to something

Hessenberg-like. Actually reducing B and C to Hessenberg matrices HB, HC will be

impossible in general; if Hessenberg HB is desired, then the choice of initial vector

q1 determines Qk up to sign, with no way to assure that HC = QT
k CQk has any

particular structure.

However, it is possible to construct HB, HC with the following Hessenberg-like

structure: the first columns of HB, HC contain two and three nonzeros respectively,

and each successive column contains two fewer nonzeros than the previous column
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Figure 2.1: Partial structure of HB, HC from Arnoldi process

(Figure 2.1). Denoting the (i, j) entries of HB and HC by hB;ij and hC;ij respectively,

we have the following:

Lemma 2.2.1. There exists an orthogonal n × n matrix Q such that Qe1 = e1,

hB;ij = 0 for all i ≥ 2j + 1, and hC;ij = 0 for all i ≥ 2j + 2.

Proof. The proof is constructive. In each of the following matrix decompositions, let

∗ denote an unknown element or submatrix. Write

B =

(
b11 ∗
b1 ∗

)
.

Choose an orthogonal (n− 1)× (n− 1) matrix Q̂1b such that Q̂T
1bb1 = β1e1 (a House-

holder reflector is one such matrix). Writing Q1b =

(
1 0

0 Q̂1b

)
, we have

QT
1bBQ1b =




b11 ∗
β1 ∗
0 ∗


 , QT

1bCQ1b =




c11 ∗
c21 ∗
c1 ∗


 .

Similarly, choose an orthogonal (n − 2) × (n − 2) matrix Q̂1c so that Q̂T
1cc1 = γ1e1.
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Writing Q1c =

(
I2 0

0 Q̂1c

)
and letting Q1 = Q1bQ1c gives

QT
1 BQ1 =




b11 ∗
β1 ∗
0 ∗
0 ∗


 , QT

1 CQ1 =




c11 ∗
c21 ∗
γ1 ∗
0 ∗


 .

This completes the reduction of the first columns of B and C. Continuing, partition

QT
1 BQ1 as

QT
1 BQ1 =




∗ ∗ ∗
∗ ∗ ∗
0 b32 ∗
0 b2 ∗




and find an orthogonal (n − 3) × (n − 3) matrix Q̂2b so that Q̂T
2bb2 = β2e1. Writing

Q2b =

(
I3 0

0 Q̂2b

)
gives

QT
2bQ

T
1 BQ1Q2b =




∗ ∗ ∗
∗ ∗ ∗
0 b32 ∗
0 β2 ∗
0 0 ∗




, Q2bQ
T
1 CQ1Q2b =




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 c42 ∗
0 c2 ∗




.

Choose an orthogonal (n − 4) × (n − 4) matrix Q̂2c so that Q̂T
2cc2 = γ2e1. Letting

Q2c =

(
I4 0

0 Q̂2c

)
and Q2 = Q2bQ2c as before, we have

QT
2 QT

1 BQ1Q2 =




∗ ∗ ∗
∗ ∗ ∗
0 b32 ∗
0 β2 ∗
0 0 ∗
0 0 ∗




, Q2Q
T
1 CQ1Q2 =




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 c42 ∗
0 γ2 ∗
0 0 ∗




.

This completes the reduction of the first two columns. By continuing similarly for

k steps, we can find an orthogonal matrix Q = QkQk−1 · · ·Q2Q1 so that the claim

holds for the first k columns of HB = QT BQT and HC = QT CQT . It is easy to see

that Qe1 = e1. Repeat for k = bn−1
2
c iterations to complete the decomposition.
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As a corollary, given any unit-length vector q1 we can extend it to an orthogonal

matrix Q = [q1, q2, . . . , qn] so that HB = QT BQ and HC = QT CQ have the desired

form. Let V be an orthogonal matrix with q1 as its first column. By Lemma 2.2.1,

there exists an orthogonal Q̃ so that HB = Q̃T (V T BV )Q̃ and HC = Q̃T (V T CV )Q̃;

then Q = V Q̃ satisfies Qe1 = q1.

Therefore, since an appropriate Q does exist, we can use the identities

BQ = QHB, CQ = QHC (2.4)

to construct a recurrence generating Q,HB, HC from a given starting vector q1. Ex-

amining the j-th column of Equations (2.4) gives the recurrences

Bqj =

2j−1∑
i=1

qihB;ij + q2jhB;2j,j, (2.5)

Cqj =

2j∑
i=1

qihC;ij + q2j+1hC;2j+1,j. (2.6)

Thus, starting with Q2j−1 = [q1, q2, . . . , q2j−1], we can compute q2j, q2j+1, and the

corresponding columns of HB, HC by applying a Gram-Schmidt process successively

to Equation (2.5) and then to Equation (2.6). The complete algorithm appears in

Figure 2.2, with a modification as discussed in the next section.

The low-rank case

Observe that according to the construction in Lemma 2.2.1, the lower bandwidth

of HB, HC increases rapidly. However, the construction neglects the possibility of

a “nice” breakdown, which can be used to keep the bandwidth from growing too

quickly. Suppose by way of example that c1 turns out to be zero after applying the
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Input: ‖q1‖2 = 1, k > 0
1: N = 1
2: for j = 1, 2, . . . , k do
3: if j > N then
4: exit
5: end if

{Compute column j of HB}
6: q̂ = Bqj

7: for i = 1, 2, . . . , N do
8: hB;ij = qT

i q̂
9: q̂ = q̂ − qihB;ij

10: end for
11: hB;N+1,j = ‖q̂‖2
12: if hB;N+1,j > 0 then
13: N = N + 1
14: qN = q̂/hB;Nj

15: end if
{Compute column j of HC}

16: q̂ = Cqj

17: for i = 1, 2, . . . , N do
18: hC;ij = qT

i q̂
19: q̂ = q̂ − qihC;ij

20: end for
21: hC;N+1,j = ‖q̂‖2
22: if hC;N+1,j > 0 then
23: N = N + 1
24: qN = q̂/hC;Nj

25: end if
26: end for

Figure 2.2: Arnoldi-type algorithm
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first orthogonal transformation Q1b. That is, we have

QT
1bBQ1b =




b11 ∗
β1 ∗
0 ∗


 , QT

1bCQ1b =




c11 ∗
c21 ∗
0 ∗


 .

This is actually a good situation, since we may now reduce the bandwidth. Instead

of applying a suitable reflection Q1c to zero out as much of the first column of C as

possible, we can proceed directly to the second columns. The reflection Q2b we choose

to act on the second column of B need only fix the first two entries in each column

instead of the first three:

QT
2bQ

T
1bBQ1bQ2b =




∗ ∗ ∗
∗ ∗ ∗
0 β2 ∗
0 0 ∗


 , Q2bQ

T
1bCQ1bQ2b =




∗ ∗ ∗
∗ ∗ ∗
0 c32 ∗
0 c2 ∗


 .

Similarly, the reflection Q2c which reduces the second column of C need only fix the

first three entries in each column. Writing Q2 = Q2bQ2c we have

QT
2 QT

1bBQ1bQ2 =




∗ ∗ ∗
∗ ∗ ∗
0 β2 ∗
0 0 ∗
0 0 ∗




, Q2Q
T
1bCQ1bQ2 =




∗ ∗ ∗
∗ ∗ ∗
0 c32 ∗
0 γ2 ∗
0 0 ∗




.

Thus, the reduction continues to termination as before, with each subsequent column

of HB, HC containing one fewer nonzero element after the breakdown.

The corresponding modification to the iterative algorithm is as follows. At any

point in the algorithm, let N be the number of q-vectors that have been computed so

far; N = 1 initially. If no breakdown occurs in the application of Gram-Schmidt to

the product Bqj, then the following variation of Equation (2.5) determines the next

basis vector qN+1:

Bqj −
N∑

i=1

qihB;ij = qN+1hB;N+1,j.
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Therefore, the basis Q = {q1, . . . , qN+1} is enlarged, and its current size N incre-

mented. If a breakdown occurs, then no new q-vector needs to be computed, and

N is left alone. Likewise, after computing r̂ = Cqj, we orthogonalize r̂ against the

current basis with

Cqj −
N∑

i=1

qihC;ij = qN+1hC;N+1,j

and compute the next q-vector unless breakdown occurs. The complete algorithm

with this modification appears in Figure 2.2.

Reduction in the lower bandwidth of HB, HC is significant, since the eigenvalues

of the projected QEP (µ2Ik + µHB + HC)u = 0 converge slowly when the bandwidth

is large. As the following theorem shows, the lower bandwidth does stay small if a

low-rank linear combination of B and C exists.

Theorem 2.2.2. If a nonzero linear combination E = xB + yC has rank d, then the

lower bandwidth of each projected matrix HB, HC is not more than d + 1.

Proof. Consider the case when y 6= 0; the case when B has rank d is handled similarly.

Intuitively, at step j the lower bandwidth can increase by at most 1, and only if there

is no breakdown in the orthogonalization of Bqj and Cqj. After orthogonalizing Bqj,

we have span{q1, . . . , qN} = span{q1, . . . , qN−1, Bqj}. Now Cqj /∈ span{q1, . . . , qN} if

and only if Eqj /∈ span{q1, . . . , qN}; it follows that breakdown can fail to occur at

most d times.

To show this more formally, for each j = 1, 2, . . . let αj, βj be the number of

nonzeros in column j of HB, HC respectively. We have α1 ≤ β1 ≤ α2 ≤ . . ., with suc-

cessive terms differing by at most 1. At step k we have BQ(:,1:k) = Q(:,1:αk)HB(1:αk,1:k)
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and CQ(:,1:k) = Q(:,1:βk)HC(1:βk,1:k), so we can write

EQ(:,1:k) = Q(:,1:βk)(xHB(1:βk,1:k) + yHC(1:βk,1:k)).

Therefore, the rank of W = xHB(1:βk,1:k) + yHC(1:βk,1:k) is at most d. Next, we bound

the rank below by the number of times the reduction of C does not break down. Let

i1 < i2 < · · · < il be the set of indices where breakdown does not occur: αij < βij

for all j = 1, 2, . . . , l. It follows that hB;βij
,ij = 0, and so the (βij , ij) entries of W

are nonzero for j = 1, 2, . . . , l. Also, the sequence {βij} is strictly increasing. So, the

i1, i2, . . . , il-th columns of W are linearly independent; the rank of W must be at least

l.

Thus, we have l ≤ d. We know that αj+1 ≤ αj + 2, and equality implies j ∈

{i1, i2, . . . , il}. So

αj = α1 +

j−1∑
i=1

(αi+1 − αi)

≤ α1 + (j − 1) + l

≤ j + l + 1 ≤ j + d + 1.

Similarly, βj ≤ j + d + 1.

A Lanczos-type process

Observe that if the Arnoldi-type recurrence is applied to a symmetric QEP, then the

projections TB = QT
k BQk, TC = QT

k CQk of B, C onto the subspace Qk are also sym-

metric. Therefore, the zero subdiagonal elements are accompanied by corresponding

zero superdiagonals, as in Figure 2.3. This is described as a Lanczos-type process,

and the projections labeled TB, TC by way of analogy.

The corresponding modifications to the algorithm in Figure 2.2 are minimal, al-
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Figure 2.3: Structure of TB, TC from Lanczos process

though some additional housekeeping is necessary to count the extra zero entries.

The basic recurrence is now given by

Bqj =

2j−1∑

i=lb

qitB;ij + q2jtB;2j,j, (2.7)

Cqj =

2j∑

i=lc

qitC;ij + q2j+1tC;2j+1,j, (2.8)

where lb, lc are the smallest indices such that αlb , βlc ≥ j. Therefore, in each iteration

of the algorithm we save αj, βj, and increment lb, lc when necessary. The complete

Lanczos-type algorithm appears in Figure 2.4.

When the matrices B,C are not symmetric, the Lanczos-type process can be

extended to an analogue of the nonsymmetric Lanczos method [26, pp. 10–11]. As

in nonsymmetric Lanczos, this is achieved by sacrificing the orthogonality of the

basis upon which each matrix is projected. Instead, we may construct biorthogonal

bases V,W so that TB = V T BW and TC = V T CW are nonsymmetric matrices

with the nonzero structure appearing in Figure 2.3. To show this, observe that the
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Input: ‖q1‖2 = 1, k > 0
1: N = 1; α1 = 1; β1 = 1
2: lb = 1; lc = 1
3: for j = 1, 2, . . . , k do
4: if j > N then
5: exit
6: end if

{Compute column j of TB}
7: q̂ = Bqj

8: if j > αlb then
9: lb = lb + 1

10: end if
11: for i = lb, . . . , N do
12: tB;ij = qT

i q̂
13: q̂ = q̂ − qitB;ij

14: end for
15: tB;N+1,j = ‖q̂‖2
16: if tB;N+1,j > 0 then
17: N = N + 1; αj = N
18: qN = q̂/tB;Nj

19: end if
{Compute column j of TC}

20: q̂ = Cqj

21: if j > βlc then
22: lc = lc + 1
23: end if
24: for i = lc, . . . , N do
25: tC;ij = qT

i q̂
26: q̂ = q̂ − qitC;ij

27: end for
28: tC;N+1,j = ‖q̂‖2
29: if tC;N+1,j > 0 then
30: N = N + 1; βj = N
31: qN = q̂/tC;Nj

32: end if
33: end for

Figure 2.4: Symmetric Lanczos-type algorithm
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constructive proof in Lemma 2.2.1 hinges on the fact that for any vector x, there

exists an orthogonal matrix Q (i.e. a Householder reflector) so that Qx is a multiple

of e1. By applying a similarity transformation containing Q to B, C, the undesired

entries of each column in turn are zeroed out (the Arnoldi-type process). When

B, C are symmetric, the same similarity transformation also zeros out part of the

corresponding row, resulting in the Lanczos-type reduction in Figure 2.3.

