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ABSTRACT OF DISSERTATION

GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM

The Generalized Minimal Residual method (GMRES) is often used to solve a non-
symmetric linear system Ax = b. But its convergence analysis is a rather difficult task
in general. A commonly used approach is to diagonalize A = XΛX−1 and then separate
the study of GMRES convergence behavior into optimizing the condition number of X
and a polynomial minimization problem over A’s spectrum. This artificial separation
could greatly overestimate GMRES residuals and likely yields error bounds that are too
far from the actual ones. On the other hand, considering the effects of both A’s spectrum
and the conditioning of X at the same time poses a difficult challenge, perhaps impossi-
ble to deal with in general but only possible for certain particular linear systems. This
thesis will do so for a (nonsymmetric) tridiagonal Toeplitz system. Sharp error bounds
on and sometimes exact expressions for residuals are obtained. These expressions and/or
bounds are in terms of the three parameters that define A and Chebyshev polynomials
of the first kind or the second kind.
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Chapter 1

Introduction

1.1 Introduction

Iteration methods are often used to solve large sparse systems of linear equations. The

Generalized Minimal Residual (GMRES) method [32, 14] is such an algorithm and is

often used for solving a non-symmetric linear system

Ax = b, (1.1.1)

where A is an N ×N nonsingular matrix, and b is a vector with dimension N .

The basic idea is to seek approximate solutions, which minimize the residual norm,

within the Krylov subspaces. Specifically, the kth approximation, xk, is sought so that

the kth residual, rk = b− Axk, satisfies [32] (without loss of generality, we take initially

x0 = 0 and thus r0 = b)

‖rk‖2 = min
y∈Kk

‖b− Ay‖2,

where the kth Krylov subspace Kk ≡ Kk(A, b) of A on b is defined as

Kk ≡ Kk(A, b)
def
= span{b, Ab, . . . , Ak−1b}, (1.1.2)

and generic norm ‖ · ‖2 is the usual `2 norm of a vector or the spectral norm of a matrix.

According to R. W. Freund, N. M. Nachtigal [12] and M. Embree [10], the residual

norms by other algorithms, such as QMR [12, 13] and BiCGSSTAB [39, 20], are somehow
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related to the GMRES residual norm. Hence, understanding convergence for GMRES

helps us to study convergence of other algorithms.

Roughly speaking, there are three kinds of convergence bounds for GMRES:

1. The bound based on eigenvalues with the eigenvector condition number [8, 32];

2. The bound based on the field of values [6, 7];

3. The bound based on pseudospectra [37, 36].

In this thesis we are most interested in the first kind. It starts by diagonalizing A =

XΛX−1 and then separating the study of GMRES convergence behavior into optimizing

the condition number of X and a polynomial minimization problem over A’s spectrum.

This artificial separation could greatly overestimate GMRES residuals and likely yields

error bounds that are too far from the actual ones. On the other hand, considering the

effects of both A’s spectrum and the conditioning of X at the same time poses a difficult

challenge, perhaps impossible to deal with in general but possible for certain particular

linear systems.

1.2 Objective

This thesis is concerned with the convergence analysis of GMRES on a linear system

Ax = b whose coefficient matrix A is a (nonsymmetric) tridiagonal Toeplitz coefficient

matrix

A =


λ µ

ν
. . . . . .
. . . . . . µ

ν λ

 ,

where λ, µ, ν are assumed nonzero and possibly complex. Linear systems as such have

been studied quite extensively in the past. For the nonsymmetric case, i.e., µ 6= ν as we
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are interested in here, most up-to-date and detailed studies are due to Liesen and Strakoš

[26] and Ernst [11].

Motivated to better understand the convergence behavior of GMRES on a convection-

diffusion model problem [27], Liesen and Strakoš and Ernst established various bounds

on residual ratios. Most results in Liesen and Strakoš [26] are of a qualitative nature,

intended to explain GMRES convergence behaviors for such linear systems. In particular,

Liesen and Strakoš showed that GMRES for tiny |µ| behaves much like GMRES after

setting µ to 0. Instead of eigenvalue information, Ernst used the field of values to assess

the convergence rate. Our object here is to analyze the kth residual for the GMRES on

tridiagonal Toeplitz A directly and arrive at simple quantitative results.

The remainder of this thesis is organized as follows.

Chapter 2 reviews necessary material about GMRES method and Chebyshev polyno-

mials. Section 2.1 reviews projection methods and some of their properties. Section 2.2

introduces Krylov subspaces. Based on projection methods and Krylov subspaces, Sec-

tion 2.3 explains the Arnoldi process and GMRES algorithm. Section 2.4 introduces

Chebyshev polynomials of the first kind and the second kind.

Chapter 3 covers the rate of convergence analysis of GMRES Method on a tridiagonal

Toeplitz linear system by applying the Chebyshev polynomial of the first kind. Section 3.1

gives the calculation of the kth residual of GMRES method. Section 3.2 analyzes the

norm of the residual based on rectangular Vandermonde matrices and the Chebyshev

polynomial of the first kind. Section 3.3 follows the calculation of the residual in Sec-

tion 3.2, and shows an estimation of the upper bound of the kth residual in a general

case, which is given by Theorem 3.3.1. Section 3.3 finishes the proof of Theorem 3.3.1

by analyzing the decomposition of the residual. Some numerical examples are also given
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in Section 3.3. Section 3.4 lists the estimation result with some special right-hand sides:

e1, eN , or b(1)e1 + b(N)eN . The estimation comes from Theorem 3.3.1 and gives a tight

upper bound. Section 3.5 estimates what the worst convergence speed could be.

Chapter 4 applies Chebyshev Polynomials of the second kind to estimate the kth

residual, rk, of GMRES method on a tridiagonal Teoplitz linear system. Section 4.1

calculates the residual by applying rectangular Vandermonde matrices and the Cheby-

shev polynomial of the second kind. The computation is similar to those in Chapter 3,

and similar bounds are obtained. Section 4.2 follows the computation in the previous

section, and gives an estimation of residuals of GMRES with a general right-hand side.

The residuals with special right-hand side: b = e1 or b = eN are calculated exactly in

Section 4.3. Some of the complicated computations, needed in Section 4.2, are presented

in Section 4.4. Chapter 5 presents our concluding remarks.

1.3 Notation

Throughout this thesis, Kn×m is the set of all n ×m matrices with entries in K, where

K is C (the set of complex numbers) or R (the set of real numbers), Kn = Kn×1, and

K = K1. In (or simply I if its dimension is clear from the context) is the n× n identity

matrix, and ej is its jth column. The superscript “·∗” takes conjugate transpose while

“·T ” takes transpose only. The smallest singular value of X is denoted by σmin(X).

We shall also adopt MATLAB-like convention to access the entries of vectors and

matrices. The set of integers from i to j inclusive is i : j. For vector u and matrix

X, u(j) is u’s jth entry, X(i,j) is X’s (i, j)th entry, diag(u) is the diagonal matrix with

(diag(u))(j,j) = u(j); X’s submatrices X(k:`,i:j), X(k:`,:), and X(:,i:j) consists of intersections

of row k to row ` and column i to column j, row k to row ` and all columns, and all rows
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and column i to column j, respectively. Finally ‖ · ‖p (1 ≤ p ≤ ∞) is the `p norm of a

vector or the `p operator norm of a matrix, defined as

‖u‖p =

(∑
j

|u(j)|p
)1/p

, ‖X‖p = max
‖u‖p=1

‖Xu‖p.

bαc be the largest integer that is no bigger than α, and dαe the smallest integer that is

no less than α.

Throughout this thesis, exact arithmetic is assumed, A is N -by-N , and k is GMRES

iteration index. Since in exact arithmetic GMRES computes the exact solution in at

most N steps, rN = 0. For this reason, we restrict k < N at all times. This restriction

is needed to interpret our later results concerning (worst) asymptotic speed in terms of

certain limits of ‖rk‖1/k as k →∞.

Copyright c© Wei Zhang 2007
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Chapter 2

Preliminary

In this chapter, we briefly present the projection method, the Krylov subspace method,

the GMRES method, and Chebyshev polynomials. The projection methods and some of

their properties are presented in Section 2.1. In Section 2.2, the Krylov subspace method

is introduced as a special case of the Projection method. Section 2.3 introduces the

GMRES method, including Arnoldi process and the general GMRES algorithm. Finally

Section 2.4 presents Chebyshev polynomials of the first kind and the second kind.

2.1 Projection Method

2.1.1 Basic Idea

A projection method [21, 15] is to find an approximation to the solution of a linear system

from a subspace, and is widely used for solving large linear systems.

Without loss of generality, we take initially x0 = 0. A general projection method for

solving the linear system

Ax = b

is a method which seeks an approximate solution xm from a subspace Jm of dimension

m by imposing the Petrov-Galekin condition:

b− Axm⊥Lm,
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i.e.,

〈b− Axm, w〉 = 0,∀w ∈ Lm, (2.1.1)

where Lm is another subspace of dimension m, and 〈·, ·〉 is the inner product.

The subspace Jm is the search subspace, which contains the approximate solution xm.

Lm is called the subspace of constraints, i.e. the constraints in the Petrov-Galekin con-

dition. Jm and Lm can be the same subspace, which results in an orthogonal projection

method. If they are different, it is called an oblique projection method.

Let Jm have a basis {v1, v2, . . . , vm}, and V = [v1, v2, . . . , vm] be an n × m matrix.

Let Lm have a basis {w1, w2, . . . , wm}, and W = [w1, w2, . . . , wm] be an n ×m matrix.