For a nonsymmetric method, we need to find a similarity transformation (not

necessarily orthogonal) which will zero out the undesired entries of a column and its

corresponding row simultaneously. This is possible because of the following lemma

(also stated explicitly in [27]):

Lemma 2.2.3. Let x, y be real n-vectors with xT y 6= 0. There exists a nonsingular

matrix W so that W−1x is a multiple of e1 and yT W is a multiple of eT
1 .

Proof. First, construct an orthogonal Q so that Qx = αe1 and Qy = βe1 + γe2,

for appropriate constants α, β, γ. Such a Q is easy to construct with a product of

Householder reflectors

Q =

(
I − (x− e1)(x− e1)

T

‖x− e1‖2
)(

I − (z − e2)(z − e2)
T

‖z − e2‖2
)

(2.9)

for z = y − xT y
xT x

x (assuming z 6= e2 and x 6= e1; otherwise, simplify appropriately). It

follows that for the desired choice of W , (W−1QT )e1 is a multiple of e1 and (Qy)T is

a multiple of eT
1 (W−1QT ). This is satisfied for the choice of W such that

W−1QT =




1 γ/β
1

I


 . (2.10)

The condition xT y 6= 0 is sufficient (though not strictly necessary) to ensure that

β 6= 0.
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Using Lemma 2.2.3, it is possible to reproduce the construction in Lemma 2.2.1,

substituting appropriate nonorthogonal similarity transformations instead of orthog-

onal. Suppose we have performed k steps of the nonsymmetric reduction, yielding W

so that

W−1BW =


 (TB)k

0
yT

1

0 x1 ∗


 , W−1CW =


 (TC)k

0
∗

0 ∗ ∗


 .

Assuming xT
1 y1 6= 0, find Ŵ1 according to Lemma 2.2.3 so that Ŵ T

1 y1 and Ŵ−1
1 x1 are

multiples of e1. Writing W1 = W

(
I

Ŵ1

)
,

W−1
1 BW1 =




(TB)k
0 0
b1 0

0 b2 ∗ ∗
0 0 ∗ ∗


 , W−1

1 CW1 =




(TC)k
0 0
c1 yT

2

0 c2 ∗ ∗
0 x2 ∗ ∗


 .

Similarly, construct Ŵ2 so that Ŵ T
2 y2 and Ŵ−1

2 x2 are multiples of e1; setting W2 =

W1

(
I

Ŵ2

)
gives

W−1
2 BW2 =




(TB)k
0 0 0
b1 0 0

0 b2 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗




, W−1
2 CW2 =




(TC)k
0 0 0
c1 c3 0

0 c2 ∗ ∗ ∗
0 c4 ∗ ∗ ∗
0 0 ∗ ∗ ∗




.

Thus, as long as the pairs {xi, yi} are not orthogonal (corresponding to a “bad”

breakdown in nonsymmetric Lanczos), biorthogonal bases V, W can be constructed.

The defining recurrences are then

Bwj =

2j−1∑

i=lb

witB;ij + w2jtB;2j,j, BT vj =

2j−1∑

i=lb

vitB;ji + v2jtB;j,2j, (2.11)

Cwj =

2j∑

i=lc

witC;ij + w2j+1tC;2j+1,j, CT vj =

2j∑

i=lc

vitC;ji + v2j+1tC;j,2j+1. (2.12)

43



2.2.2 Extension to nonmonic polynomials

The next question is how to generalize these Krylov-type methods to quadratic eigen-

value problems of the form (λ2A + λB + C)x = 0, where A is not necessarily I. We

assume that A is nonsingular, however. The original QEP can then be replaced by

the equivalent problem

(λ2I + λA−1B + A−1C)x = 0 (2.13)

which clearly has the same eigenpairs as the original. This is the straightforward

transformation used in 2.5. Of course, the matrices A−1B,A−1C need not be com-

puted explicitly (and should not for numerical stability). Instead, any matrix-vector

product y = (A−1B)x is replaced by a two-step process: compute z = Bx, then solve

Ay = z for y. This introduces a one-time cost of factoring A into a suitable form for

use in the linear solves.

If the original QEP is symmetric and A is positive definite, then it is similarly

possible to construct a monic symmetric QEP with the same spectrum. Take the

Cholesky factorization of A = LLT , and solve the equivalent QEP

(λ2I + λB̃ + C̃)x̃ = 0, (2.14)

where B̃ = L−1BL−T and C̃ = L−1CL−T . Once the initial Cholesky factorization

is computed, a matrix-vector product B̃v, C̃v can be computed (relatively) inexpen-

sively by performing two triangular solves and one ordinary matrix-vector product.

In the case when A is large and sparse, the appropriate choice of permutation to

maintain sparsity of the Cholesky factorization was discussed in Section 1.2.1.

We apply the Lanczos-type process from Figure 2.4 to a symmetric QEP; the
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argument works identically for the Arnoldi-type process. Applying Algorithm 2.4 to

Equation 2.14 and running to termination produces an orthogonal n × n matrix Qn

so that

QT
n (λ2I + λB̃ + C̃)Qn = (λ2I + λT̃B + T̃C) (2.15)

or equivalently

(QT
nL−1)(λ2A + λB + C)(L−T Qn) = (λ2I + λT̃B + T̃C). (2.16)

Thus Wn = L−T Qn is an A-symmetric basis such that W T
n (λ2A + λB + C)Wn

is reduced to the desired banded form. We restrict our attention to the monic case,

applying the above transformations to the applications in Chapter 4 when necessary.

2.3 Subspace projection for the monic QEP

Consider the monic quadratic eigenvalue problem

(λ2I + λB + C)x = 0. (2.17)

For any subspace S ⊆ Cn, a Ritz pair consists of a scalar Ritz value µ and a nonzero

Ritz vector u ∈ S, such that the residual of (2.17) satisfies the following Petrov-

Galerkin condition

(µ2I + µB + C)u ⊥ S. (2.18)

If the columns of Qk form an orthonormal basis of S, then we have an equivalent

formulation of the problem; µ is a Ritz value with corresponding Ritz vector Qku if

and only if

(µ2Ik + µBk + Ck)u = 0 (2.19)
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where Bk, Ck are the projections of B, C onto S given by Bk = Q∗
kBQk and Ck =

Q∗
kCQk. Note that if an exact eigenvector x of the full-dimensional problem (2.17)

is contained in S, then the corresponding Ritz pair is exact; this is readily seen since

x = QkQ
T
k x and

(λ2Ik + λBk + Ck)Q
T
k x = QT

k (λ2I + λB + C)QkQ
T
k x

= QT
k (λ2I + λB + C)x

= 0.

Therefore, we expect that when the angle between x and S is small, the Ritz pairs

will provide good approximations to the exact eigenpairs. To show this, we use the

following result from Saad [49, pp. 130–131]:

Theorem 2.3.1. Let M be an n×n (possibly nonsymmetric) matrix with the eigenpair

(λ, u). Also let Vk be an n× k orthonormal matrix. Then

‖(V T
k MVk − λI)V T

k u‖2 ≤ γ‖(I − VkV
T
k )u‖2 (2.20)

where γ = ‖V T
k M(I − VkV

T
k )‖2. Equivalently, one can write the conclusion as

‖(V T
k MVk − λI)V T

k u‖2
‖V T

k u‖ ≤ γ tan θ(u, S) (2.21)

where S is the subspace spanned by the columns of Vk.

Apply Theorem 2.3.1 to a linearization of the desired quadratic eigenvalue prob-

lem. Suppose (λ, x) is an eigenpair of interest of the QEP (λ2I + λB + C)x = 0,

and let Qk be an appropriate orthonormal basis of the subspace S. Then construct

suitable M, Vk, u:

M =

(
0 I
−C −B

)
, Vk =

(
Qk

Qk

)
, u =

(
x
λx

)
. (2.22)
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Write SV to denote the subspace spanned by the columns of Vk. It follows that

‖Vku‖ =
√

1 + |λ|2 ‖QT
k x‖,

tan θ(u, SV ) =
(I − VkV

T
k )u

‖V T
k u‖

=

√
1 + |λ|2 ‖(I −QkQ

T
k )x‖√

1 + |λ|2 ‖QT
k x‖

= tan θ(x, S),

∥∥(V T
k MVk − λI)V T

k u
∥∥ =

∥∥∥∥
((

0 Ik

−Ck −Bk

)
− λI

)(
QT

k x
λQT

k x

)∥∥∥∥

=
∥∥(λ2Ik + λBk + Ck)Q

T
k x

∥∥ ,

and

γ = ‖QT
k C(I −QkQ

T
k ), QT

k B(I −QkQ
T
k )‖. (2.23)

Therefore,

‖(λ2Ik + λBk + Ck)Q
T
k x‖

‖QT
k x‖ ≤

√
1 + ‖λ‖2 γ tan θ(x, S). (2.24)

Thus, the residual of the normalized eigenpair (λ,Qkx/‖Qkx‖), interpreted as an

approximate solution to the projected QEP, is small when x is close to S.

Unfortunately, if the problem is ill-conditioned, a small residual is not sufficient to

conclude that the Ritz value is accurate. Roughly speaking, for a simple eigenvalue,

the residual error is magnified by the condition number of the eigenvalue [49, p. 93].

Again, we utilize the linearization M of the QEP, as in (2.22). For a given eigenvalue

λ(M), the condition number of λ is defined as

Cond(λ) =
1

cos〈xM , yM〉 (2.25)

where xM , yM are the left and right eigenvectors corresponding to λ. These eigenvec-

tors relate to those of the QEP as follows. As observed before, the right eigenvector of
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M is given by xM =

(
x
λx

)
, where x is a corresponding right eigenvector of the QEP.

It is easy to check that a left eigenvector of M corresponding to λ is yM =

( −C∗y
λ̄y

)
.

The condition number of λ(M) is therefore

Cond(λ) =
‖xM‖‖yM‖
|y∗MxM | (2.26)

=
(
√

1 + |λ|2‖x‖)(
√
‖C∗y‖2 + |λ|2‖y‖2)

|λ2y∗x− y∗Cx| (2.27)

=

√
1 + |λ|2

√
(‖C∗y‖/‖y‖)2 + |λ|2

|λ2 − (y∗Cx/y∗x)| · ‖x‖‖y‖|y∗x| . (2.28)

Equation (2.28) gives a relationship between the condition number of λ and the angle

between the corresponding left and right eigenvectors x, y of the QEP. This angle

may not be available in general; in the special case when the QEP is symmetric, the

eigenvectors satisfy y = x̄ and

‖x‖‖y‖
|xT y| =

‖x‖2
|xT x| . (2.29)

Thus, in the symmetric case, an eigenvalue λ of the QEP will be ill-conditioned if its

corresponding eigenvector x is close to quasi-null (i.e. x 6= 0 but xT x = 0).

2.3.1 Arnoldi variant I

One approach is to project the quadratic problem onto a subspace generated by

the Arnoldi method. If we are interested in estimating a large eigenvalue λ, then we

can write the eigenproblem as

(
λI + B +

1

λ
C

)
x = 0 (2.30)

where the lowest-order term 1
λ
C is expected to be small. Therefore, a subspace Qk

containing a good approximate eigenvector x of the linear problem (λI + B)x = 0
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Input: ‖q0‖2 = 1, k > 0
1: for j = 1, . . . , k do
2: r = Bqj−1

{Compute qj by Gram-Schmidt}
3: for m = 1, . . . , j − 1 do
4: r = r − (q∗mr)qm

5: end for
6: qj = r/‖r‖
7: end for
{Find large Ritz values µ}

8: Bk = Q∗
kBQk {Hessenberg}

9: Ck = Q∗
kCQk

10: Solve (µ2Ik + µBk + Ck)uk = 0.

Figure 2.5: Arnoldi variant I

is a likely place to look for an eigenvector of the quadratic problem. Applying k

steps of the Arnoldi method to the matrix B produces such a subspace Qk. After Qk

has been constructed, the projected problem in Equation (2.19) is solved to get Ritz

values approximating the large eigenvalues of Equation (2.17).

A restarted formulation of this method incorporating a shift and invert can pro-

duce fast convergence. One way to reduce the cost of inverting the quadratic eigen-

value problem is to perform the necessary solves inexactly. Good results have been

obtained in [58] by using a preconditioned GMRES method to perform the solves

inexactly, even if the selected tolerance is large.

2.3.2 Arnoldi variant II

Similarly, an Arnoldi method can be used to generate a subspace containing an ap-

proximate eigenvector corresponding to a small eigenvalue λ. Looking again at the

original eigenvalue problem as stated in Equation (2.17), the middle term λB is ex-

pected to be small when λ is small. By neglecting this middle term, the eigenvalue
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Input: ‖q0‖2 = 1, k > 0
1: for j = 1, . . . , k do
2: r = Cqj−1

{Compute qj by Gram-Schmidt}
3: for m = 1, . . . , j − 1 do
4: r = r − (q∗mr)qm

5: end for
6: qj = r/‖r‖
7: end for
{Find small Ritz values µ}

8: Bk = Q∗
kBQk

9: Ck = Q∗
kCQk {Hessenberg}

10: Solve (µ2Ik + µBk + Ck)uk = 0.

Figure 2.6: Arnoldi variant II

problem is approximated by the linear problem (λ2I + C)x = 0; applying k steps of

the Arnoldi method to C produces a subspace Qk, as in the Arnoldi variant described

in the previous section.

A detailed description of Arnoldi variants I and II appear in Figure 2.5 and Fig-

ure 2.6.

2.3.3 Arnoldi variant III

In Arnoldi variants I and II, we produced a linear eigenvalue problem approximating

the quadratic eigenvalue problem (λ2I + λB + C)x = 0 by neglecting either the λB

term or the constant term C from the matrix polynomial. If λ is expected to be large,

then C is negligible (Arnoldi variant I); if λ is small, then λB is negligible relative

to C (Arnoldi variant II). However, when λ is small, then λ2I is in fact the least

significant term by analogy with Arnoldi variant I. Therefore, neglecting the leading

term gives a generalized eigenvalue problem

(λB + C)x = 0,
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Input: ‖q0‖2 = 1, k > 0
1: for j = 1, . . . , k do
2: r = B−1Cqj−1

{Compute qj by Gram-Schmidt}
3: for m = 1, . . . , j − 1 do
4: r = r − (q∗mr)qm

5: end for
6: qj = r/‖r‖
7: end for
{Find small Ritz values µ}

8: Bk = Q∗
kBQk

9: Ck = Q∗
kCQk = BkHk

10: Solve (µ2Ik + µBk + Ck)uk = 0.

Figure 2.7: Arnoldi variant III

from which a subspace Qk is generated as before by applying k steps of the Arnoldi

method to the matrix B−1C. Note that neither of the projected matrices Bk, Ck has

Hessenberg structure; however, it is readily seen that Ck = BkHk, where Hk is the

Hessenberg matrix generated by Arnoldi. See Figure 2.7.

2.4 Structure-preserving shift and invert

Next, we consider accelerating the Lanczos-type algorithm from Figure 2.4 by incor-

porating a complex shift-and-invert transformation. Given a real symmetric QEP

(λ2A+λB +C)x = 0 and an approximate complex eigenvalue σ, we seek another real

symmetric QEP (µ2Â+µB̂+Ĉ)u = 0 whose eigenvalues correspond to the eigenvalues

of the original problem through a spectral transformation mapping λ1 ≈ σ to a large

eigenvalue µ1. For a reasonable choice of σ, the transformed problem will then have

a dominant and well-separated eigenvalue µ1, which is expected to converge quickly

under our Krylov-type method. Thus, there are two questions: how to construct a

suitable shifted problem economically, and how to adapt the algorithm in Figure 2.4
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for a general quadratic matrix equation.

2.4.1 A simple shift approach

A natural choice would be the simple shift µ = 1
λ−σ

. Shifting the QEP (λ2A + λB +

C)x = 0 by σ directly and inverting gives the equivalent QEP

(µ2(σ2A + σB + C) + µ(2σA + B) + A)x = 0.

Unfortunately, this QEP is complex symmetric for a complex shift σ, and therefore

the transfomation is not structure preserving in general. Instead, we will perform the

shift in two steps; first shift by the real part of σ as above, then separate the real

and imaginary parts of the matrix equation in order to perform the imaginary shift.

Letting σ = a + bi, shifting by a gives

(s2A1 + sB1 + C1)x = 0

where A1 = A, B1 = 2aA + B, C1 = a2A + aB + C, and s = λ − a. Next, shift by

the imaginary part bi to get

s2A1 + sB1 + C1 = [(s− bi)2 + 2sbi + b2]A1 + [(s− bi) + bi]B1 + C1

= [t2A1 + tB1 + (C1 − b2A1)] + i[2btA1 + bB1]

(2.31)

where t = s− bi = λ− σ.

The following lemma allows us to replace this complex matrix polynomial with a

real symmetric polynomial of twice the order.

Lemma 2.4.1. Suppose {M1, N2, . . . , Mk, Nk} are real n× n matrices. Define a real

2n× 2n matrix polynomial R(λ) and a complex n× n matrix polynomial C(λ) by

R(λ) =
k∑

j=0

λj

(
Mj Nj

Nj −Mj

)
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C(λ) =
k∑

j=0

λj[Mj + iNj].

Then each eigenvalue λ of C corresponds to a conjugate pair of eigenvalues λ, λ̄ of R.

Proof. Observe that the 2n × 2n matrix

(
I iI
iI I

)
is nonsingular. Therefore, the

matrix polynomial

M(λ) =

(
I iI
iI I

)
R(λ)

(
I iI
iI I

)

=
k∑

j=0

λj

(
I iI
iI I

)(
Mj Nj

Nj −Mj

)(
I iI
iI I

)

=
k∑

j=0

λj

(
2(Mj + iNj)

−2(Mj − iNj)

)

has the same eigenvalues as R.

If λ is an eigenvalue of C with corresponding eigenvector u, it follows immediately

that λ,

(
u
0

)
is an eigenpair of M . Therefore, λ is an eigenvalue of R; λ̄ is also an

eigenvalue of R since R(λ)x = 0 iff R(λ̄)x̄ = 0.

Conversely, if λ is an eigenvalue of R, then λ is an eigenvalue of M . Let

(
u
v

)

be a corresponding eigenvector of M ; we have

0 = M(λ)

(
u
v

)

=
k∑

j=0

λj

(
2(Mj + iNj)

−2(Mj − iNj)

)(
u
v

)

=

(
2
∑k

j=0 λj(Mj + iNj)u

−2
∑k

j=0 λj(Mj − iNj)v

)
.

Therefore
∑k

j=0 λj(Mj + iNj)u = 0, and by taking conjugates,
∑k

j=0 λ̄j(Mj + iNj)v̄ =

0. Since u, v are not both zero, at least one of λ, λ̄ is an eigenvalue of C.

With this lemma, we can replace the complex polynomial in (2.31) by the real
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symmetric polynomial

t2
(

A1

−A1

)
+ t

(
B1 2bA1

2bA1 −B1

)
+

(
C1 bB1

bB1 −C1

)
.

Dividing by t2 and substituting gives the desired quadratic shifted polynomial

µ2

(
C1 bB1

bB1 −C1

)
+ µ

(
B1 2bA1

2bA1 −B1

)
+

(
A1

A1

)

or in terms of the original matrices A,B,C:

µ2

(
a2A + aB + C 2abA + bB

2abA + bB −(a2A + aB + C)

)

+ µ

(
2aA + B 2bA

2bA −(2aA + B)

)
+

(
A
−A

)
.

(2.32)

All eigenvalues µ of the polynomial in (2.32) occur in conjugate pairs. Furthermore,

each eigenvalue λ of the original system is obtained from shifting one of the eigenvalues

in the pair µ, µ̄; that is, either λ = σ + (1/µ) or λ = σ + (1/µ̄).

2.4.2 Saad-Parlett double shift

While the simple shift in the preceding section produces a real symmetric matrix

polynomial, it doubles the dimension of the QEP undesirably; therefore, we consider

other possibilities. The goal is to transform the original real symmetric QEP into

another real symmetric QEP, where the desired eigenvalues are shifted to the exterior

of the spectrum and are well-separated (for better performance in Krylov methods).

Saad and Parlett [44] discuss approaches to solving the generalized nonsymmetric

eigenvalue problem Fu = λMu (with F, M real) by inverse iteration, while minimizing

the use of complex arithmetic. For a complex shift σ, inverse iteration about σ

is equivalent to applying the power method directly to (F − σM)−1M . The key
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observation is that applying the conjugate of this matrix is the same as shifting

about σ̄; therefore, we can construct purely real operators

B̂+ =
1

2

(
(F − σM)−1M + (F − σ̄M)−1M

)
= Re[(F − σ̄M)−1M ] (2.33)

B̂− =
1

2i

(
(F − σM)−1M − (F − σ̄M)−1M

)
= Im[(F − σ̄M)−1M ]. (2.34)

If (λ, u) is an eigenpair of the generalized eigenvalue problem, then it is easy to

check that u is an eigenvector of both B̂+ and B̂− with respective eigenvalues µ+, µ−

satisfying

µ+ =
1

2

(
1

λ− σ
+

1

λ− σ̄

)
(2.35)

µ− =
1

2i

(
1

λ− σ
− 1

λ− σ̄

)
. (2.36)

To apply this spectral transformation to the quadratic eigenvalue problem (λ2I +

λB + C)x = 0, use the equivalent linearization F =

(
0 I
−C −B

)
and M = I2n.

The operator of interest is then

(F − σM)−1M =

{(
0 I
−C −B

)
− σI

}−1

=

(
1
σ
(L(σ)−1C − I) −L(σ)−1

L(σ)−1C −σL(σ)−1

)
(2.37)

where L(σ) = σ2I + σB + C. Writing L(σ)−1 = LR + iLI and σ = a + bi, the real

and imaginary parts of Equation (2.37) are the operators

B̂+ =

(
a
|σ|2 (LRC − I) + b

|σ|2 LIC −LR

LRC bLI − aLR

)
(2.38)

B̂− =

(
b
|σ|2 (I − LRC) + a

|σ|2 LIC −LI

LIC −bLR − aLI

)
. (2.39)

Recall that a 2×2 block matrix can be converted to an equivalent quadratic eigenvalue

problem under mild assumptions. If

(
λ,

(
x
y

))
is an eigenpair of

(
P Q
R S

)
where
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x 6= 0 and Q is nonsingular, then (λ, x) is an eigenpair of the QEP

[λ2Q−1 − λ(SQ−1 + Q−1P ) + (SQ−1P −R)]x = 0.

Therefore, the operators B̂+, B̂− give rise to corresponding transformed quadratic

eigenvalue problems satisfying (2.35)–(2.36):

{
µ2

+(L−1
R ) + µ+

[
a

|σ|2 (L−1
R − C)− b

|σ|2L−1
R LIC + aI − bLIL

−1
R

]

+
1

|σ|2
[
b2LRC + a2I − abLIL

−1
R + b2LIL

−1
R LIC

]}
x = 0 (2.40)

{
µ2
−(L−1

I ) + µ−

[
b

|σ|2 (L−1
I LRC − L−1

I )− a

|σ|2C + aI + bLRL−1
I

]

+
1

|σ|2
[
b2LIC − abI + b2LRL−1

I LRC + b2LRL−1
I

]}
x = 0. (2.41)

Assuming the desired λ is close to σ and far from σ̄ (or vice versa), both of these

spectral transformations possess a large, well-separated eigenvalue µ. If σ is close

to the real axis, then µ+ ≈ 1/(λ − σ) is a better choice. Applying the operators

LR, LI to a real vector v can be done by solving L(σ)z = v in complex arithmetic

and taking the real and imaginary parts of z, but this is expensive. Also, symmetry

in the original eigenvalue problem may not be preserved.

2.4.3 Symmetry-preserving double shift

An alternative construction utilizes a double shift similar to (2.36):

µ =
1

(λ− σ)(λ− σ̄)
=

1

(λ− a)2 + b2
. (2.42)

We will construct a suitable shifted QEP by applying a series of symmetry-

preserving transformations to the original QEP. Since it is easy to construct a symmet-

ric transformation of a symmetric QEP that performs a real spectral shift (λ→ λ−c)
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or a spectral inversion (λ→ 1
λ
), we express the transformation (2.42) as the compo-

sition of the following steps:

• Translate λ→ λ− a.

• Transform λ→ λ2.

• Translate again λ→ λ + b2.

• Invert λ→ 1
λ
.

The composition of these transformations yields the desired eigenvalue problem whose

eigenvalues µ correspond to the original eigenvalues λ through the spectral transfor-

mation (2.42). The first, third, and fourth steps are straightforward real shifts and

inversions; next, we show how the QEP is transformed to perform the spectral map-

ping λ→ λ2.

Transforming λ → λ2

Suppose (λ, x) is an eigenpair of the quadratic eigenvalue problem (λ2A+λB+C)x =

0. For a nonsingular matrix M , consider the equation

(λ2A− λB + C)M(λ2A + λB + C)x = 0,

whose eigenvalues agree up to sign with those of the original QEP. Multiplying, this

is equivalent to

[λ4AMA + λ2(AMC + CMA−BMB) + CMC

+λ3(AMB −BMA) + λ(CMB −BMC)]x = 0.