Then let xm = V y, where y is a vector with dimension m. According to (2.1.1), we have

W TAV y = W T b. (2.1.2)

If W TAV is nonsingular, then xm can be written as

xm = V y = V (W TAV )−1W T b. (2.1.3)

The projection method can be presented by Algorithm 2.1.1 [29].

Algorithm 2.1.1 Projection Method
1: repeat
2: Select a pair of subspace Jm and Lm;
3: Choose bases V = [v1, v2, . . . , vm] and W = [w1, w2, . . . , wm] for Jm and Lm;
4: r := b− Ax;
5: y := (W TAV )−1W T r;
6: x := x+ V y;
7: until convergence

2.1.2 Properties

Obviously, Algorithm 2.1.1 works only if W TAV is nonsingular. A special case, where

W TAV is nonsingular, is presented by [29, Proposition 5.1].
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Proposition 2.1.1. If A is nonsingular and Lm = AJm, then the matrix W TAV is

nonsingular for any basis matrices V and W of Jm and Lm, respectively.

Proof: Since Lm = AJm, then we have

W = AV G,

where G is a nonsingular m×m matrix. Hence

W TAV = GT (AV )TAV.

Since A is a nonsingular N ×N matrix, and V is a basis of Jm with dimension N ×m,

then N ×m matrix AV is of full column rank and (AV )TAV is nonsingular. .

[29, Proposition 5.1] also presents another particular case as follows,

Proposition 2.1.2. If A is positive definite and Lm = Jm, then the matrix W TAV is

nonsingular for any basis matrices V and W of Jm and Lm, respectively.

Proof: Since Lm = Jm, then

W = V G,

where G is a nonsingular m×m matrix. Hence

W TAV = GTV TAV.

Since A is positive definite, V TAV is also positive definite. Hence W TAV = GTV TAV

is nonsingular. .

According to the above propositions, Lm is chosen as Jm or AJm very often. Let

Lm = AJm. The projection method minimizes 2-norm of the residual r = b − Ax [29,

Proposition 5.3].

8



Proposition 2.1.3. Let A be an arbitrary square matrix, Lm = AJm. Given an initial

solution x0 = 0, a vector x̃ is the result of an projection method onto Jm, orthogonally

to Lm if and only if it minimizes the 2-norm of the residual vector b−Ax̃ over x ∈ Jm,

i.e.

‖b− Ax̃‖2 = min
x∈Km

‖b− Ax‖2.

Proof: If x̃ is the minimizer of ‖b − Ax‖2, it is necessary and sufficient that b − Ax̃

is orthogonal to all vectors of the form v = Ay, where y ∈ Jm. Since Lm = AJm,

v = Ay ∈ Lm. Hence x̃ is the minimizer of ‖b− Ax‖2, if and only if,

〈b− Ax̃, v〉 = 0,∀v ∈ Lm,

i.e. the Petrov-Galerkin condition is satisfied, and x̃ is the approximated solution.

Proposition 2.1.3 is applied in GMRES method. For Lm = Jm, there is a similar

property, which is used in this thesis and omitted here.

2.2 Krylov Subspace

A Krylov subspace method [29, 31] is a projection method for which the subspace Jm is

the Krylov subspace

Jm = Km(A, b) = span{b, Ab, A2b, . . . , Am−1b}.

In this thesis, Km(A, b) will be denoted by Km.

The approximations obtained from a Krylov subspace method are of the form

A−1b ≈ xm = qm−1(A)b,

where qm−1 is a certain polynomial of degree (m− 1).

9



The dimension of the subspace increases by one at each step1 of the iterative process.

The subspace Km is the subspace of all vectors in RN which can be written as x = p(A)b,

where p is a polynomial of degree not exceeding m− 1.

2.3 GMRES method

The Generalized Minimum Residual Method(GMRES) [32, 14] is a projection method

based on taking Jm = Km and Lm = AKm, in which Km is the m-th Krylov subspace

with v1 = r0/‖r0‖2. The GMRES method minimizes the residual norm over all vectors

in the Krylov subspace Km.

2.3.1 Arnoldi Algorithm

Arnoldi’s process [2, 30] is applied to build an orthogonal basis of the Krylov subspace

Km. In exact arithmetic, the Arnoldi algorithm is described as Algorithm 2.3.1.

Algorithm 2.3.1 Arnoldi algorithm

1: Choose a vector v1 of norm 1;
2: for j = 1,2,. . . ,m do
3: Compute hij = 〈Avj, vi〉 for i = 1,2,. . . ,j;
4: Compute wj = Avj −

∑j
i=1 hijvi;

5: hj+1,j = ‖wj‖2;
6: if hj+1,j = 0 then stop;
7: vj+1 = wj/hj+1,j;
8: end for

According to Algorithm 2.3.1, {v1, v2, ...vm} forms an orthogonal basis of the Krylov

subspace Km. At each step, the algorithm multiplies the previous vector vj by A and

then orthonormalizes the resulting vector wj against all previous vi’s by a standard Gram-

Schmidt procedure. If wj vanishes, then the process stops. If wj does not vanish, then

another vector vj+1 is obtained, and the algorithm produces a bigger Krylov subspace

Kj+1.

1If Amb ∈ Km, then the dimension of Km+1 is equal to the dimension of Km.
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+hm+1,mvm+1e

T
m

Figure 2.3.1: AVm = VmHm + hm+1,mvm+1e
T
m.

According to Algorithm 2.3.1, the following property is obtained [29].

Proposition 2.3.1. Let Vm = [v1, v2, . . . , vm], where {v1, . . . , vm} are obtained from

Algorithm 2.3.1, and H̄m be the (m + 1) ×m Hessenberg matrix whose nonzero entries

hij are defined by Algorithm 2.3.1, and Hm obtained from H̄m by deleting the last row.

Then

AVm = Vm+1H̄m (2.3.4)

= VmHm + hm+1,mvm+1e
T
m, (2.3.5)

and hence

V T
mAVm = Hm. (2.3.6)

The proof just follows from Algorithm 2.3.1, and is omitted here. Obviously, the

relation (2.3.4) and (2.3.5) are equivalent, the relation (2.3.6) is obtained by multiplying

both sides of (2.3.5) by V T
m .

The relation (2.3.5) is represented in Figure 2.3.1.

In practice, the Modified Gram-Schmidt [34] or the Householder Arnoldi [40] is used

instead of the standard Gram-Schmidt algorithm. The Modified Gram-Schmidt results

in Algorithm 2.3.2 [34].
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Algorithm 2.3.2 Arnoldi-Modified Gram-Schmidt

1: Choose a vector v1 of norm 1;
2: for j = 1,2,. . . ,m do
3: Compute wj = Avj;
4: for i = 1,2,. . . ,j do
5: hij = 〈wj, vi〉;
6: wj = wj − hijvi;
7: end for
8: hj+1,j = ‖wj‖2. If hj+1,j = 0 then stop;
9: vj+1 = wj/hj+1,j;

10: end for

The Arnoldi-Modified Gram-Schmidt and Algorithm 2.3.1 are mathematically equiv-

alent in exact arithmetic. If we consider the round-off in practice, Algorithm 2.3.2 is

more reliable. If even Algorithm 2.3.2 is inadequate, then double orthogonalization or

the Housholder Arnoldi can be used.

The Arnoldi-Modified Gram-schmidt algorithm is applied in the GMRES algorithm

in the next subsection.

2.3.2 GMRES Algorithm

By using the Arnoldi-Modified Gram-schmidt algorithm [34] to build an orthogonal basis

of the Krylov subspace Km, the GMRES method seek an approximation minimizing the

residual norm over all vectors in the Krylov subspace Km.

Any vector x in the Krylov subspace Km can be written as:

x = Vmy,

where y is an m-vector. Then

‖b− Ax‖2 = ‖b− AVmy‖2.

12



Furthermore, we have

b− Ax = b− AVmy

= βv1 − Vm+1H̄my

= Vm+1(βe1 − H̄my),

where β = ‖b‖2. Since the column-vectors of Vm+1 are othonormal, then

‖b− Ax‖2 = ‖βe1 − H̄my‖2. (2.3.7)

The GMRES approximation gives the unique vector in Km, which minimizes ‖b−Ax‖2.

According to (2.3.7), this approximation can be obtained by seeking an optimal ym that

minimizes ‖βe1 − H̄my‖2, hence the approximation is xm = Vmym. The ym is easier to

compute since it is the solution of an (m+ 1)×m least-squares problem where m is not

big generally. The algorithm is described as Algorithm 2.3.3 [32].

Algorithm 2.3.3 GMRES

1: Compute r0 = b, β = ‖r0‖2, and v1 = r0/β;
2: Define the (m+ 1)×m matrix H̄m = {hij}1≤i≤m+1,1≤j≤m;
3: for j = 1,2,. . . ,m do
4: Compute wj = Avj;
5: for i = 1,2,. . . ,j do
6: hij = 〈wj, vi〉;
7: wj = wj − hijvi;
8: end for
9: hj+1,j = ‖wj‖2. If hj+1,j = 0 set m = j and go to 12;

10: vj+1 = wj/hj+1,j;
11: end for
12: Compute ym, the minimizer of ‖βe1 − H̄my‖2, and xm = Vmym.

Algorithm 2.3.3 calculates the GMRES approximation as:

xm = Vmym, (2.3.8)

where

ym = argminy‖βe1 − H̄my‖2. (2.3.9)
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Similar to Algorithm 2.3.1, Algorithm 2.3.3 will stop if wj vanishes, i.e., when hj+1,j =

0 at some step j. If the algorithm stops in this way, that means the residual vector is zero,

hence the approximation of GMRES will be the exact solution. The following proposition

is Proposition 2 in [32].

Proposition 2.3.2. The solution xj produced by GMRES at step j is exact if and only

if the following four equivalent conditions hold:

1. The algorithm 2.3.3 breaks down at step j.

2. vj+1 = 0.

3. hj+1,j = 0.

4. The degree of the minimal polynomial of A on the initial residual vector r0 is equal

to j, where the minimal polynomial of A on r0 is the monic polynomial of least

degree such that p(A)r0 = 0.

The breakdown results in the exact solution. Because the degree of the minimal

polynomial of v1 can not exceed N for an N -dimensional problem, GMRES terminates

in at most N steps [32].

We also can illustrate the above property by Figure 2.3.2, which is obtained by letting

hj+1,j = 0 in Figure 2.3.1.

2.3.3 Practical Implementation of GMRES

In order to solve the least-squares problem min‖βe1 − H̄my‖2 in the last step of Algo-

rithm 2.3.3, the Hessenberg matrix is transformed into upper triangular form by using

14



A Vj = Vj
Hj

@
@

@
@

@@

@
@

@
@

@

0

Figure 2.3.2: AVj = VjHj + 0.

Givens rotations [16, 32]. Define the rotation matrices as

Qi =



1
. . .

1
ci si

−si ci
1

. . .

1


, (2.3.10)

where c2i + s2
i = 1. Given H̄m as an (m+ 1) × m matrix, Qi’s are (m+ 1) × (m+ 1)

matrices for 1 ≤ i ≤ m.

The idea can be best explained for m = 4. We have

H̄4 =


h11 h12 h13 h14

h21 h22 h23 h24

h32 h33 h34

h43 h44

h54

 , γ̄ =


β
0
0
0
0

 . (2.3.11)

Multiply H̄4 and γ̄ by

Q1 =


c1 s1

−s1 c1
1

1
1

 ,

where

c1 =
h11√

h2
11 + h2

21

,

s1 =
h21√

h2
11 + h2

21

.
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Then we have

H̄
(1)
4 =


h

(1)
11 h

(1)
12 h

(1)
13 h

(1)
14

h
(1)
22 h

(1)
23 h

(1)
24

h32 h33 h34

h43 h44

h54

 , γ̄(1) =


c1β
−s1β
0
0
0

 . (2.3.12)

Now h21 has been eliminated, and we can multiply Q2 to eliminate h32, and continue the

elimination process until the upper triangular H
(4)
4 is obtained,

R̄4 = H̄
(4)
4 =


h

(4)
11 h

(4)
12 h

(4)
13 h

(4)
14

h
(4)
22 h

(4)
23 h

(4)
24

h
(4)
33 h

(4)
34

h
(4)
44

0

 , γ̄(4) =


γ1

γ2

γ3

γ4

γ5

 =


c1β
−c2s1β
c3s2s1β
−c4s3s2s1β
s4s3s2s1β

 , (2.3.13)

where ci and si are defined as

ci =
h

(i−1)
ii√

(h
(i−1)
ii )2 + h2

i+1,i

, (2.3.14)

si =
hi+1,i√

(h
(i−1)
ii )2 + h2

i+1,i

. (2.3.15)

Let Q̄ = Q4Q3Q2Q1, then

R̄4 = Q̄H̄4, (2.3.16)

γ̄(4) = Q̄γ̄ = Q̄βe1, (2.3.17)

and

γ̄(4) − R̄4y = Q̄βe1 − Q̄H̄4y (2.3.18)

= Q̄(βe1 − H̄4y). (2.3.19)

Since Q̄ is unitary,

min ‖γ̄(4) − R̄4y‖2 = min ‖βe1 − H̄4y‖2. (2.3.20)
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The solution to min ‖γ̄(4) − R̄4y‖2 can be calculated by solving the upper triangular

system, 
h

(4)
11 h

(4)
12 h

(4)
13 h

(4)
14

h
(4)
22 h

(4)
23 h

(4)
24

h
(4)
33 h

(4)
34

h
(4)
44

 y =


γ1

γ2

γ3

γ4

 . (2.3.21)

Moreover, min ‖γ̄(4) − R̄4y‖2 = |γ5|.

2.4 Chebyshev Polynomials

Chebyshev polynomials [28, 1], named after Pafnuty Chebyshev, are a sequence of orthog-

onal polynomials which are related to de Moivre’s formula and which are easily defined

recursively. In this thesis, we calculate Chebyshev polynomials of the first kind which

are denoted by Tn(x) and Chebyshev polynomials of the second kind which are denoted

by Un(x).

2.4.1 Chebyshev Polynomials of the First Kind

The Chebyshev polynomials of the first kind [28] are a set of orthogonal polynomials

defined as the solutions to the Chebyshev differential equation. They are used as an ap-

proximation to a least squares fit. They are also intimately connected with trigonometric

multiple-angle formulas. They are normalized such that Tn(1) = 1.

The Chebyshev polynomials of the first kind can be obtained from the generating

function

g(t, x) =
1− xt

1− 2xt+ t2
=

∞∑
n=0

Tn(x)tn,

for |x| < 1 and |t| < 1.
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The Chebyshev polynomials of the first kind are:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

. . . ,

Tn+2(x) = 2Tn+1x− Tn(x).

The Chebyshev polynomials of the first kind can also be defined through the identity

Tn(cos θ) = cos(nθ).

Let x = cos(θ). Then

Tn(x) = cos(nθ) = cos(n arccos(x)).

The sequence of Chebyshev polynomials Tn(x) composes a sequence of orthogonal

polynomial. Two different polynomials Tn(x), Tm(x) in the sequence are orthogonal to

each other in the following sense

∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=


0, if m 6= n,
π, if m = n = 0,

π/2, if m = n 6= 0.
(2.4.22)

2.4.2 Chebyshev Polynomials of the Second Kind

The Chebyshev polynomials of the second kind [28] are denoted Un(x) and are defined

by a different generating function

g(t, x) =
1

1− 2xt+ t2
=

∞∑
n=0

Un(x)tn,

for |x| < 1 and |t| < 1.

18



The Chebyshev polynomials of the second kind are:

U0(x) = 1,

U1(x) = 2x,

U2(x) = 4x2 − 1,

. . . ,

Un+2(x) = 2Un+1x− Un(x).

Letting x = cos(θ) allows the Chebyshev polynomials of the second kind to be written

as

Un(x) =
sin[(n+ 1)θ)]

sin(θ)
.

The sequence of Un(x) also composes a orthogonal polynomial sequence. Two different

polynomials Un(x), Um(x) in the sequence are orthogonal to each other in the following

sense ∫ 1

−1

Un(x)Um(x)
√

1− x2dx =

{
0, if m 6= n,

π/2, if m = n.
(2.4.23)

Copyright c© Wei Zhang 2007
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Chapter 3

Convergence Analysis Using Chebyshev Polynomials of the First Kind

In this and next chapter, we will present our main result of the convergence analysis of

GMRES, i.e. estimation of the residuals of a tridiagonal Toeplitz matrix. Section 3.1

introduces how the residuals are calculated. Section 3.2 applies Chebyshev polynomial

to calculate the residuals. In Section 3.3, the upper bounds of estimated residuals in

general case are given, and numerical examples are provided to show how sharp our error

bounds are. More error bounds of special cases are obtained in Section 3.4 and 3.5. In

this chapter, a general case means a linear system with a general right hand side; special

cases are ones with special right hand sides, such as b = e1, b = eN .

3.1 Residual Formulation for a Diagonalizable Linear System

The result in this section applies to any Ax = b with diagonalizable A. Suppose

A = XΛX−1, (3.1.1)

Λ = diag(λ1, . . . , λN), (3.1.2)

and X is an N ×N nonsingular matrix.

Recall we assumed, without loss of generality, the initial approximation x0 = 0 and
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thus the initial residual r0 = b− Ax0 = b. The kth GMRES residual is

‖rk‖2 = min
pk(0)=1

‖pk(A)b‖2

= min
pk(0)=1

‖Xpk(Λ)X−1b‖2

= min
u(1)=1

‖Y V T
k+1,Nu‖2, (3.1.3)

where

Y = X diag(X−1b), (3.1.4)

Vk+1,N is the (k + 1)×N rectangular Vandermonde matrix

Vk+1,N
def
=


1 1 · · · 1
λ1 λ2 · · · λN
...

...
. . .

...
λk

1 λk
2 · · · λk

N

 , (3.1.5)

having nodes {λj}N
j=1[41, Lemma 2.1] and the coefficients of pk(A) forms a vector u with

u(1) = 1.

3.2 Residual Reformulation Using Chebyshev Polynomials of the First Kind

An N ×N tridiagonal Toeplitz A takes this form

A =


λ µ

ν
. . . . . .
. . . . . . µ

ν λ

 ∈ CN×N . (3.2.1)

Given parameters ν, λ, and µ are nonzero, A is diagonalizable. In fact [33, pp.113-115]

(see also [26]),

A = XΛX−1, (3.2.2)
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where

Λ = diag(λ1, . . . , λN), (3.2.3)

λj = λ− 2
√
µν tj, (3.2.4)

tj = cos θj, θj =
jπ

N + 1
, (3.2.5)

X = ΩZ, (3.2.6)

Ω = diag(ξ0, ξ−1, . . . , ξ−N+1), ξ = −
√
µν

ν
, (3.2.7)

Z(:,j) =

√
2

N + 1
(sin jθ1, . . . , sin jθN)T . (3.2.8)

It can be verified that ZTZ = IN . So A is normal if |ξ| = 1, i.e., |µ| = |ν| > 0. By

(3.2.4), we have

λj = ω(tj − τ), 1 ≤ j ≤ N, (3.2.9)

where

ω = −2
√
µν, (3.2.10)

τ =
λ

2
√
µν
. (3.2.11)

Any branch of
√
µν, once picked and fixed, is a valid choice in this thesis.