(2.43)

Therefore, the polynomial equation

[s2AMA + s(AMC + CMA−BMB) + CMC]y = 0 (2.44)
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has an eigenpair s = λ2, y = x if M is chosen so that

[λ2(AMB −BMA) + (CMB −BMC)]x = 0. (2.45)

Since BM(λ2A+λB+C)x = 0, this condition simplifies to (λ2A+λB+C)MBx = 0;

if λ is a nondegenerate eigenvalue of the original QEP, then Equation (2.45) holds

iff x is an eigenvector of MB. Clearly M = B−1 is a choice which will hold for any

eigenvector x; since a quadratic eigenvalue problem could have up to 2n distinct eigen-

vectors, this may be the only suitable constant M (up to scale). This is illustrated

by the following example.

Consider the quadratic eigenvalue problem

{
λ2

(
1

1

)
+ λ

(
2 1
1 −2

)
+

(
2 −2
−2 0

)}
x = 0.

It is easy to check that the eigenvalues are λ = −2, 2, i,−i, with corresponding eigen-

vectors

(
2
1

)
,

(
0
1

)
,

(
1
i

)
,

(
1
−i

)
. If M is chosen so that

(
2
1

)
and

(
0
1

)

are eigenvectors of MB, then

MB

(
2
1 1

)
=

(
2
1 1

)(
α

β

)
. (2.46)

However,

MB

(
1
i

)
=

(
α

βi + 1
2
(α− β)

)
(2.47)

which is a multiple of

(
1
i

)
only if α = β. Then M = αB−1.

Thus using M = B−1, a real symmetric QEP can be constructed according to

Equation (2.42) through a series of four spectral transformations.
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Complete transformation

For completeness, here we present an explicit construction of real symmetric n × n

matrices Â, B̂, Ĉ so that the eigenvalues of

(µ2Â + µB̂ + Ĉ)u = 0

correspond to those of (λ2A + λB + C)x = 0 through the spectral transformation in

Equation (2.42). The QEP (λ2A+λB +C)x = 0 is equivalent to the shifted problem

(λ2
1A1 + λ1B1 + C1)x = 0 where

λ1 = λ− a (2.48)

A1 = A (2.49)

B1 = 2aA + B (2.50)

C1 = a2A + aB + C. (2.51)

This is further equivalent to (λ2
2A2 + λ2B2 + C2)x = 0 with

λ2 = λ2
1 = (λ− a)2

A2 = AB−1
1 A

B2 = −2a2AB−1
1 A + AB−1

1 C + CB−1
1 A−B

C2 = a2B + 2aC + (C − a2A)B−1
1 (C − a2A).
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Lastly, shift again by b2 to obtain the QEP [(λ2 + b2)2A3 + (λ2 + b2)B3 + C3]x = 0,

which is equivalent to the desired eigenvalue problem (µ2Â + µB̂ + Ĉ)x = 0 with

Â = C3 = (a2 + b2)2AB−1
1 A− (a2 + b2)[AB−1

1 C + CB−1
1 A−B]

+ 2aC + CB−1
1 C (2.52)

B̂ = B3 = −2(a2 + b2)AB−1
1 A + AB−1

1 C + CB−1
1 A−B (2.53)

Ĉ = A3 = AB−1
1 A. (2.54)

Note that if the original matrices A, B, C are symmetric, then the matrices Â, B̂, Ĉ

defined by Equations (2.50), (2.52)–(2.54) are also symmetric.

2.5 A residual-maximizing approach

The Rayleigh-Ritz methods described in the previous section work as follows: con-

struct a subspace, project the eigenvalue problem onto that subspace, and then extract

a Ritz value from the projected problem that approximates the desired eigenvalue. In

the process, vectors q1, q2, . . . , qk spanning the k-dimensional subspace are constructed

one by one. Thus, a sequence of nested subspaces

Q1 = span{q1},

Q2 = span{q1, q2},
...

Qk = span{q1, q2, . . . , qk}

is constructed before any Ritz pairs are computed. A natural question arises: can

projections of the QEP onto the intermediate subspaces Q1, Q2, . . . , Qk−1 be used to

help select the subsequent basis vectors?
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2.5.1 General description

Let L(λ) denote the matrix polynomial λ2A + λB + C. The eigenvalue problem is

that of finding a scalar λ so that L(λ) is singular. Using a simple shift σ and letting

µ = 1
λ−σ

, we have the shifted matrix polynomial L̂(µ) = µ2Â + µB̂ + Ĉ with

Â = σ2A + σB + C = L(σ)

B̂ = 2σA + B

Ĉ = A.

It follows that 1
µ2 L̂(µ) = L(λ). The shifted eigenvalue problem can then be converted

into the monic problem

(µ2I + µÂ−1B̂ + Â−1Ĉ)u = 0. (2.55)

For each subspace of dimension j with Qj = [q1, . . . , qj], we may project Equa-

tion (2.55) onto Qj and compute the largest Ritz value µj (best approximating the

eigenvalue closest to the shift σ) and the corresponding Ritz vector uj. Specifically,

(µj, uj) satisfy

(µ2
jIj + µjBj + Cj)uj = 0 (2.56)

where Bj = Q∗
j(Â

−1B̂)Qj and Cj = Q∗
j(Â

−1Ĉ)Qj. This series of Ritz pairs {(µj, uj)}

of projected eigenproblems may be used during the iteration.

2.5.2 A natural utilization of the order j Ritz pair

With the additional information provided by the Ritz pair (µj, uj), how best can we

choose the next basis vector qj+1 ⊥ Qj? Our approach is the following. Any choice
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of qj+1 would give rise to a new projected eigenvalue problem

(µ2
j+1Ij+1 + µj+1Bj+1 + Cj+1)uj+1 = 0. (2.57)

The Ritz pair (µj, uj) satisfying Equation (2.56) can be interpreted naturally as an

approximate solution (µ̃j+1, ũj+1) to Equation (2.57), defined by

µ̃j+1 = µj, ũj+1 =

(
uj

0

)
, (2.58)

with a residual

rj+1 = (µ̃2
j+1Ij+1 + µ̃j+1Bj+1 + Cj+1)ũj+1 (2.59)

(note that we have not yet actually constructed Bj+1, Cj+1).

Next, we set out the following principle determining the construction of qj+1 once

the choice of approximate solution (µ̃j+1, ũj+1) has been made. Observe that if the

residual rj+1 is small, then (µ̃j+1, ũj+1) is close to an exact Ritz pair of Equation (2.57).

Therefore, we would not expect the largest Ritz value of Equation (2.57) to differ

very much from that of Equation (2.56); enlarging the subspace by qj+1 offers little

improvement. Therefore, we choose qj+1 orthogonal to Qj so as to make ‖rj+1‖

as large as possible. In particular, with the choice of approximate solution from

Equation (2.58), the residual is given by

rj+1 = Q∗
j+1[µ

2
jI + µjÂ

−1B̂ + Â−1Ĉ]Qj+1

(
uj

0

)

=

(
Q∗

j

q∗j+1

)
[µ2

jI + µjÂ
−1B̂ + Â−1Ĉ]Qjuj

=

(
0

q∗j+1(µjÂ
−1B̂ + Â−1Ĉ)Qjuj

)

so that up to scale, qj+1 equals the restriction of (µjÂ
−1B̂ + A−1Ĉ)Qjuj to the or-

thogonal complement of Qj. It is easy to see that the restriction is nonzero unless
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Input: ‖q1‖2 = 1, σ ∈ C, k > 0
1: Shift and invert (λ2A + λB + C)x = 0 to get equivalent

problem (µ2Â + µB̂ + Ĉ)x = 0, µ = 1
λ−σ

.

2: Let L̂(µ) = µ2I + µÂ−1B̂ + Â−1Ĉ.
3: for j = 1, 2, . . . , k − 1 do
4: Solve Q∗

j L̂(µj)Qjuj = 0. {Compute largest Ritz pair}
5: Choose approximate solution (µ̃j+1, ũj+1); typically set

µ̃j+1 = µj, ũj+1 =

(
uj

0

)
. See Section 2.5.3.

6: Let r = Q∗
j+1L̂(µ̃j+1)Qj+1ũj+1.

7: Choose qj+1 ⊥ Qj maximizing r.
8: Normalize qj+1.
9: end for

10: Solve Q∗
kL̂(µk)Qkuk = 0.

Figure 2.8: Residual maximization algorithm

(µj, uj) is an exact eigenpair of Equation (2.55), i.e. convergence has occurred.

The heart of this approach lies in the construction of the approximate solution

to Equation (2.57). The approximate solution does not have to be chosen according

to Equation (2.58); there are a number of reasonable constructions, as we will see in

the next section. Each construction produces a new algorithm, with distinct conver-

gence behavior. In this sense, one might characterize this algorithm as a residual-

maximizing framework, rather than a single method. A complete description of the

method appears in Figure 2.8.

2.5.3 Selection of approximate solution

In the previous section, one approximate solution

(µ̃j+1, ũj+1) =

(
µj,

(
uj

0

))

was chosen. In this section, we consider some other possible choices of approximate

solution, and show that some of these approximate solution choices are equivalent to
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algorithms discussed elsewhere.

Theorem 2.5.1. Let (λ2A+λB+C)x = 0 be a quadratic eigenvalue problem, with the

equivalent shifted and inverted problem (µ2I+µÂ−1B̂+Â−1Ĉ)x = 0. Applying each of

the following algorithms to the shifted problem is equivalent to applying Algorithm 2.8

to the original problem with the specified choice of approximate solution.

1. Arnoldi variant I (Figure 2.5): (µ̃j+1, ũj+1) = (∞, ej).

2. Arnoldi variant II (Figure 2.6): (µ̃j+1, ũj+1) = (0, ej).

3. Arnoldi-type Krylov process (Figure 2.2): (µ̃j+1, ũj+1) =

{
(0, ej/2), j even
(∞, edj/2e), j odd.

Proof. For each part, we need to show that both methods will produce the same

subspace span{q1, q2, . . . , qk} when the same starting vector q1 is used. It is sufficient

to show that the bases Qk and Q̂k produced by each method differ only by scale, i.e.

Q̂k = QkD for some nonsingular diagonal matrix D. We prove this by induction; if

Qj, Q̂j are bases generated by each method which differ only by scale, we only need

to show that continuing another step produces vectors qj+1, q̂j+1 which are scalar

multiples of each other.

1. Suppose Qj is the basis produced by the first j iterations of Algorithm (2.8),

with (µ̃j+1, ũj+1) = (∞, ej). As Algorithm 2.8 implicitly assumes that µ̃j+1 is

finite, we take µ̃j+1 = ∞ to mean that qj+1 is defined as the limit of qj+1(µ̃)

produced by the algorithm as µ̃→∞ (assuming this limit exists and is nonzero).
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For large µ̃, the residual is

r = Q∗
j+1(µ̃

2I + µ̃Â−1B̂ + Â−1Ĉ)Qj+1ej

=

(
Q∗

j(µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)qj

q∗j+1(µ̃Â−1B̂ + Â−1Ĉ)qj

)

=

(
Q∗

j(µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)qj

µ̃q∗j+1(Â
−1B̂ + 1

µ̃
Â−1Ĉ)qj

)
.

Therefore, qj+1(µ̃) equals the projection onto Q⊥
j (up to scale)

(I −QjQ
∗
j)(Â

−1B̂ +
1

µ̃
Â−1Ĉ)qj. (2.60)

Letting µ̃→∞, we see that qj+1 is a scalar multiple of (I −QjQ
∗
j)(Â

−1B̂)qj.

By the induction hypothesis, Q̂j = QjD is a basis generated by applying the

Arnoldi process to the matrix Â−1B̂. The subsequent step of Arnoldi produces

the vector q̂j+1 satisfying

(Â−1B̂)Q̂j = Q̂jHj + hj+1,j q̂j+1e
T
j

or equivalently

(Â−1B̂)QjD = QjDHj + hj+1,j q̂j+1e
T
j . (2.61)

Therefore,

(I −QjQ
∗
j)(Â

−1B̂)qj =
1

dj

(I −QjQ
∗
j)(Â

−1B̂)QjDej

=
1

dj

(I −QjQ
∗
j)(hj+1,j q̂j+1)

=

(
hj+1,j

dj

)
q̂j+1.

Thus qj+1 and q̂j+1 must be scalar multiples of one another.

2. The proof is similar to that of part 1. Let Qj be the basis produced by the first
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j iterations of Algorithm (2.8) with (µ̃j+1, ũj+1) = (0, ej). The residual is then

r = Q∗
j+1(Â

−1Ĉ)Qj+1ej

=

(
Q∗

j(Â
−1Ĉ)qj

q∗j+1(Â
−1Ĉ)qj

)
.

Therefore, up to scale, qj+1 equals the projection onto the orthogonal comple-

ment of Qj

(I −QjQ
∗
j)(Â

−1Ĉ)qj. (2.62)

Letting Q̂j be the orthonormal basis generated by applying the Arnoldi process

to Â−1Ĉ with starting vector q1, we have Q̂j = QjD for some diagonal matrix

D by the induction hypothesis. The next vector q̂j+1 produced by the Arnoldi

process satisfies

(Â−1Ĉ)Q̂j = Q̂jHj + hj+1,j q̂j+1e
T
j

or equivalently

(Â−1Ĉ)QjD = QjDHj + hj+1,j q̂j+1e
T
j . (2.63)

Therefore we have

(I −QjQ
∗
j)(Â

−1B̂)qj =
1

dj

(I −QjQ
∗
j)(Â

−1B̂)QjDej

=
1

dj

(I −QjQ
∗
j)(hj+1,j q̂j+1)

=

(
hj+1,j

dj

)
q̂j+1

and so q̂j+1 and qj+1 must be scalar multiples of one another.