According to (3.1.3), we have

‖rk‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2

≤ ‖Y ‖2 min
u(1)=1

‖V T
k+1,Nu‖2

≤ ‖X‖2 max
i
|(X−1b)(i)| min

u(1)=1
‖V T

k+1,Nu‖2

≤ ‖X‖2‖X−1b‖2 min
u(1)=1

‖V T
k+1,Nu‖2

≤ ‖X‖2‖X−1‖2‖b‖2 min
u(1)=1

‖V T
k+1,Nu‖2

≤ κ(X)‖b‖2 min
pk(0)=1

max
i
|pk(λi)|, (3.2.12)

22



where pk is a polynomial of degree no higher than k. Thus, together with r0 = b, they

imply

‖rk‖2/‖r0‖2 ≤ κ(X) min
pk(0)=1

max
i
|pk(λi)|. (3.2.13)

Inequality (3.2.13) is often the starting point in existing quantitative analysis on GMRES

convergence [18, Page 54], as it seems that there is no easy way to do otherwise. It

simplifies the analysis by separating the study of GMRES convergence behavior into

optimizing the condition number of X and a polynomial minimization problem over A’s

spectrum, but it could potentially overestimate GMRES residuals. This is partly because,

as observed by Liesen and Strakoš [26], possible cancelations of huge components in X

and/or X−1 were artificially ignored for the sake of the convergence analysis. However,

for tridiagonal Toeplitz matrix A the rich structure (the Chebyshev polynomial) allows

us to estimate differently, namely starting with (3.1.3) directly.

We define the mth Translated Chebyshev Polynomial of the first kind in z of degree

m as

Tm(z;ω, τ)
def
= Tm(z/ω + τ) (3.2.14)

= ammz
m + am−1 mz

m−1 + · · ·+ a1mz + a0m, (3.2.15)

where the coefficients ajm ≡ ajm(ω, τ) are functions of ω and τ , and forms an upper

triangular Rm+1 in terms of ω and τ as

Rm+1 ≡ Rm+1(ω, τ)
def
=


a00 a01 a02 · · · a0 m

a11 a12 · · · a1 m

a22 · · · a2 m

. . .
...
am m

 , (3.2.16)

23



i.e., the (m+ 1)th column consists of the coefficients of Tm(λ;ω, τ). Set

T N
def
=


T0(t1) T0(t2) · · · T0(tN)
T1(t1) T1(t2) · · · T1(tN)

...
...

...
TN−1(t1) TN−1(t2) · · · TN−1(tN)

 , (3.2.17)

and VN = VN,N for short. Then

V T
NRN = T T

N . (3.2.18)

Equation (3.2.18) yields V T
N = T T

NR
−1
N . Extracting the first k + 1 columns from both

sides of V T
N = T T

NR
−1
N yields

V T
k+1,N = (T T

N)(:,1:k+1)R
−1
k+1. (3.2.19)

Now notice Y = X diag(X−1b) and X = ΩZ with Z in (3.2.6) being real and orthog-

onal to get

Y V T
k+1,N = ΩZ diag(ZT Ω−1b) (T T

N)(:,1:k+1)R
−1
k+1

= ΩM(:,1:k+1)R
−1
k+1 (3.2.20)

= ΩM(:,1:k+1)Ω
−1
k+1 Ωk+1R

−1
k+1. (3.2.21)

where Ωk+1 = Ω(1:k+1,1:k+1), the (k + 1)th leading submatrix of Ω,

M = Z diag(ZT Ω−1b) T T
N . (3.2.22)

Now we can estimate GMRES residual

‖rk‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2 = min

u(1)=1
‖ΩM(:,1:k+1)Ω

−1
k+1 Ωk+1R

−1
k+1u‖2. (3.2.23)

Then

σmin(ΩM(:,1:k+1)Ω
−1
k+1) ≤

‖rk‖2

minu(1)=1 ‖Ωk+1R
−1
k+1u‖2

≤ ‖ΩM(:,1:k+1)Ω
−1
k+1‖2. (3.2.24)

Hence, the upper bound and lower bound of the residual ‖rk‖2 could be estimated.
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3.3 Estimation of Residual in General Case

Set

ζ = min

{
|ξ|, 1

|ξ|

}
, (3.3.1)

ρ = max
{∣∣∣τ +

√
τ 2 − 1

∣∣∣ , ∣∣∣τ −√
τ 2 − 1

∣∣∣} . (3.3.2)

Note ρ ≥ 1 always because (τ +
√
τ 2 − 1)(τ −

√
τ 2 − 1) = 1. In particular if λ ∈ R,

µ < 0 and ν > 0, then ρ = |τ |+
√
|τ |2 + 1.

Recall Chebyshev polynomials of the first kind

Tm(t) = cos(m arccos t), for |t| ≤ 1, (3.3.3)

=
1

2

(
t+

√
t2 − 1

)m

+
1

2

(
t−

√
t2 − 1

)m

, for |t| ≥ 1. (3.3.4)

Define

Φ
(+)
k+1(τ, ξ)

def
=

k∑
j=0

′ |ξ|2j |Tj(τ)|2 , (3.3.5)

Φ
(−)
k+1(τ, ξ)

def
=

k∑
j=0

′ |ξ|−2j |Tj(τ)|2 , (3.3.6)

Φk+1(τ, ξ)
def
=

k∑
j=0

′ ζ2j |Tj(τ)|2 ≡ min
{

Φ
(+)
k+1(τ, ξ),Φ

(−)
k+1(τ, ξ)

}
, (3.3.7)

where
∑′

j means the first term is halved. Obviously, if |ξ| ≤ 1, then

Φk+1(τ, ξ) = Φ
(+)
k+1(τ, ξ);

otherwise,

Φk+1(τ, ξ) = Φ
(−)
k+1(τ, ξ).

3.3.1 Residual with General Right-hand Sides

Given a tridiagonal Toeplitz with a general right hand side, we have
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Theorem 3.3.1. For Ax = b, where A is tridiagonal Toeplitz as in (3.2.1) with nonzero

(real or complex) parameters ν, λ, and µ. Then the kth GMRES residual rk satisfies for

1 ≤ k < N

‖rk‖2

‖r0‖2

≤
√
k + 1

[
1

2
+ Φk+1(τ, ξ)

]−1/2

. (3.3.8)

The proof of Theorem 3.3.1 involves a complicated computation. We will prove the

theorem for the case |ξ| ≤ 1 first.

Recall the computation in the previous section, the proof follows the inequality (3.2.24)

σmin(ΩM(:,1:k+1)Ω
−1
k+1) ≤

‖rk‖2

minu(1)=1 ‖Ωk+1R
−1
k+1u‖2

≤ ‖ΩM(:,1:k+1)Ω
−1
k+1‖2.

Rewrite the second inequality in (3.2.24):

‖rk‖2 ≤ min
u(1)=1

‖Ωk+1R
−1
k+1u‖2‖ΩM(:,1:k+1)Ω

−1
k+1‖2. (3.3.9)

This is our foundation to prove Theorem 3.3.1. There are two quantities to deal with

min
u(1)=1

‖Ωk+1R
−1
k+1u‖2 and ‖ΩM(:,1:k+1)Ω

−1
k+1‖2. (3.3.10)

For the first part, the following lemma was proven in [23, 24], and also implied by the

proof of [25, Theorem 2.1]. See also [22].

Lemma 3.3.1. If W has full column rank, then

min
u(1)=1

‖Wu‖2 =
[
eT
1 (W ∗W )−1e1

]−1/2
. (3.3.11)

In particular if W is nonsingular, minu(1)=1 ‖Wu‖2 = ‖W−∗e1‖−1
2 .

Proof: Set v = Wu. Since W has full column rank N , its Moore-Penrose pseudo-

inverse isW † = (W ∗W )−1W ∗[35], and thus u = W †v. This gives a one-one and onto map-

ping between u ∈ Cm and the column space v ∈ span(W ), where span(W ) = span{W (:
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, 1),W (:, 2), . . . ,W (:, N)}. Then

min
|u(1)|=1

‖Wu‖2 = min
u

‖Wu‖2

|u(1)|
= min

v∈span(W )

‖v‖2

|eT
1W

†v|
≥ min

v

‖v‖2

|eT
1W

†v|
= ‖eT

1W
†‖−1

2 ,

(3.3.12)

where the last min is achieved at

vopt = (eT
1W

†)∗ = W (W ∗W )−1e1 ∈ span(W ),

which implies the ”≥” in (3.3.12) is an equality, and

uopt =
W †vopt

eT
1W

†vopt

.

Finally

‖eT
1W

†‖2 =
√
eT
1W

†(W †)∗e1 =
√
eT
1 (W ∗W )−1e1.

The above proof is taken from [23].

By this lemma, we have (note a00 = 1)

min
u(1)=1

‖Ωk+1R
−1
k+1u‖2 = ‖Ω−∗

k+1R
∗
k+1e1‖−1

2 =

[
1

2
+ Φ

(+)
k+1(τ, ξ)

]−1/2

. (3.3.13)

This gives the first quantity in (3.3.10).

Rewrite Theorem3.3.1 as

‖rk‖2 ≤ ‖r0‖2

√
k + 1

[
1

2
+ Φk+1(τ, ξ)

]−1/2

≤ ‖b‖2

√
k + 1

[
1

2
+ Φk+1(τ, ξ)

]−1/2

≤
[
1

2
+ Φk+1(τ, ξ)

]−1/2

‖b‖2

√
k + 1.

If we can show

‖ΩM(:,1:k+1)Ω
−1
k+1‖2 ≤ ‖b‖2

√
k + 1, (3.3.14)

then according to inequality (3.3.9) and (3.3.13), Theorem 3.3.1 is proved. We prove the

inequality (3.3.14) in the next subsection and finish the proof of Theorem 3.3.1.
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3.3.2 The Second Part of the Proof

Now let’s investigate ΩM(:,1:k+1)Ω
−1
k+1 and prove the inequality (3.3.14).

It can be seen that ΩM(:,1:k+1)Ω
−1
k+1 = (ΩMΩ−1)(:,1:k+1) since Ω is diagonal. To com-

pute ΩMΩ−1, we shall investigate M in (3.2.22) first.

M = Z diag(ZT Ω−1b) T T
N

=
N∑

`=1

Z diag(ZΩ−1b(`)e`) T T
N

=
N∑

`=1

b(`)ξ
`−1Z diag(Ze`) T T

N

=
N∑

`=1

b(`)ξ
`−1Z diag(Z(:,`)) T T

N

=
N∑

`=1

b(`)ξ
`−1M`, (3.3.15)

where M` = Z diag(Z(:,`)) T T
N and b(`) is the `th element of the right hand side b.

It is not easy to obtain M directly, but M` can be calculated in Lemma 3.3.3. In

Lemma 3.3.2 and in the proof of Lemma 3.3.3 below, without causing notational conflict,

we will temporarily use k as a running index, as opposed to the rest of the paper where

k is reserved for GMRES step index.

Lemma 3.3.2. For θj = j
N+1

π and integer `,

N∑
k=1

cos `θk =


N, if ` = 2m(N + 1) for some integer m,
−1, if ` is even, but ` 6= 2m(N + 1) for any integer m,
0, if ` is odd.

(3.3.16)

Proof: If ` = 2m(N + 1) for some integer m, then `θk = 2mkπ and thus cos `θk = 1.

Assume that ` 6= 2m(N + 1) for any integer m. Set Ω = `π/(N + 1). We have [17, p.30]

N∑
k=1

cos `θk =
N∑

k=1

cos kΩ = cos
N + 1

2
Ω×

sin NΩ
2

sin Ω
2

.
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Now notice cos N+1
2

Ω = cos `
2
π = 0 for odd ` and (−1)`/2 for even `, and sin NΩ

2
=

sin( `
2
π − Ω) = −(−1)`/2 sin Ω for even ` to conclude the proof.

Lemma 3.3.2 is Lemma 3.1 in [23].

Lemma 3.3.3. Let M`
def
= Z diag(Z(:,`))T

T
N for 1 ≤ ` ≤ N . Then the entries of M` are

zeros, except at those positions (i, j), graphically forming four straight lines:

(a) i+ j = `+ 1,
(b) i− j = `− 1,
(c) j − i = `+ 1,
(d) i+ j = 2(N + 1)− `+ 1.

(3.3.17)

(M`)(i,j) = 1/2 for (a) and (b), except at their intersection (`, 1) for which (M`)(`,1) = 1.

(M`)(i,j) = −1/2 for (c) and (d). Notice no valid entries for (c) if ` ≥ N − 1 and no

valid entries for (d) if ` ≤ 2.

Proof: For 1 ≤ i, j ≤ N ,

2(N + 1) · (M`)(i,j) = 4
N∑

k=1

sin kθi sin `θk cos(j − 1)θk

= 4
N∑

k=1

sin iθk sin `θk cos(j − 1)θk

= 2
N∑

k=1

[cos(i− `)θk − cos(i+ `)θk] cos(j − 1)θk

=
N∑

k=1

[cos(i+ j − `− 1)θk + cos(i− j − `+ 1)θk

− cos(i+ j + `− 1)θk − cos(i− j + `+ 1)θk] .

Since all

i1 = i+ j − `− 1,

i2 = i− j − `+ 1,

i3 = i+ j + `− 1,

i4 = i− j + `+ 1,
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are either even or odd at the same time, Lemma 3.3.2 implies (M`)(i,j) = 0 unless one

of them takes the form 2m(N + 1) for some integer m. We now investigate all possible

situations as such, keeping in mind that 1 ≤ i, j, ` ≤ N .

1. i1 = i + j − ` − 1 = 2m(N + 1). This happens if and only if m = 0, and thus

i+ j = `+ 1. Then

i2 = −2j + 2, i3 = 2`, i4 = −2j + 2`+ 2.

They are all even. i3 and i4 do not take the form 2m(N + 1) for some integers m.

This is obvious for i3, while i4 = 2m(N + 1) implies m = 0 and j = `+ 1, and thus

i = 0 which cannot happen. However if i2 = 2m(N + 1), then m = 0 and j = 1,

and thus i = `.

So Lemma 3.3.2 implies (M`)(i,j) = 1/2 for i+j = `+1 and i 6= `, while (M`)(`,1) = 1.

2. i2 = i − j − ` + 1 = 2m(N + 1). This happens if and only if m = 0, and thus

i− j = `− 1. Then

i1 = 2j − 2, i3 = 2j + 2`− 2, i4 = 2`.

They are all even. i3 and i4 do not take the form 2m(N + 1) for some integers m.

This is obvious for i4, while i3 = 2m(N + 1) implies m = 1 and j = N + 2− `, and

thus i = N + 1 which cannot happen. However if i1 = 2m(N + 1), then m = 0 and

thus j = 1 and i = ` which has already been considered in Item 1.

So Lemma 3.3.2 implies (M`)(i,j) = 1/2 for i−j = `−1 and i 6= `, while (M`)(`,1) = 1.

3. i3 = i + j + ` − 1 = 2m(N + 1). This happens if and only if m = 1, and thus

i+ j = 2(N + 1)− `+ 1. Then

i1 = 2(N + 1)− 2`, i2 = 2(N + 1)− 2j − 2`+ 2, i4 = 2(N + 1)− 2j + 2.
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They are all even. i1 and i2 do not take the form 2m(N + 1) for some integers m.

This is obvious for i1, while i2 = 2m(N + 1) implies m = 0 and j = N + 2− `, and

thus i = N + 1 which cannot happen. However if i4 = 2m(N + 1), then m = 1 and

thus j = 1 and i = 2(N + 1)− ` which is bigger than N + 2 and not possible.

So Lemma 3.3.2 implies (M`)(i,j) = −1/2 for i+ j = 2(N + 1)− `+ 1.

4. i4 = i − j + ` + 1 = 2m(N + 1). This happens if and only if m = 0, and thus

j − i = `+ 1. Then

i1 = 2j − 2`− 2, i2 = −2`, i3 = 2j − 2.

They are all even, and do not take the form 2m(N + 1) for some integers m. This

is obvious for i2. i1 = 2m(N + 1) implies m = 0 and j = ` + 1, and thus i = 0

which cannot happen. i3 = 2m(N + 1) implies m = 0 and thus j = 1 and i = −`

which cannot happen either.

So Lemma 3.3.2 implies (M`)(i,j) = −1/2 for j − i = `+ 1.

This completes the proof.

Figure 3.3.1 gives the example for M` with N = 8 for L = 1, 2, 3, 4. The structure of

M`, i.e. the nonzero entries, is showed in each graph. The entries on the red lines have

the value 1
2

except on the first column with M`(`, 1) = 1; the entries on the black lines

have the value −1
2
. The lines are labeled with a, b, c, d according to Lemma 3.3.3.

Figure 3.3.2 gives the example for M` with N = 8 for L = 5, 6, 7, 8 similarly.

Now we know M`. We still need to find out ΩMΩ−1. Let us examine it for N = 5 in
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Figure 3.3.1: The structure of M` with N = 8 for L = 1, 2, 3, 4.
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Figure 3.3.2: The structure of M` with N = 8 for L = 5, 6, 7, 8.
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order to get some idea about what it may look like. ΩMΩ−1 for N = 5 is

b(1)
1
2
ξ2 b(2) −1

2
ξ2 b(1) + 1

2
ξ4 b(3) −1

2
ξ4 b(2) + 1

2
ξ6 b(4) −1

2
ξ6 b(3) + 1

2
ξ8 b(5)

b(2)
1
2
b(1) + 1

2
b(3) ξ

2 1
2
b(4) ξ

4 −1
2
ξ2 b(1) + 1

2
ξ6 b(5) −1

2
ξ4 b(2)

b(3)
1
2
b(2) + 1

2
ξ2 b(4)

1
2
b(1) + 1

2
b(5) ξ

4 0 −1
2
ξ2 b(1) − 1

2
ξ6 b(5)

b(4)
1
2
b(3) + 1

2
b(5) ξ

2 1
2
b(2)

1
2
b(1) − 1

2
b(5) ξ

4 −1
2
b(4) ξ

4

b(5)
1
2
b(4)

1
2
b(3) − 1

2
b(5) ξ

2 1
2
b(2) − 1

2
ξ2 b(4)

1
2
b(1) − 1

2
b(3) ξ

2


.

We observe that for N = 5, the entries of ΩMΩ−1 are polynomials in ξ with at most two

terms. This turns out to be true for all N .

Lemma 3.3.4. The following statements hold.