3. Let Q̂j be a basis generated by the Arnoldi-type Krylov process in Algorithm 2.2.

Recall that the process is defined by the recurrences in Equations (2.5, 2.6). It
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follows that the next basis vector q̂j+1 satisfies

(hC;j+1,j/2)q̂j+1 = (I − Q̂jQ̂
∗
j)Â

−1Ĉq̂j/2, j even

(hB;j+1,dj/2e)q̂j+1 = (I − Q̂jQ̂
∗
j)Â

−1B̂q̂dj/2e, j odd.

(2.64)

Next, let Qj be the orthonormal basis produced by the first j iterations of

Algorithm (2.8). By the induction hypothesis, Q̂j = QjD. Both bases are

orthonormal; therefore, D∗D = D∗Q∗
jQjD = Q̂∗

jQ̂j = I and (I − QjQ
∗
j) =

(I− Q̂jQ̂
∗
j). For odd j, Algorithm (2.2) generates a vector qj+1 which is a scalar

multiple of (I −QjQ
∗
j)Â

−1B̂qdj/2e (by the argument in the proof of part 1). For

even j, we have (µ̃j+1, ũj+1) = (0, ej/2), and therefore Algorithm (2.2) generates

a vector qj+1 which is a scalar multiple of (I −QjQ
∗
j)Â

−1Ĉqj/2, as in the proof

of part 2. Thus, qj+1 and q̂j+1 must agree up to scale for all j.

At this point, we observe the following. Suppose Algorithm (2.8) is run with

approximate solution (µ̃j+1, ũj+1), where the approximate eigenvector ũj+1 is parti-

tioned into the leading j entries ũj+1;1:j and the (j +1)-st entry ũj+1;j+1. The residual

can be written

r = [Qj, qj+1]
∗(µ̃2I + µ̃Â−1B̂ + Â−1Ĉ)[Qj, qj+1]ũ

=

(
Q∗

j(µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)[Qj, qj+1]ũ

q∗j+1(µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)[Qj, qj+1]ũ

)

=

(
Q∗

j(µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)Qjũj+1;1:j

q∗j+1(µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)Qjũj+1;1:j

)

+ ũj+1;j+1

(
Q∗

j(µ̃Â−1B̂ + Â−1Ĉ)qj+1

q∗j+1(µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)qj+1

)
.

If the (j + 1)-st entry ũj+1;j+1 is zero (as is the case for all choices of approximate

eigenpair discussed in Theorem 2.5.1), then qj+1 is just the normalized projection of
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the residual (µ̃2I + µ̃Â−1B̂ + Â−1Ĉ)(Qjũj+1;1:j) onto the orthogonal complement of

Qj. The subspace spanned by Qj+1 is thus

span{Qj+1} = span{Qj, (µ̃
2I + µ̃Â−1B̂ + Â−1Ĉ)(Qjũj+1;1:j)}

= span{Qj, Â
−1(µ̃2Â + µ̃B̂ + Ĉ)(Qjũj+1;1:j)}.

In other words, the subspace is enlarged by the following Cayley transform:

(σ2A + σB + C)−1(λ̃2A + λ̃B + C)(Qjũj+1;1:j)

where λ̃ = σ + 1/µ̃.
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Chapter 3

Projections based on moment
matching

3.1 Moment matching of Villemagne and Skelton

Next, we will discuss a connection between generalized eigenvalue problems and linear

transfer functions. A linear transfer function is a matrix-valued function

H(s) = L∗(G + sC)−1B

of a complex scalar s, where C, G ∈ Cn×n are square and L ∈ Cn×p, B ∈ Cn×m

are complex matrices of consistent sizes. Assuming G is nonsingular, the transfer

function can be written in series form as

H(s) =
∞∑
i=0

(−1)isiMi

where Mi = L∗(G−1C)iG−1B. The matrices {Mi} are termed the moments of the

transfer function H(s). Given another transfer function HR(s) = L∗R(GR +sCR)−1BR

with moments {MRi}, let k be the largest integer such that Mi = MRi for all i =

1, 2, . . . , k (i.e. the first k moments of each transfer function match). We can then

conclude that H(s) = HR(s) + O(sk+1). The goal of the moment-matching approach
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to model reduction is to construct HR(s) of modest dimension so that as many of the

moments match as possible.

One way to produce a reduced transfer function HR(s) from the original transfer

function H(s) is to construct LR, BR, GR, CR by applying projections to L, B, G,C,

respectively. The number of matching moments in this case is given by the following

theorem, proven originally for G = I by Villemagne and Skelton [14] and proven in

general by Grimme [23] and Li [33].

Theorem 3.1.1. Choose X,Y ∈ Cn×m such that Y ∗GX is nonsingular. Let LR =

X∗L, GR = Y ∗GX, CR = Y ∗CX, BR = Y ∗B. If

Kq(G
−1C,G−1B) ⊆ span{x1, . . . , xm}

Kr(G
−∗C∗, G−∗L) ⊆ span{y1, . . . , ym},

then the following hold:

X(G−1
R CR)iG−1

R BR = (G−1C)iG−1B, 0 ≤ i ≤ q − 1 (3.1)

L∗RG−1
R (CRG−1

R )jY ∗ = L∗G−1(CG−1)j, 0 ≤ j ≤ r − 1 (3.2)

Mi = MRi 0 ≤ i ≤ q + r − 1. (3.3)

This theorem can be used to simplify convergence analysis for a variety of related

algorithms. See Li [33] for discussion of the application to asymptotic waveform

evaluation, Pade via Lanczos (PvL), PRIMA, and the Krylov-type method proposed

by Su and Craig [53, 40, 19]. The following discussion uses this theorem to describe

the eigenvalue convergence of a generalized reduced-order eigenvalue problem CRu =

µGRu to the full-scale generalized eigenproblem Cx = λGx.
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Suppose that both G−1C and G−1
R CR are diagonalizable, i.e. there exist nonsin-

gular matrices V, Ṽ and diagonal Λ, Ω so that

G−1C = V ΛV −1, G−1
R CR = Ṽ ΩṼ −1. (3.4)

We further assume that Λ =

(
Λ1

Λ2

)
and Ω =

(
Ω1

Ω2

)
are partitioned so

that Ω1 approximates the desired spectrum Λ1, and Λ2, Ω2 are relatively far. Let q, r

be as in Theorem 3.1.1, and choose a polynomial φ(x) =
∑

αix
i of degree less than

q + r. By Equation (3.3) we have

L∗φ(G−1C)G−1B =

q+r−1∑
i=0

αiMi

=

q+r−1∑
i=0

αiMRi

= L∗Rφ(G−1
R CR)G−1

R BR

for any rectangular L,B of suitable dimension and LR, BR defined as in Theorem 3.1.1.

Substituting Equation (3.4) gives

L∗V φ(Λ)V −1G−1B = L∗RṼ φ(Ω)Ṽ −1G−1
R BR. (3.5)

Partitioning V −1G−1B =

(
W1

W2

)
and V ∗L =

(
W3

W4

)
, we have

W ∗
3 φ(Λ1)W1 − Ŵ ∗

3 φ(Ω1)Ŵ1 = Ŵ ∗
4 φ(Ω2)Ŵ2 −W ∗

4 φ(Λ2)W2 (3.6)

with V̂ −1G−1
R BR =

(
Ŵ1

Ŵ2

)
, V̂ ∗LR =

(
Ŵ3

Ŵ4

)
defined similarly. Thus if φ is chosen

so that φ is close to 1 at Λ1, Ω1 and small at Λ2, Ω2, then W ∗
3 W1 ≈ Ŵ ∗

3 Ŵ1. From this,

a connection between W1 and Ŵ1 might be derived in terms of the behavior of φ.

3.2 Projection methods via linearization

In light of Theorem 3.1.1, we seek structure-preserving projections of the monic

quadratic eigenvalue problem that can offer a higher order of convergence than the
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methods discussed in 2.2.1. In order to preserve symmetry, we construct an orthonor-

mal basis Qm; the full-scale problem (λ2I−λB−C)x = 0 is approximated by the pro-

jected problem (µ2Im− µBm−Cm)u = 0, where Bm = QT
mBQm and Cm = QT

mCQm.

Linearizing in the usual way gives an equivalent pair of eigenproblems of twice the

dimension

C̃

(
x
λx

)
= λG̃

(
x
λx

)

C̃R

(
u
µu

)
= µG̃R

(
u
µu

)

where

C̃ =

(
0 I
C B

)
G̃ = I (3.7)

C̃R =

(
0 Im

Cm Bm

)
G̃R = I. (3.8)

In order to apply the theory from the previous section we need left and right bases

Y2m, X2m so that G̃R = Y ∗
2mG̃X2m and C̃R = Y ∗

2mC̃X2m. A natural pair of bases that

accomplish this is X2m = Y2m =

(
Qm 0
0 Qm

)
, where Qm is orthonormal. Therefore,

the problem reduces to choosing Qm so that the columns of X2m, i.e.

span

{(
q1

0

)
,

(
0
q1

)
,

(
q2

0

)
,

(
0
q2

)
, . . . ,

(
qm

0

)
,

(
0
qm

)}

span as much of the left and right Krylov spaces K(C̃T , L) and K(C̃, B) as possible.

3.2.1 The SOAR algorithm

The first projection method we discuss with the help of Theorem 3.1.1 is called SOAR

(second-order Arnoldi) by Bai and Su [6, 7]. Let us apply the Arnoldi method to C̃

with an appropriate partitioning to give the defining equation

(
0 I
C B

)(
Vm

Wm

)
=

(
Vm

Wm

)
Hm + hm+1,m

(
vm+1

wm+1

)
eT

m. (3.9)
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A Gram-Schmidt process is used to construct the vectors Vm,Wm, but with a special

choice of inner product so that the computed Wm is orthonormal:

(
Vm+1

Wm+1

)T (
0

I

)(
Vm+1

Wm+1

)
= Im+1. (3.10)

This inner product is of course semi-definite, which raises the issue of breakdown. In

addition to the usual “good” breakdown, where the residual of the orthogonalization

process is zero, there is now a possibility of breakdown when the computed wm+1 is

zero but vm+1 is not. Since the residual cannot then be normalized, the recurrence

fails. Unlike the good case, this breakdown does not indicate that any convergence

has taken place. For the rest of this discussion, we assume that no breakdown occurs,

good or bad.

To start the recurrence, we may begin with an initial vector of the form

(
v1

w1

)
=

(
0
q

)
, where q is any unit n-vector. The right Krylov space of C̃ is spanned by the

set of m 2n-vectors generated by Equation (3.9):

K = Km

(
C̃,

(
0
q

))
= span

{(
v1

w1

)
, . . . ,

(
vm

wm

)}

⊆ span

{(
v1

0

)
, . . . ,

(
vm

0

)
,

(
0
w1

)
, . . . ,

(
0

wm

)}
.

From Equation (3.9) we have Wm = VmHm+hm+1,mvm+1, and so span{w1, . . . , wm} =

span{v1, . . . , vm+1} by the special structure of our C̃. It follows that K is contained

in the span of the columns of

(
Wm

Wm

)
. Therefore, choosing Qm = Wm and

projecting as in the previous section yields a method whose convergence is determined

by polynomials of degree at least m. An outline of the algorithm appears in Figure 3.1.

73



Input: ‖q‖2 = 1, m > 0
1: v1 = 0; w1 = q
2: for j = 1, 2, . . . , m do
3: v = wj; w = Cvj + Bwj

4: for i = 1, 2, . . . , j do
5: hij = wT

i w
6: v = v − hijvi; w = w − hijwi

7: end for
8: hj+1,j = ‖w‖
9: vj+1 = v/hj+1,j; wj+1 = w/hj+1,j

10: end for
11: Returns orthonormal basis Wm+1.

Figure 3.1: SOAR algorithm

3.2.2 The Q-Arnoldi algorithm

A related Arnoldi-based algorithm is the Q-Arnoldi algorithm of Meerbergen and

Robbé [35]. Unlike SOAR, the Q-Arnoldi algorithm constructs an orthonormal basis
(

Vm

Wm

)
, using the Arnoldi-type recurrence from Equation (3.9). It follows from the

structure of the linearized quadratic problem that for all j > 1,

Wj−1 = VjH1:j,1:j−1. (3.11)

The algorithm uses this identity to eliminate storage of the vectors w1, . . . , wm−1,

reducing memory usage approximately by half. Then, the upper-triangular entries of

H are given by

hij =

(
vi

wi

)T (
v
w

)

= vT
i v + wT

i w

=

{
vT

i v + (Vi+1H1:i+1,1:iei)
T w, i < j

vT
j v + wT

j w, i = j

(3.12)

where

(
v
w

)
= C̃

(
vj

wj

)
. The succeeding vector

(
vj+1

wj+1

)
is computed by normal-

izing the result of a modified Gram-Schmidt orthogonalization, using the coefficients
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Input: ‖q‖2 = 1, m > 0
1: v1 = 0; w1 = q
2: for j = 1, 2, . . . , m do
3: v = wj; w = Cvj + Bwj

4: for i = 1, 2, . . . , j − 1 do
5: hij = vT

i v + (
∑i+1

p=1 hpivp)
T w

6: v = v − hijvi; w = w − hijwi

7: end for
8: hjj = vT

j v + wT
j w

9: v = v − hjjvj; w = w − hjjwj

10: hj+1,j =
√
‖v‖2 + ‖w‖2

11: vj+1 = v/hj+1,j; wj+1 = w/hj+1,j

12: end for
13: Returns basis Vm+1.

Figure 3.2: Q-Arnoldi algorithm

from (3.12).

The completed Q-Arnoldi algorithm appears in Figure 3.2. The next section makes

further use of symmetry in the original quadratic eigenvalue problem to construct a

Lanczos recurrence.

3.2.3 A generalized Lanczos variation of SOAR

The Arnoldi implementation used in SOAR can be applied to any monic quadratic

eigenvalue problem (λ2I − λB − C)x = 0, regardless of any special properties which

B, C may possess. For the special case when B, C are both symmetric, then a change

of inner product takes advantage of the symmetry to produce a Lanczos recurrence

instead of Arnoldi. As in SOAR, we generate a Krylov space of the linearization

C̃ =

(
0 I
C B

)
. Since B, C are symmetric, the product

(
C

I

)
C̃ is also sym-

metric. Therefore, we might attempt to construct a symmetric Lanczos recurrence
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with respect to the inner product

(
C

I

)
:

(
0 I
C B

)(
Vm

Wm

)
=

(
Vm

Wm

)
Tm + βm+1

(
vm+1

wm+1

)
eT

m, (3.13)

(
Vm+1

Wm+1

)T (
C

I

)(
Vm+1

Wm+1

)
= Im+1. (3.14)

The difficulty is that our inner product may be indefinite, as in the case of SOAR.

This has two side effects. One is the possibility of a “bad” breakdown when the

computed vm+1, wm+1 are quasi-null; as before, we assume that this will not happen.

The other effect is that unless C is positive definite or semi-definite, we could have

vT
m+1Cvm+1 + wT

m+1wm+1 < 0 regardless of scaling. Indeed, observe that if m steps of

the Lanczos recurrence in (3.13–3.14) can be performed without breakdown, then Tm

is also the matrix generated by a nonsymmetric Lanczos recurrence; nonsymmetric

Lanczos is not likely to produce a symmetric projection of the original nonsymmetric

problem for many iterations. The eigenvalue problem C̃x̃ = λx̃ can be restated as

the symmetric indefinite generalized eigenvalue problem

(
0 C
C B

)
x = λ

(
C

I

)
x

which suggests the symmetric indefinite Lanczos recurrence [31, 42]

(
0 I
C B

)(
Vm

Wm

)
=

(
Vm

Wm

)
D−1

m Tm +
βm+1

dm+1

(
vm+1

wm+1

)
eT

m, (3.15)

(
Vm+1

Wm+1

)T (
C

I

)(
Vm+1

Wm+1

)
= Dm+1 (3.16)

where Dm = diag{d1, . . . , dm} is a diagonal matrix, possibly indefinite. We assume

that each computed di is nonzero, else breakdown occurs.

The rest of the construction of the algorithm is similar to SOAR. Starting with
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Input: ‖q1‖2 = 1, m > 0
1: v1 = 0; w1 = q1; z = 0; β1 = 0; d0 = d1 = 1
2: for j = 1, 2, . . . ,m do
3: v = wj; w = z + Bwj

4: v = v − dj−1βjvj−1; w = w − dj−1βjwj−1

5: αj = zT v + wT
j w

6: v = v − αjvj; w = w − αjwj

7: z = Cv
8: dj+1 = sign(vT z + wT w)

9: βj+1 =
√
|vT z + wT w|

10: vj+1 = dj+1v/βj+1; wj+1 = dj+1w/βj+1

11: z = dj+1z/βj+1

12: q = wj+1 {One step of QR factorization}
13: for i = 1, 2, . . . , j do
14: ri,j+1 = qT

i q
15: q = q − ri,j+1qi

16: end for
17: qj+1 = q/‖q‖
18: end for
19: Returns orthonormal basis Qm+1.

Figure 3.3: Lanczos-type SOAR algorithm

an initial vector of the form

(
0
q

)
, the recurrence gives

Km

(
C̃,

(
0
q

))
⊆ span

{(
v1

0

)
, . . . ,

(
vm

0

)
,

(
0
w1

)
, . . . ,

(
0

wm

)}

which in turn is spanned by the columns of

(
Wm

Wm

)
. Here, Wm does not form

an orthonormal basis. Therefore, we update the QR factorization Wj = QjRj as each

vector wj is computed. This orthogonalization step is approximately half as expensive

as the orthogonalization in SOAR, since the vectors are of length n instead of 2n.

Since the recurrence is short, at any step j we only need the two previous pairs of

vectors {vj−1, wj−1} and {vj, wj} to compute vj+1, wj+1. A straightforward implemen-

tation of Lanczos would require additional matrix-vector multiplies when computing

αj and βj, but these are eliminated by introducing another n-vector z = Cvj and or-
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dering the operations carefully. Thus, our implementation (Figure 3.3) requires only

an additional seven n-vectors beyond the (m + 1) vectors storing the generated basis

Qm. This is the major advantage over SOAR, which requires all of Vm+1,Wm+1 at step

m. The required number of gaxpys (vector computations of the form αx+βy) is also

approximately halved. Other costs are comparable, as summarized in the following

table.

Cost SOAR algorithm Lanczos-type SOAR
Memory usage (n-vectors) 2m + 4 m + 8
Matrix-vector multiplies 2m 2m

x←− x + αy m(m + 1) 4m + m(m+1)
2

Dot products vT w m(m+1)
2

4m + m(m+1)
2

3.3 Reduction via nonsymmetric Lanczos

In the previous sections, three Arnoldi algorithms (SOAR, Q-Arnoldi, and Lanczos-

type SOAR) were applied to the linearization C̃ =

(
0 I
C B

)
. In each algorithm, m

steps of Arnoldi generate a block diagonal orthonormal matrix X2m whose columns

span Km(C̃, x1); then the projection XT
2mC̃X2m is a linearization of an order m sym-

metric quadratic eigenvalue problem. However, in general the space spanned by X2m

need not contain the left Krylov space. Therefore, not more than m moments of

this projected quadratic eigenvalue problem must match those of the original (The-

orem 3.1.1). In this section, we construct projected quadratic eigenvalue problems

with a larger number of matching moments, using bases of both the left and right

Krylov spaces of C̃.

A natural choice of method for constructing such bases iteratively is the nonsym-

metric Lanczos recurrence. After applying 2m steps of nonsymmetric Lanczos to C̃,

78



we obtain biorthogonal bases U2m, V2m so that

UT
2m

(
0 I
C B

)
V2m = T2m. (3.17)

Since U2m, V2m are bases of order 2m Krylov spaces of C̃ and C̃T respectively, the

eigenvalues of the nonsymmetric tridiagonal T2m converge according to polynomials

of degree 4m. It remains to be seen how to convert T2m into an equivalent quadratic

eigenvalue problem of order m. Label the entries of T2m as follows:

T2m =




α1 γ2

β2 α2
. . .

. . . . . . γ2m

β2m α2m


 .

By applying a shuffle P = (e1, e3, . . . , e2m−1, e2, . . . , e2m) to the rows and columns of

T2m, we obtain the following block structure

P T T2mP =




α1 γ2

α3 β3 γ4

. . . . . . . . .

α2m−1 β2m−1 γ2m

β2 γ3 α2

β4
. . . α4

. . . γ2m−1
. . .

β2m α2m




. (3.18)

Let D1, L, U,D2 be the submatrices in Equation (3.18) labelled so that P T T2mP =
(

D1 L
U D2

)
. If breakdown did not occur in the Lanczos recurrence, then the bidi-

agonal matrices L and U are nonsingular. By letting W =

(
I 0

D1 L

)
and applying

the similarity transformation

W

(
D1 L
U D2

)
W−1 =

(
0 I

LU − LD2L
−1D1 D1 + LD2L

−1

)

we obtain a linearization of the following quadratic eigenvalue problem of order m:

[µ2I − µ(D1 + LD2L
−1)− (LU − LD2L

−1D1)]u = 0. (3.19)
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Likewise, each of the following three quadratic eigenvalue problems can be constructed

from T2m by similarity transformations:

[µ2I − µ(L−1D1L + D2)− (UL−D2L
−1D1L)]u = 0 (3.20)

[µ2I − µ(D2 + UD1U
−1)− (UL− UD1U

−1D2)]u = 0 (3.21)

[µ2I − µ(U−1D2U + D1)− (LU −D1U
−1D2U)]u = 0. (3.22)

Thus the quadratic eigenvalue problems in Equations (3.19)-(3.22) have the same

spectrum as T2m, and therefore their eigenvalues converge as polynomials of degree

4m; this is the best convergence result obtainable with Theorem 3.1.1. Unfortunately,

if the original quadratic eigenvalue problem was symmetric, then these formulations of

the projection would lose the original symmetry. In an application where the original

QEP was nonsymmetric, this would not be considered a disadvantage. Note that the

projected problems (3.19)-(3.22) do possess some structure: namely, the middle term

is triangular and the constant term is Hessenberg (this is reminiscent of reducing a

single matrix to its Schur form).

Next, we demonstrate how to update the reconstructed quadratic eigenvalue prob-

lem from (3.19) while running the nonsymmetric Lanczos recurrence. Suppose that

the order m reduction has been completed; i.e. 2m steps of nonsymmetric Lanc-

zos produced T2m, from which the order m matrices Bm = D1 + LD2L
−1 and

Cm = LU − LD2L
−1D1 were computed. Perform two more steps of nonsymmet-

ric Lanczos to compute the additional six entries of T2m+2:

T2m+2 =




T2m γ2m+1

β2m+1 α2m+1 γ2m+2

β2m+2 α2m+2


 . (3.23)
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Permute T2m+2 as in (3.18), and label the resulting order m + 1 submatrices D̂1,

D̂2, L̂, and Û . These matrices are readily obtained by extending D1, D2, L, and U ,

respectively:

D̂1 =

(
D1

α2m+1

)
L̂ =

(
L

β2m+1e
T
m γ2m+2

)
(3.24)

D̂2 =

(
D2

α2m+2

)
Û =

(
U γ2m+1em

β2m+2

)
. (3.25)

By a straightforward calculation, we have L̂−1 =

(
L−1

xT 1/γ2m+2

)
where the

vector xT = (−β2m+1/γ2m+2)e
T
mL−1. Consequently,

L̂D̂2L̂
−1 =

(
LD2L

−1

zT α2m+2

)
, (3.26)

where zT = β2m+1(α2m + α2m+2)e
T
mL−1. Also, the product L̂Û is

L̂Û =

(
LU γ2mγ2m+1em

β2mβ2m+1e
T
m β2m+1γ2m+1 + β2m+2γ2m+2

)
, (3.27)

and so the updated lower triangular/lower Hessenberg matrix pair is

Bm+1 = D̂1 + L̂D̂2L̂
−1

=

(
Bm

zT α2m+1 + α2m+2

)
(3.28)

Cm+1 = L̂Û − L̂D̂2L̂
−1D̂1

=

(
Cm γ2mγ2m+1em

β2mβ2m+1e
T
m − zT D1 ζ

)
(3.29)

for

ζ = β2m+1γ2m+1 + β2m+2γ2m+2 − α2m+1α2m+2,

z = β2m+1(α2m + α2m+2)L
−T em.
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Thus, each update Bm, Cm to compute Bm+1, Cm+1 requires one linear solve of a

bidiagonal matrix and one diagonal matrix-vector multiply, at an O(m) cost. Since

the corresponding pair of nonsymmetric Lanczos steps required for an update has

O(n) cost, the complete algorithm produces an order m reduced model in O(mn+m2)

time (and 8m matrix-vector products with B, C). Also, the storage requirements are

modest: the Lanczos recurrences require storage for six work vectors of length 2n,

and the matrices Bm, Cm contain m2 + 2m− 1 nonzeros. In addition, we must keep

L and D1 at an additional cost of 3m − 1; these matrices are composed of the odd-

numbered αi, βi and the even-numbered γi (in other words, the odd-numbered rows

of T ). The last even-numbered row of T is saved, but for only one iteration. The

complete algorithm is outlined in Figure 3.4.