1. The first column of ΩMΩ−1 is b. Entries in every other columns taking one of

the three forms: (b(n1)ξ
m1 + b(n2)ξ

m2)/2 with n1 6= n2, b(n1)ξ
m1/2, and 0, where

1 ≤ n1, n2 ≤ N and mi ≥ 0 are nonnegative integer.

2. In each given column of ΩMΩ−1, any particular entry of b appears at most twice.

As the consequence, we have ‖ΩM(:,1:k+1)Ω
−1
k+1‖2 ≤

√
k + 1 ‖b‖2, if |ξ| ≤ 1.

Proof: Notice M =
∑N

`=1 b(`)ξ
`−1M` and consider M ’s (i, j)th entry which comes

from the contributions from all M`. But not all of M` contribute as most of them are

zero at the position. Precisely, with the help of Lemma 3.3.3, those M` that contribute

nontrivially to the (i, j)th position are the following ones subject to satisfying the given

inequalities.

(a) if 1 ≤ i+ j − 1 ≤ N or equivalently i+ j ≤ N + 1, Mi+j−1 gives a 1/2.

(b) if 1 ≤ i− j + 1 ≤ N or equivalently i ≥ j, Mi−j+1 gives a 1/2.

(c) if 1 ≤ j − i− 1 ≤ N or equivalently j ≥ i+ 2, Mj−i−1 gives a −1/2.
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Figure 3.3.3: Computation of M(i,j).

(d) if 1 ≤ 2(N +1)− (i+ j)+1 ≤ N or equivalently i+ j ≥ N +3, M2(N+1)−(i+j)+1 gives

a −1/2.

These inequalities, effectively 4 of them, are described in Figure 3.3.3. The left graph

shows the regions of entries as divided by inequalities in (a) and (d); the middle shows

Regions of entries as divided by inequalities in (b) and (c). These four regions divided

entries of M into nine possible regions showed as the right graph of Figure 3.3.3. We

shall examine each region one by one. Recall

(ΩMΩ−1)(i,j) = ξ−i+1M(i,j)ξ
j−1 = ξj−iM(i,j),

and let

γa =
1

2
b(i+j−1)ξ

2j−2,

γb =
1

2
b(i−j+1),

γc = −1

2
b(j−i−1)ξ

2(j−i−1),

γd = −1

2
b(2(N+1)−(i+j)+1)ξ

2(N+1)−(i+j).

Each entry in the 9 possible regions in the rightmost plot of Figure 3.3.3 is as follows.

1. (a) and (b): (ΩMΩ−1)(i,j) = γa + γb.

2. (a) and (c): (ΩMΩ−1)(i,j) = γa + γc.
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3. (b) and (d): (ΩMΩ−1)(i,j) = γb + γd.

4. (c) and (d): (ΩMΩ−1)(i,j) = γc + γd.

5. (a) and i− j = −1: (ΩMΩ−1)(i,j) = γa.

6. (b) and i+ j = N + 2: (ΩMΩ−1)(i,j) = γb.

7. (c) and i+ j = N + 2: (ΩMΩ−1)(i,j) = γc.

8. (d) and i− j = −1: (ΩMΩ−1)(i,j) = γd.

9. i− j = −1 and i + j = N + 2: (ΩMΩ−1)(i,j) = 0. In this case, i = (N + 1)/2 and

j = (N + 3)/2. So there is only one such entry when N is odd, and none when N

is even.

With this profile on the entries of ΩMΩ−1, we have Item 1 of the lemma immediately.

Item 2 is the consequence of M =
∑N

`=1 b(`)ξ
`−1M` and Lemma 3.3.3 which implies that

there are at most two nonzero entries in each column of M`.

As the consequence of Item 1 and Item 2, each column of ΩMΩ−1 can be expressed

as the sum of two vectors w and v such that ‖w‖2, ‖v‖2 ≤ ‖b‖2/2 when |ξ| ≤ 1, and thus

‖(ΩMΩ−1)(:,j)‖2 ≤ ‖b‖2 for all 1 ≤ j ≤ N . Therefore

‖ΩM(:,1:k+1)Ω
−1
k+1‖2 ≤

√√√√k+1∑
j=1

‖(ΩMΩ−1)(:,j)‖2
2 ≤

√
k + 1 ‖b‖2,

as expected.

We can prove Theorem 3.3.1 now.

Proof: First we can prove

‖rk‖2 ≤ ‖b‖2

√
k + 1

[
1

2
+ Φ

(+)
k+1(τ, ξ)

]−1/2

, for |ξ| ≤ 1. (3.3.18)
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Assume |ξ| ≤ 1. Inequality (3.3.18) is the consequence of estimation of residuals

(3.2.24)

σmin(ΩM(:,1:k+1)Ω
−1
k+1) ≤

‖rk‖2

minu(1)=1 ‖Ωk+1R
−1
k+1u‖2

≤ ‖ΩM(:,1:k+1)Ω
−1
k+1‖2,

the equation(3.3.13)

min
u(1)=1

‖Ωk+1R
−1
k+1u‖2 = ‖Ω−∗

k+1R
∗
k+1e1‖−1

2 =

[
1

2
+ Φ

(+)
k+1(τ, ξ)

]−1/2

,

and Lemma 3.3.4

‖ΩM(:,1:k+1)Ω
−1
k+1‖2 ≤

√
k + 1 ‖b‖2, if|ξ| ≤ 1.

For the other case, |ξ| > 1, the proof can be turned into this case as follows. Let

Π = (eN , . . . , e2, e1) ∈ RN×N be the permutation matrix. Notice ΠTAΠ = AT and thus

Ax = b is equivalent to

AT ΠTx = (ΠTAΠ)(ΠTx) = ΠT b. (3.3.19)

Note Kk(A
T ,ΠT b) = Kk(Π

TAΠ,ΠT b) = ΠT Kk(A, b), and

‖rk‖2 = min
y∈Kk(A,b)

‖b− Ay‖2 = min
ΠT y∈ΠTKk(A,b)

‖ΠT (b− AΠ ΠTy)‖2

= min
w∈Kk(AT ,ΠT b)

‖ΠT b− ATw‖2.

Since (3.3.18) is proven true, then for |ξ| > 1 we have

‖rk‖2 ≤ ‖ΠT b‖2

√
k + 1

[
1

2
+ Φ

(−)
k+1(τ, ξ)

]−1/2

,

because the ξ for AT is the reciprocal of the one for A.

Remark 3.3.1. The leftmost inequality in (3.2.24) gives a lower bound on ‖rk‖2 in terms

of σmin(ΩM(:,1:k+1)Ω
−1
k+1) which, however, is hard to bound from below because it can be

as small as zero, unless we know more about b such as b = e1 or eN as in Theorems 3.4.1

and 3.4.2.
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The upper bounds can also be calculated according to the inequality (3.2.13).

Theorem 3.3.2. For Ax = b, where A is tridiagonal Toeplitz as in (3.2.1) with nonzero

(real or complex) parameters ν, λ, and µ. Then the kth GMRES residual rk satisfies for

1 ≤ k < N

‖rk‖2

‖r0‖2

≤ κ(X)

[
k∑

j=0

|Tj(τ)|2
]−1/2

. (3.3.20)

Proof: According to (3.2.13),

‖rk‖2/‖r0‖2 ≤ κ(X) min
pk(0)=1

max
i
|pk(λi)|. (3.3.21)

Now we calculate minpk(0)=1 maxi |pk(λi)| according to (3.2.18)

min
pk(0)=1

max
i
|pk(λi)| = min

u(1)=1
‖V T

k+1,Nu‖2

= min
u(1)=1

‖(T T
N)(:,1:k+1)R

−1
k+1u‖2. (3.3.22)

Apply Lemma 3.3.1, we have

min
pk(0)=1

max
i
|pk(λi)| = min

u(1)=1
‖(T T

N)(:,1:k+1)R
−1
k+1u‖2

=
[
eT
1 (((T T

N)(:,1:k+1)R
−1
k+1)

∗(T T
N)(:,1:k+1)R

−1
k+1)

−1e1
]−1/2

=
[
eT
1 (R−∗

k+1R
−1
k+1)

−1e1
]−1/2

=
[
eT
1 (Rk+1R

∗
k+1)e1

]−1/2

=

[
k∑

j=0

|Tj(τ)|2
]−1/2

. (3.3.23)

Now (3.2.13) can be written as (3.3.20).

3.3.3 Numerical Examples

In all numerical examples in this paper, we always take N = 50 and λ = 1, and choose

different |τ | and |ξ|, then calculate µ and ν as following:

|µ| = |ξ|
2|τ |

, µ = ±|µ|, and ν = |ν| = 1

2|τξ|
.
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Figure 3.3.4: GMRES residuals for random b with |τ | = 0.8, and the upper bounds by Theo-
rem 3.3.1.
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Figure 3.3.5: GMRES residuals for random b with |τ | = 1.2, and the upper bounds by Theo-
rem 3.3.1.
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Figure 3.3.6: GMRES residuals for random b with |τ | = 1, and the upper bounds by Theo-
rem 3.3.1.
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Thus µ, ν ∈ R, and in fact ν > 0 always. When µ > 0, ξ = −
√
µ/ν < 0 and τ =

1/(2
√
µν) > 0, but when µ < 0, both ξ = −ι

√
|µ/ν| and τ = −ι/(2

√
|µν|) are imaginary,

where ι =
√
−1 is the imaginary unit.

Figures 3.3.4, 3.3.5, 3.3.6 plot residual histories for examples of GMRES with each

of b’s entries being uniformly random in [−1, 1], and their upper bounds (dashed lines)

by Theorem 3.3.1. The parameters, τ and ξ are set in table 3.3.1.

Table 3.3.1: Parameters Setting
|τ | |ξ|

Figure 3.3.4 0.8 0.7 1.2
Figure 3.3.5 1.2 0.7 1.2
Figure 3.3.6 1 0.7 1.2

Each figure has two graphs with different ξ, 0.7 or 1.2. Each graph has two cases for

a real τ and a pure imaginary τ . In each graph, the plot for µ > 0, i.e. τ is real, is above

that for µ < 0, i.e. τ is purely imaginary. In other words, this indicates that GMRES

converges much faster for µ < 0 than for µ > 0 in each of the plots. There is a simple

explanation for this: the eigenvalues of A (see (3.2.9) below) are further away from the

origin for a pure imaginary τ than for a real τ for any fixed |τ |.

All plots indicate that our upper bounds are tight, except for the last few steps.

Note that the upper bounds for the case µ > 0 are visually indistinguishable from the

horizontal line 100 when τ ≤ 1, suggesting slow convergence.

Figures 3.3.7, 3.3.8, 3.3.9 plot residual histories for examples of GMRES with each

of b’s entries being uniformly random in [−1, 1], and their upper bounds (dashed lines)

by Theorem 3.3.2. In each figure, the upper bounds are much bigger than the residuals.
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Figure 3.3.7: GMRES residuals for random b with |τ | = 0.8, and the upper bounds by Theo-
rem 3.3.2.
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Figure 3.3.8: GMRES residuals for random b with |τ | = 1.2, and the upper bounds by Theo-
rem 3.3.2.
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Figure 3.3.9: GMRES residuals for random b with |τ | = 1, and the upper bounds by Theo-
rem 3.3.2.
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3.4 Special Right-hand Sides: b = e1, b = eN

We now consider three special right-hand sides: b = e1 , eN or b(1)e1 + b(N)eN . In

particular, we also can find out the lower bound, and show that the upper bound in

Theorem 3.3.1 is within a factor about (k + 1) of the true residual for b = e1 or eN ,

depending on |ξ| ≤ 1 or |ξ| ≥ 1, respectively.

3.4.1 Right-hand Sides b = e1

For the right-hand sides: b = e1, we have the following theorem .

Theorem 3.4.1. If b = e1, then the kth GMRES residual rk satisfies for 1 ≤ k < N

1

2

d k+1
2
e−1∑

j=0

|ξ|2j

−1 [
Φ

(+)
k+1(τ, ξ)−

1

4

]−1/2

≤ ‖rk‖2

‖r0‖2

≤ 1

2
(1 + |ξ|2)

[
Φ

(+)
k+1(τ, ξ)−

1

4

]−1/2

.

(3.4.1)

In particular,

1

2dk+1
2
e

[
Φ

(+)
k+1(τ, ξ)−

1

4

]−1/2

≤ ‖rk‖2

‖r0‖2

≤
[
Φ

(+)
k+1(τ, ξ)−

1

4

]−1/2

, for |ξ| ≤ 1. (3.4.2)

Proof: If b = e1, then M = M1 is upper triangular. More specifically

M = M1 =


1 0 −1/2

1/2 0
. . .

1/2 −1/2
. . . 0

1/2

 , (3.4.3)

and, by (3.2.20),

Y Vk+1,N =

(
Ωk+1M̃R−1

k+1

0

)
=

(
Ωk+1M̃Ω−1

k+1D
−1 ×DΩk+1R

−1
k+1

0

)
,

where M̃ = M(1:k+1,1:k+1) and D = diag(2, 1, 1, . . . , 1). Therefore

σmin(Ωk+1M̃Ω−1
k+1D

−1) ≤
minu(1)=1 ‖Y V T

k+1,Nu‖2

minu(1)=1 ‖DΩk+1R
−1
k+1u‖2

≤ ‖Ωk+1M̃Ω−1
k+1D

−1‖2. (3.4.4)
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Let Pk+1 = (e1, e3, . . . , e2, e4, . . .) ∈ R(k+1)×(k+1). It can be seen that

P T
k+1(Ωk+1M̃Ω−1

k+1D
−1)Pk+1 =

1

2

(
E1

E2

)
,

where E1 ∈ Rd k+1
2
e×d k+1

2
e, E2 ∈ Rb k+1

2
c×b k+1

2
c, and

Ei =


1 −ξ2

1
. . .
. . . −ξ2

1

 , E−1
i =


1 ξ2 · · · ξ2(m−1)

1
. . .

...
. . . ξ2

1

 .

Hence ‖Ei‖2 ≤
√
‖Ei‖1‖Ei‖∞ = 1 + |ξ|2. Therefore

‖Ωk+1M̃Ω−1
k+1D

−1‖2 =
1

2
max{‖E1‖2, ‖E2‖2} ≤

1

2
(1 + |ξ|2).

Similarly use ‖E−1
i ‖2 ≤

√
‖E−1

i ‖1‖E−1
i ‖∞ to get

‖E−1
1 ‖2 ≤

d k+1
2
e−1∑

j=0

|ξ|2j, ‖E−1
2 ‖2 ≤

b k+1
2
c−1∑

j=0

|ξ|2j.

Therefore

σmin(Ωk+1M̃Ω−1
k+1D

−1) =
1

2
min{σmin(E1), σmin(E2)}

=
1

2
min{‖E−1

1 ‖−1
2 , ‖E−1

2 ‖−1
2 }

≥ 1

2

d k+1
2
e−1∑

j=0

|ξ|2j

−1

.

Finally, by Lemma 3.3.1, we have

min
u(1)=1

‖DΩk+1R
−1
k+1u‖2 = ‖D−∗Ω−∗

k+1R
∗
k+1e1‖−1

2 =

[
Φ

(+)
k+1(τ, ξ)−

1

4

]−1/2

.

This, together with (3.4.4), lead to (3.4.1).

3.4.2 Numerical Examples for b = e1

The numerical examples are presented in Figures 3.4.1, 3.4.2,and 3.4.3. Figure 3.4.1

shows GMRES residuals for b = e1 with τ = 0.8, and their bounds according to Theo-

rem 3.4.1; Figure 3.4.2 shows GMRES residuals for b = e1 with τ = 1.2; and Figure 3.4.3

with τ = 1.
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Figure 3.4.1: GMRES residuals for b = e1, |τ | = 0.8, and the bounds by Theorem 3.4.1.
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Figure 3.4.2: GMRES residuals for b = e1, |τ | = 1.2, and the bounds by Theorem 3.4.1.
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Figure 3.4.3: GMRES residuals for b = e1, |τ | = 1, and the bounds by Theorem 3.4.1.

50



The upper bounds are blue dashed lines, the lower bounds are green dashed lines. The

figures show that GMRES residuals for b = e1 are sandwiched by the lower and upper

bounds by Theorem 3.4.1. The upper bounds are very close to the GMRES residuals,

when either |ξ| ≤ 1 or |ξ| > 1; the lower bounds are also good when |ξ| > 1, but not as

good as the cases of |ξ| ≤ 1.

The upper bound and the lower bound in (3.4.2) differ by a factor roughly (k + 1),

and thus they are rather sharp; if |ξ| ≤ 1, the bounds in (3.4.1) are even sharper. The

upper bound according to Theorem 3.4.1 is within a factor about (k + 1) of the true

residual for b = e1.

3.4.3 Right-hand Sides b = eN

For b = eN , we have a similar theorem.

Theorem 3.4.2. In Theorem 3.3.1, if b = eN , then the kth GMRES residual rk satisfies

for 1 ≤ k < N

1

2

d k+1
2
e−1∑

j=0

|ξ|−2j

−1 [
Ω

(−)
k+1(τ, ξ)−

1

4

]−1/2

≤ ‖rk‖2

‖r0‖2

≤ 1

2
(1 + |ξ|−2)

[
Ω

(−)
k+1(τ, ξ)−

1

4

]−1/2

.

(3.4.5)

In particular,

1

2dk+1
2
e

[
Ω

(−)
k+1(τ, ξ)−

1

4

]−1/2

≤ ‖rk‖2

‖r0‖2

≤
[
Ω

(−)
k+1(τ, ξ)−

1

4

]−1/2

, for |ξ| ≥ 1. (3.4.6)

Proof: As in the proof of Theorem 3.3.1, by applying Theorem 3.4.1 to the permuted

system (3.3.19), we get Theorem 3.4.2 for b = eN .

The upper bound and the lower bound in (3.4.6) differ by a factor roughly (k + 1),

and thus they are rather sharp; so are the bounds in (3.4.5) for |ξ| ≥ 1.
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The results of numerical examples for b = eN are very similar to these for b = e1 in

the previous subsection, and are not presented again. The upper bound and the lower

bound in (3.4.6) differ by a factor roughly (k + 1), and thus they are rather sharp; if

|ξ| > 1, the bounds in (3.4.5) are even sharper.

Our numerical examples indicate that the upper bounds are rather good regardless

of the magnitude of |ξ| for both cases b = e1 and b = eN .

3.4.4 Right-hand Sides b(1)e1 + b(N)eN

Given Theorems 3.4.1 and 3.4.2, it would not be unreasonable to expect that the upper

bound in Theorem 3.3.1 would be sharp for very large or tiny |ξ| within a factor possibly

about at most (k + 1)3/2 for right-hand side b with b(i) = 0 for 2 ≤ i ≤ N − 1 and

|b(1)| = |b(N)| > 0. The following theorem indeed confirms this but only for k ≤ N/2.