3.4 Convergence analysis of projection methods

Here, we present some results [26] bounding the convergence of an extreme Ritz value

in the Lanczos-type process (Figure 2.4). The basic approach follows that of Ye

[56], where a convergence analysis of the nonsymmetric Lanczos method is developed

based largely on structural properties of tridiagonal matrices. The argument proceeds

in two parts. First, we give a bound on the distance between a Ritz value θ1 of Â

approximating an eigenvalue λ1 of A. This bound depends on the moment matching

of A and Â; in particular, it requires the largest power M so that the (1, 1) entries

of AM , ÂM match. Secondly, we use the nonzero structure of the matrices generated

by the algorithm to determine this moment matching result.
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Input: u1, v1 s.t. uT
1 v1 = 1, m > 0

{First nonsymmetric Lanczos step}
1: x =

(
0 CT

I BT

)
x1

2: y =

(
0 I
C B

)
y1

3: α1 = xT
1 y

4: x = x− α1x1

5: y = y − α1y1

6: γ2 =
√
|xT y|; β2 = xT y/γ2

7: x2 = x/γ2; y2 = y/β2

8: y =

(
0 I
C B

)
y2

9: α2 = xT
2 y

{Initialize matrices}
10: Bm = [α1 + α2]; Cm = [β2γ2 − α1α2]
11: L = [γ2]; D1 = [α1]
{Begin main loop}

12: for j = 1, 2, . . . ,m− 1 do
13: Perform two steps of nonsymmetric Lanczos:
14: for k = 2j, 2j + 1 do

15: x =

(
0 CT

I BT

)
xk

16: x = x− βkxk−1 − αkxk

17: y = y − γkyk−1 − αkyk

18: γk+1 =
√
|xT y|; βk+1 = xT y/γk+1

19: xk+1 = x/γk+1; yk+1 = y/βk+1

20: y =

(
0 I
C B

)
yk+1

21: αk+1 = xT
k+1y

22: end for
{Update Bm, Cm, L, D1}

23: Solve LT z = β2j+1(α2j + α2j+2)ej for z
24: ζ = β2j+1γ2j+1 + β2j+2γ2j+2 − α2j+1α2j+2

25: Update Bm =

(
Bm

zT α2j+1 + α2j+2

)

26: Update Cm =

(
Cm γ2jγ2j+1ej

β2jβ2j+1e
T
m − zT D1 ζ

)

27: end for
28: Returns order m reduced model λ2I − λBm − Cm.

Figure 3.4: Tridiagonal-Hessenberg reduction via nonsymmetric Lanczos

83



3.4.1 Convergence of nonsymmetric Lanczos

We consider the nonsymmetric Lanczos method as an example. The following result

on Ritz value convergence appears in Ye’s paper [56], but is not specific to Lanczos.

For simplicity, assume that both the original n×n matrix A = Y −1ΛY and the m×m

reduced order matrix Â = Q−1ΘQ are diagonalizable. Write P = Q−T , X = Y −T .

Suppose that we can find M so that

eT
1 Aie1 = eT

1 Âie1 (3.30)

for any i ≤M . Then for any polynomial f of degree less than or equal to M ,

eT
1 f(Tn)e1 = eT

1 f(Tm)e1

eT
1 XT f(Λ)Y e1 = eT

1 P T f(Θ)Qe1

f(λ1)x11y11 +
∑

i6=1

f(λi)xi1yi1 = f(θ1)p11q11 +
∑

i6=1

f(θi)pi1qi1

In particular, choose f(x) = (x−θ1)φ(x), where φ(x) is a polynomial of degree M−1

with φ(λ1) = 1. Then

λ1 − θ1 =
1

x11y11

(∑

i6=1

(θi − θ1)φ(θi)pi1qi1 −
∑

i6=1

(λi − θ1)φ(λi)xi1yi1

)

|λ1 − θ1| ≤ K

|x11y11|

(∑

i6=1

|φ(θi)pi1qi1|+
∑

i6=1

|φ(λi)xi1yi1|
) (3.31)

where K = maxi6=1 {|θi − θ1|, |λi − θ1|}. Thus, we have the following bound:

Theorem 3.4.1. Suppose as above that A = XT ΛY and Â = P T ΘQ are diagonal-

izable (P T Q = I, XT Y = I). Let S be the set of n − 1 eigenvalues and m − 1

Ritz values excluding λ1, θ1. Also let K = max
x∈S
|x − θ1|. If M ≥ 1 is chosen so that
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eT
1 Aie1 = eT

1 Âie1 for all i ≤M , then

|λ1 − θ1| ≤ Kε
(
∑

i6=1 |xi1|2 +
∑

i6=1 |pi1|2)1/2

|x11|

· (
∑

i6=1 |yi1|2 +
∑

i6=1 |qi1|2)1/2

|y11|

(3.32)

where ε = min
φ∈PM−1

φ(λ1)=1

max
x∈S
|φ(x)|.

Next, we need the moment matching result. Assume that the nonsymmetric

Lanczos recurrence on A can be run to termination, producing a tridiagonal n × n

matrix Tn similar to A. Since Tm (obtained after m steps) is simply the order m

principal submatrix of Tn, the following results are straightforward to show:

Theorem 3.4.2. Let Tm be a principal submatrix of the tridiagonal matrix Tn.

1. For any i ≤ m− 1, T i
ne1 =

(
T i

me1

0

)
.

2. For any i ≤ 2m− 1, eT
1 T i

ne1 = eT
1 T i

me1.

Therefore setting M = 2m − 1 in Theorem 3.4.1 gives a convergence result for

nonsymmetric Lanczos:

Corollary 3.4.3. Suppose Tn = XT ΛY and Tm = P T ΘQ are diagonalizable (P T Q =

I, XT Y = I). Let S be the set of n− 1 eigenvalues and m− 1 Ritz values excluding

λ1, θ1. Then

|λ1 − θ1| ≤
(

max
x∈S
|x− θ1|

) 
 min

φ∈P2m−2

φ(λ1)=1

max
x∈S
|φ(x)|




·
(

(
∑

i6=1 |xi1|2 +
∑

i 6=1 |pi1|2)1/2

|x11|

) (
(
∑

i6=1 |yi1|2 +
∑

i6=1 |qi1|2)1/2

|y11|

)

(3.33)

85



3.4.2 Extension to Lanczos-type process

The same approach works for the Lanczos-type process. Assuming that the process

can run to completion, we have two n×n symmetric matrices TB, TC with the nonzero

structure illustrated in Figure 2.3. To simplify the following, we characterize this type

of structure by the following definition.

Definition 3.4.4. If aij = 0 whenever i > mj + b1 or j > mi + b2, then A = (aij) is

called an (m, b1, b2)-fan matrix.

A tridiagonal matrix is a (1, 1, 1)-fan matrix, and TB, TC are (2, 0, 0)-fan and

(2, 1, 1)-fan matrices respectively. Basic properties of fan matrices include the follow-

ing:

Lemma 3.4.5. Suppose A is an (m, b1, b2)-fan matrix and Ã is (m̃, b̃1, b̃2)-fan. Then

1. AT is (m, b2, b1)-fan.

2. A + Ã is (m, b1, b2)-fan if m ≥ m̃, m + b1 ≥ m̃ + b̃1, and m + b2 ≥ m̃ + b̃2.

3. The product ÃA is (mm̃, m̃b1 + b̃1, mb̃2 + b2)-fan.

Proof. The first two properties are immediate. The third follows by noting that

Aej ∈ span

{
ek : k = 1 + max

(⌊
j − b2 − 1

m

⌋
, 0

)
, . . . , min (mj + b1, n)

}

and similarly

ÃT ei ∈ span

{
ek̃ : k̃ = 1 + max

(⌊
i− b̃1 − 1

m̃

⌋
, 0

)
, . . . , min

(
m̃i + b̃2, n

)}
.

The sets of indices are disjoint when i > m̃(mj + b1) + b̃1 or j > m(m̃i + b̃2) + b2.
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The following observation will be useful:

Lemma 3.4.6. Let A be an (m, b1, b2)-fan matrix with principal M ×M submatrix

AM . For any M-vector x, A

(
x
0

)
=

(
AMx
∗

)
. If jm + b1 ≤M ,

Aej =

(
AMej

0

)
.

The original quadratic eigenvalue problem has the same eigenvalues as the lin-

earization

(
0 I

TC TB

)
. The QEP resulting from an order m projection has the

same eigenvalues as the corresponding linearization

(
0 Im

(TC)m (TB)m

)
. We need

an equivalent moment-matching result to Theorem 3.4.2 determining the maximum

exponent M so that

eT
1

(
0 I

TC TB

)i

e1 = eT
1

(
0 Im

(TC)m (TB)m

)i

e1

for all i ≤M ; then the bound in Theorem 3.4.1 can be applied.

By induction, we can show that

(
0 I

TC TB

)i

=

(
Ri Si

Ri+1 Si+1

)

defined by the recurrences

Ri+1 = TBRi + TCRi−1, R2 = TC , R1 = 0 (3.34)

Si+1 = TBSi + TCSi−1, S2 = TB, S1 = I. (3.35)

Similarly,

(
0 Im

(TC)m (TB)m

)i

=

(
R̂i Ŝi

R̂i+1 Ŝi+1

)
where R̂i and Ŝi are defined by

recurrences like (3.34, 3.35). This leads to the following theorem:
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Theorem 3.4.7. Let TB, TC , (TB)m, (TC)m be defined as above. Also let M =

blog2 mc, the largest integer such that 2M ≤ m. Then for all i ≤ 2M + 1,

eT
1

(
0 I

TC TB

)i

e1 = eT
1

(
0 Im

(TC)m (TB)m

)i

e1.

Proof. Using Lemma 3.4.5 and recurrences (3.34), (3.35), it is not hard to show by

induction that Ri is (2i−1, 2i−2, 1)-fan for i ≥ 2, and Si is (2i−1, 0, 0)-fan for i ≥ 1.

Next, prove by induction that for i ≤M , Rie1 =

(
Rie1

0

)
; the inductive step is

Rie1 = TBRi−1e1 + TCRi−2e1

= TB

(
R̂i−1e1

0

)
+ TC

(
R̂i−2e1

0

)

=

(
(TB)mR̂i−1e1

0

)
+

(
(TC)mR̂i−2e1

0

)

=

(
Rie1

0

)
.

It follows that

RM+1e1 = TB

(
R̂Me1

0

)
+ TC

(
R̂M−1e1

0

)

=

(
(TB)mR̂Me1

∗
)

+

(
(TC)mR̂M−1e1

∗
)

=

(
RMe1

∗
)

.

Similarly, it can be shown that eT
1 Ri+1 = (eT

1 R̂i+1, ∗) and eT
1 Si+1 = (eT

1 Ŝi+1, 0). There-

fore for i, j ≤M ,

eT
1

(
O I
TC TB

)i+1

= (eT
1 Ri+1, e

T
1 Si+1)

= (eT
1 R̂i+1, ∗, eT

1 Ŝi+1, 0)

(3.36)

and (
O I
TC TB

)j

e1 =

(
Rje1

Rj+1e1

)

=




R̂je1

0

R̂j+1e1

0


 .

(3.37)

88



The product of Equations (3.36, 3.37) is then

eT
1 R̂i+1R̂je1 + eT

1 ŜiR̂j+1e1 = eT
1

(
0 I

(TC)m (TB)m

)i+j+1

e1.

Therefore the following convergence bound applies to the Lanczos-type process.

Corollary 3.4.8. Suppose the Lanczos-type algorithm in Figure 2.4 produces (TB)m,

(TC)m after m steps and can be run to termination to produce TB, TC. Suppose further

that
(

O I
TC TB

)
= XT ΛY,

(
O Im

(TC)m (TB)m

)
= P T ΘQ

are diagonalizable (P T Q = I, XT Y = I). Then

|λ1 − θ1| ≤ ε2M

(
max
x∈S
|x− θ1|

)
·
(

(
∑

i 6=1 |xi1|2 +
∑

i6=1 |pi1|2)1/2

|x11|

)

·
(

(
∑

i6=1 |yi1|2 +
∑

i6=1 |qi1|2)1/2

|y11|

) (3.38)

where ε2M = min

{
max
x∈S
|φ(x)| : φ ∈ P2blog2 mc, φ(λ) = 1

}
and S is the set of 2n − 1

eigenvalues and 2m− 1 Ritz values excluding λ1, θ1.

Remark 3.4.9. A similar calculation gives a corresponding result for the Arnoldi pro-

cess (Figure 2.2) where the polynomial φ is of degree blog2 mc rather than 2blog2 mc.
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Chapter 4

Numerical experiments

4.1 An example from dissipative acoustics

As an application, we consider the following problem from dissipative acoustics [9, 55].

Let Ω ⊂ R2 be a rectangular cavity filled with an acoustic fluid (such as air), with

one absorbing wall ΓA and three reflecting walls ΓR.

Let P (x, t) and U(x, t) be the acoustic pressure and the fluid displacement, re-

spectively. Also let ρ be the density of the fluid, and c the speed at which the fluid

conducts sound. Then the behavior of the fluid satisfies the equations

ρ
∂2U

∂t2
+∇P = 0 (4.1)

−ρc2 div U = P (4.2)

with boundary conditions

U · ν = 0 on ΓR (4.3)

αU · ν + β
∂U

∂t
· ν = P on ΓA (4.4)

where the scalars α, β describe the impedance of the absorbing material. As in [9],

we choose ρ = 1 kg/m3, c = 340 m/s, α = 5 × 104 N/m3, β = 200 N · s/m3 for our

model problem; this choice of α and β models a very viscous absorbing material.
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Figure 4.1: Triangulation of rectangular Ω, N = 2.

We are interested in finding the damped vibration modes of the fluid, which are

solutions of the form U(x, t) = eλtu(x), P (x, t) = eλtp(x). Then, equations (4.1) –

(4.4) reduce to finding λ, p, u satisfying

ρλ2u +∇p = 0 in Ω

p = −ρc2 div u in Ω

p = (α + λβ)u · ν on ΓA

u · ν = 0 on ΓR.

This system can be converted to a variational formulation. Let V = {v ∈

H(div, Ω) : v · ν ∈ L2(∂Ω) and v · ν = 0 on ΓR}. The problem is equivalent to

finding λ ∈ C, nonzero u ∈ V so that

λ2

∫

Ω

ρu · v + λ

∫

ΓA

βu · ν v · ν +

∫

ΓA

αu · ν v · ν +

∫

Ω

ρc2 div u div v = 0 (4.5)

for all v ∈ V . Using finite elements to approximate V by Vh = span{φ1, . . . , φn} yields

the n× n quadratic matrix eigenvalue problem

λ2Mx + λβFx + (αF + K)x = 0, (4.6)
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Figure 4.2: Relative residual norms for selected eigenvalues.

where

Mij =

∫

Ω

ρφi · φj, Kij =

∫

Ω

ρc2 div φi div φj, Fij =

∫

ΓA

φi · ν φj · ν.

To avoid spurious eigenvalues caused by discretization, lowest order Raviart-

Thomas finite elements are used [9, 46]. Each basis element φi is a vector-valued

function with piecewise constant divergence on each triangle of the mesh and φi · ν

constant along each edge. With a natural choice of the basis, each finite element

corresponds to an edge in the interior or on the absorbing boundary ΓA. We use a

triangulation of Ω with 6N edges along the vertical sides and 8N edges along the

horizontal sides (Figure 4.1). With the choice of the discretization parameter N = 8,

a model with 9168 degrees of freedom is obtained.

Let A = M , B = βF , C = αF + K and write (4.6) as the symmetric quadratic
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Figure 4.3: Spectrum of Bermúdez–Durán acoustics problem.

eigenvalue problem

(λ2A + λB + C)x = 0 (4.7)

where A is symmetric positive definite and B,C are positive semidefinite matrices.

Observe that this problem has both overdamped (negative real) eigenvalues and com-

plex eigenvalues appearing in conjugate pairs (Figure 4.3). Since this problem models

a stable phenomenon, all eigenvalues appear in the left complex half-plane.

4.1.1 The symmetric Lanczos-type method with shift

Here we demonstrate the convergence behavior of the symmetric Lanczos-type method

described in Section 2.2.1, by using it to compute the four eigenvalues of (4.7) with

largest real part and nonnegative imaginary part. The acoustics problem is con-

structed on a rectangular domain with the choice of constants ρ, c, α, β given in

Section 4.1. Also, the discretization parameter N is set to 8, giving a quadratic
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eigenvalue problem (4.7) of order 9168. In this test, we transform (4.7) by a real shift

and invert, and apply the symmetric Lanczos-type method to the shifted problem.

Shift and invert about σ = −253 to get

(µ2Â + µB̂ + Ĉ)x = 0;

for this choice of σ, Â remains positive definite. Therefore, we can take the Cholesky

decomposition Â = LLT and construct an equivalent monic problem

(µ2I + µ(L−1B̂L−T ) + (L−1ĈL−T ))u = 0 (4.8)

where Â = LLT is the Cholesky decomposition. Algorithm 2.4 is applied to (4.8) in

a symmetric Lanczos type process to get a basis Vk and banded k×k matrices Ta, Tb.

It follows that if (θi, ui) is an eigenpair to the projected problem

(µ2Ii + µTa(1:i,1:i) + Tb(1:i,1:i))u = 0, (4.9)

then (λi, xi) = (σ +1/µi, zi/‖zi‖) is an approximate eigenpair to the original problem

(4.7), where zi = LT Vk(:,1:i)ui.

Figure 4.2 shows the convergence rates of Algorithm 2.4 when computing each

of the four eigenvalues of (4.7) listed in Figure 4.4. Each line corresponds to one

exact eigenvalue. For each subspace dimension i = 1, . . . , 500, we perform i steps of

Algorithm 2.4 to obtain (4.9), which is linearized as

(
Ii

−Tb(1:i,1:i) −Ta(1:i,1:i)

)(
u
µu

)
= µ

(
u
µu

)

and solved for the desired approximate eigenpair (λi, xi) using the Matlab eigs

function. To indicate the accuracy of this approximate solution, Figure 4.2 plots the

resulting relative residual norms ri =
‖(λ2

i A + λiB + C)xi‖
|λi|2‖A‖+ |λi|‖B‖+ ‖C‖ .
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Eigenvalue λ̂ Plot line Matrix-vector products |λi − λ̂|
−259.23 + 813.27i dotted 318 1.746× 10−8

−320.54 + 267.66i dashed 322 1.053× 10−8

−342.15 dash-dot 356 8.830× 10−9

−296.66 solid 386 3.797× 10−9

Figure 4.4: Required matrix-vector products for acoustics problem.

Figure 4.4 lists the values of the four selected eigenvalues. For each exact eigen-

value λ̂, the table indicates which line in Figure 4.2 corresponds to that eigenvalue,

the number of matrix-vector products required to obtain a relative residual norm

ri < 10−8, and the accuracy of the corresponding eigenvalue λi.

4.1.2 Comparison of Arnoldi-type methods

In the following examples, we compare the convergence of the Arnoldi variant methods

I-III when applied to the acoustics problem of order 564, obtained by setting the

parameter N = 2. Each Arnoldi method is restarted periodically. For our tests, each

method is run for a total of 50 iterations, restarting after every 10 iterations. In each

test, we start with the shift σ = −200 + 300i and a randomly-chosen initial vector;

the closest eigenvalue to σ is λ ≈ −317.98 + 267.76i. The accuracy of each Ritz pair

(λi, xi) is tracked by plotting its residual ‖(λ2
i A + λiB + C)xi‖.

In Figure 4.5, we show the convergence of each Arnoldi variant method when each

restart shifts and inverts the quadratic eigenvalue problem about the current shift.

Since the original problem is inverted, each inner Arnoldi implementation attempts

to find a large, well-separated eigenvalue µ. Krylov methods converge quickly un-

der these conditions, hence the rapid leveling-off of the residuals after each restart.

However, the construction of each Arnoldi variant algorithm neglects one of the three
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Figure 4.5: Comparison of shift and invert restarted Arnoldi variants

terms of the QEP, which are respectively O(1), O(µ), and O(µ2) in norm. Therefore,

since µ is large, the best performance is obtained from Arnoldi variants I (solid line),

II (dashed line), and III (dotted line), in that order.

Figure 4.6 shows convergence rates of the Arnoldi variants in a restarted method

using simple shifts between restarts instead of a spectral inversion. Observe that

Arnoldi I now converges more slowly than the others, as expected (since the Arnoldi

I variant neglects the dominant term when µ is small). However, all three methods

offer poor convergence, even after 300 iterations; since the desired eigenvalue µ is not

well-separated from the rest of the spectrum, poor convergence results.

4.1.3 Convergence of residual-maximizing algorithms

Figure 4.7 shows corresponding convergence rates of four residual-maximizing al-

gorithms using a shift and invert after every 10 iterations. The four methods are
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Figure 4.6: Comparison of simply shifted restarted Arnoldi variants

the Arnoldi variant I (solid line), the residual-maximizing algorithm (dashed line)

with approximate solution (µ̃j+1, ũj+1) = (µj, ej), the Krylov-type projection method

from Section 2.2.1 (dotted line), and the residual-maximizing algorithm with nat-

ural choice of approximate solution, as in Figure 2.8 (dashed-dotted line). Recall

from Theorem 2.5.1 that the Arnoldi I variant and the Krylov-type method are also

residual-maximizing algorithms with special choices of approximate solution. Essen-

tially, those algorithms using solutions closest to the natural choice (µj, uj) appear to

converge fastest; note that the original residual-maximizing method converges almost

completely before the first restart.

Figure 4.8 shows the convergence of the same methods when they are run with-

out restarts, and more clearly illustrates the dramatically different behavior. As in

the restarted case, the methods using approximate eigenvector ũj+1 = ej (solid and
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Figure 4.7: Restarted residual-maximizing algorithms

dashed lines) behave comparably; the Krylov-type projection method (with approxi-

mate eigenvector ũj+1 = ebj/2c) converges faster, and the natural residual-maximizing

method converges fastest.

4.1.4 Behavior of moment-matching projections

To demonstrate the numerical behavior of the Q-Arnoldi, SOAR, and Lanczos-type

SOAR methods from Section 3.2, each method is applied to the quadratic acoustics

problem of order 564 discussed previously. For this example, we apply a spectral

transformation with a real shift, as in Section 4.1.1. Our choice of shift is σ = −260,

so that the symmetric, monic shifted problem in Equation (4.8) can be obtained

using a Cholesky factorization. As before, the desired eigenvalue is λ ≈ −317.98 +

267.76i. Figure 4.9 shows the results. Each algorithm is applied for 50 iterations;

the gap between the Ritz values and the eigenvalue is plotted in Figure 4.9(a), and
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Figure 4.8: Residual-maximizing algorithms, unrestarted

the residuals of the corresponding Ritz pairs appear in Figure 4.9(b). The dashed

line shows the residuals computed with the Q-Arnoldi method, while the solid and

dotted-solid lines were computed with the SOAR and generalized Lanczos SOAR

methods, respectively. All three of these projection methods offer comparable rates of

convergence, which is to be expected since they are Arnoldi-based methods matching

m moments.

Furthermore, convergence of nonsymmetric Lanczos is shown in the dotted lines of

Figure 4.9. Recall from Section 3.3 that a triangular-Hessenberg quadratic eigenvalue

problem of order m can be constructed from 2m iterations of nonsymmetric Lanczos.

The recurrence constructs biorthogonal P2m and Q2m so that

P T
2m

(
0 I

Ĉ B̂

)
Q2m = T2m.

If (µ, u) is an eigenpair of T2m, then the Ritz pair of

(
0 I

Ĉ B̂

)
could be defined
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(a) Accuracy of Ritz values
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(b) Eigenpair residuals

Figure 4.9: Moment-matching projections

reasonably as (µ,Q2mu), since its residual is orthogonal to P2m. If the Ritz vector

Q2mu were an exact eigenvector of the linearization, then it would of course have

the form

(
x
λx

)
for an eigenvector x of the original quadratic eigenvalue problem.

Therefore, we can choose the last n components (Q2mu)1:n as an approximate eigen-

vector of the QEP. Similarly, if the triangular-Hessenberg reduction is applied to T2m

to construct the linearization

(
0 I

Cm Bm

)
, then the eigenpair (µ, v) of this order m

quadratic eigenvalue problem gives rise to a corresponding eigenvector PW−1

(
v
µv

)

of T2m; the corresponding approximate eigenvector of the original QEP would be
(

Q2mP

(
v

L−1(µI −D1)v

))

1:n

. According to Figure 4.9, this choice of approxi-

mate eigenpair produces residuals that converge like the three Arnoldi-based meth-

ods. However, the accuracy of the Ritz values improves much faster; this is expected,

since the method matches 4m moments instead of m.
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[35] K. Meerbergen and M. Robbé. The Arnoldi method for the solution of the

quadratic eigenvalue problem and parametrized equations.

105



[36] V. Mehrmann and D. Watkins. Structure-preserving methods for computing

eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci.

Comput., 22(6):1905–1925 (electronic), 2000.

[37] V. Mehrmann and D. Watkins. Polynomial eigenvalue problems with Hamilto-

nian structure. Electron. Trans. Numer. Anal., 13:106–118 (electronic), 2002.

[38] R. B. Morgan. On restarting the Arnoldi method for large nonsymmetric eigen-

value problems. Math. Comp., 65(215):1213–1230, 1996.

[39] K. W. Morton and D. F. Mayers. Numerical solution of partial differential equa-

tions. Cambridge University Press, Cambridge, 1994.

[40] A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order

interconnect macromodeling algorithm. IEEE Trans. on CAD, 17(8), August

1998.

[41] B. N. Parlett. The symmetric eigenvalue problem, volume 20 of Classics in

Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1998. Corrected reprint of the 1980 original.

[42] B. N. Parlett and H. C. Chen. Use of indefinite pencils for computing damped

natural modes. Linear Algebra Appl., 140:53–88, 1990.

[43] B. N. Parlett and I. S. Dhillon. Relatively robust representations of symmetric

tridiagonals. In Proceedings of the International Workshop on Accurate Solution

of Eigenvalue Problems (University Park, PA, 1998), volume 309, pages 121–151,

2000.

106



[44] B. N. Parlett and Y. Saad. Complex shift and invert strategies for real matrices.

Linear Algebra Appl., 88/89:575–595, 1987.

[45] B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lánczos algorithm for
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