Our numerical examples even support that the lower bounds by (3.4.7) would be good

for k > N/2 (see Figure 3.4.4), too, but we do not have a way to mathematically justify

it yet.

Theorem 3.4.3. In Theorem 3.3.1, if b(i) = 0 for 2 ≤ i ≤ N − 1, then the kth GMRES

residual rk satisfies

‖rk‖2

‖r0‖2

≥
min

i∈{1,N}
|b(i)|

2χ ‖r0‖2

[
Φk+1(τ, ξ)−

1

4

]−1/2

, for 1 ≤ k ≤ N/2, (3.4.7)

‖rk‖2

‖r0‖2

≤
√

3

[
1

2
+ Φk+1(τ, ξ)

]−1/2

, (3.4.8)

where

1 < χ =

d k+1
2
e−1∑

j=0

ζ2j ≤
⌈
k + 1

2

⌉
.

Proof: Now b = b(1)e1 + b(N)eN . Notice the form of M1 in (3.4.3), and that MN is M1

after its rows reordered from the last to the first. For the case M = b(1)M1+ξN−1b(N)MN ,
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Figure 3.4.4: GMRES residuals for b = e1 + eN , |τ | = 0.8, and the bounds by Theorem 3.4.3.

53



0 5 10 15 20 25 30 35 40 45 50
10

−15

10
−10

10
−5

10
0

k+1

||r
k
||

2
/||r

0
||

2
, lower and upper bounds (|τ|=1.2, |ξ|=0.7)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.29167, ν=0.59524

||r
k
||

2
/||r

0
||

2
 for µ=−0.29167, ν=0.59524

0 5 10 15 20 25 30 35 40 45 50
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k+1

||r
k
||

2
/||r

0
||

2
, lower and upper bounds (|τ|=1.2, |ξ|=1.2)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.5, ν=0.34722

||r
k
||

2
/||r

0
||

2
 for µ=−0.5, ν=0.34722

Figure 3.4.5: GMRES residuals for b = e1 + eN , |τ | = 1.2, and the bounds by Theorem 3.4.3.
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Figure 3.4.6: GMRES residuals for b = e1 + eN , |τ | = 1, and the bounds by Theorem 3.4.3.
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and also Lemma 3.3.4 implies that only positive powers of ξ appear in the entries of

ΩMΩ−1. Therefore when |ξ| ≤ 1,

‖ΩM(:,1:k+1)Ω
−1
k+1‖2 ≤ ‖ΩMΩ−1‖2

≤ |b(1)| ‖ |M1| ‖2 + |b(N)||ξ|N−1 ‖ |MN | ‖2

≤ |b(1)|
√

3/2 + |b(N)|
√

3/2

≤
√

3‖b‖2, (3.4.9)

where |M`| takes entrywise absolute value, and we have used

‖ |MN | ‖2 = ‖ |M1| ‖2 ≤
√
‖M1‖1‖M1‖∞ =

√
3/2.

Inequality (3.4.8) for |ξ| ≤ 1 is the consequence of (3.2.24), (3.3.13), and (3.4.9). In-

equality (3.4.8) for |ξ| ≥ 1 follows from itself for |ξ| ≤ 1 applied to the permuted system

(3.3.19).

To prove (3.4.7), we use the lines of arguments in the proof for Theorem 3.4.1 and

notice that for 1 ≤ k ≤ N/2

Y Vk+1,N =



k

k W1

N−2k 0

k W2

.

It can be seen from the proof for Theorem 3.4.1 that

min
u(1)=1

‖W1u‖2 ≥
|b(1)|

2

d k+1
2
e−1∑

j=0

|ξ|2j

−1 [
Ω

(+)
k+1(τ, ξ)−

1

4

]−1/2

,

min
u(1)=1

‖W2u‖2 ≥
|b(N)|

2

d k+1
2
e−1∑

j=0

|ξ|−2j

−1 [
Ω

(−)
k+1(τ, ξ)−

1

4

]−1/2

.

Finally use

min
u(1)=1

‖Y Vk+1,Nu‖2 ≥ max

{
min

u(1)=1
‖W1u‖2, min

u(1)=1
‖W2u‖2

}
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to complete the proof.

Figuress 3.4.4, 3.4.5 and 3.4.6 plot residual histories for several examples of GMRES

with b = e1 + eN . According to the graphs, GMRES residuals for b = e1 + eN , are

sandwiched by their lower and upper bounds by (3.4.7) and (3.4.8). Strictly speaking,

(3.4.7) is only proved for k ≤ N/2, but it seems to be very good even for k > N/2 as

well. We also ran GMRES for b = e1 − eN and obtained residual history that is very

much the same. Finally we have the following theorem about the asymptotic speeds of

‖rk‖2 for b = e1 and b = eN .
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Theorem 3.4.4. Assume the conditions of Theorem 3.3.1 hold.

1. Let b = e1. If ρ > 1, then

min{(|ξ|2ρ)−1, (|ξ|ρ)−1, 1} ≤ lim inf
k→∞

[
‖rk‖2

‖r0‖2

]1/k

(3.4.10)

≤ lim sup
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ min{(|ξ|ρ)−1, 1}.

If ρ = 1 (which happens when and only when τ ∈ [−1, 1]), then

min{|ξ|−1, 1} × η ≤ lim inf
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ η, (3.4.11)

where η = lim supk→∞

[
1/4 +

∑k
j=1 |ξ|2j(cos jθ)2

]−1/(2k)

and θ = arccos τ . Regard-

less of ρ > 1 or ρ = 1,

lim
k→∞

[
‖rk‖2

‖r0‖2

]1/k

= min{(|ξ|ρ)−1, 1} for |ξ| ≤ 1. (3.4.12)

2. Let b = eN . If ρ > 1, then

min{(|ξ|−2ρ)−1, (|ξ|−1ρ)−1, 1} ≤ lim inf
k→∞

[
‖rk‖2

‖r0‖2

]1/k

(3.4.13)

≤ lim sup
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ min{(|ξ|−1ρ)−1, 1}.

If ρ = 1 (which happens when and only when τ ∈ [−1, 1]), then

min{|ξ|, 1} × η ≤ lim inf
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ η, (3.4.14)

where η = lim supk→∞

[
1/4 +

∑k
j=1 |ξ|−2j(cos jθ)2

]−1/(2k)

and θ = arccos τ . Re-

gardless of ρ > 1 or ρ = 1,

lim
k→∞

[
‖rk‖2

‖r0‖2

]1/k

= min{(|ξ|−1ρ)−1, 1} for |ξ| ≥ 1. (3.4.15)

Proof: We note that

lim sup
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ 1, lim sup
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

≤ 1
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for any b because ‖rk‖2 is nonincreasing.

Suppose b = e1. Consider first ρ > 1. Then |Tj(τ)| ∼ 1
2
ρj, and thus

Φ
(+)
k+1(τ, ξ)−

1

4
∼ 1

4

k∑
j=0

(|ξ|ρ)2j =
1

4
· (|ξ|ρ)2(k+1) − 1

(|ξ|ρ)2 − 1
. (3.4.16)

If |ξ|ρ > 1, then (3.4.16) and Theorem 3.4.1 imply

lim sup
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≤ lim
k→∞

[
1

2
(1 + |ξ|2)

]1/k [
Ω

(+)
k+1(τ, ξ)−

1

4

]−1/(2k)

(3.4.17)

= (|ξ|ρ)−1,

lim inf
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≥ lim
k→∞

1

21/k

d k+1
2
e−1∑

j=0

|ξ|2j

−1/k [
Ω

(+)
k+1(τ, ξ)−

1

4

]−1/(2k)

(3.4.18)

=

{
(|ξ|ρ)−1, for |ξ| ≤ 1,

(|ξ|2ρ)−1, for |ξ| > 1.

They together give (3.4.10) for the case |ξ|ρ > 1. If |ξ|ρ ≤ 1, then must |ξ| < 1 and

min{(|ξ|ρ)−1, 1} = 1, min{(|ξ|2ρ)−1, (|ξ|ρ)−1, 1} = 1, and

lim inf
k→∞

[
‖rk‖2

‖r0‖2

]1/k

≥ 1

by (3.4.18) because Φ
(+)
k+1(τ, ξ)− 1

4
is approximately bounded by (k+1)/4 by (3.4.16). So

(3.4.10) holds for the case |ξ|ρ ≤ 1, too. Now consider ρ = 1. Then τ +
√
τ 2 − 1 = eιθ

for some 0 ≤ θ ≤ π, where ι =
√
−1 is the imaginary unit. Thus τ ∈ [−1, 1] and in fact

2τ = (τ +
√
τ 2 − 1) + (τ −

√
τ 2 − 1) = 2 cos θ, Tj(τ) = cos jθ.

Therefore Φ
(+)
k+1(τ, ξ)− 1

4
∼ 1

4
+
∑k

j=1 |ξ|2j(cos jθ)2 which implies

lim
k→∞

[
Φ

(+)
k+1(τ, ξ)−

1

4

]−1/(2k)

= η.

Inequalities (3.4.17) and (3.4.18) remain valid and yield (3.4.11). Finally regardless of

ρ > 1 or ρ = 1, if |ξ| ≤ 1, then all leftmost sides and rightmost sides in (3.4.10) and
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(3.4.11) are equal to min{(|ξ|ρ)−1, 1}. This proves (3.4.12). The proof for the case b = e1

is done.

The case for b = eN can be dealt with by applying the results for b = e1 to the

permuted system (3.3.19).

Remark 3.4.1. As we commented before, our numerical examples indicate that the

upper bounds in Theorems 3.4.1 and 3.4.2 are rather accurate regardless of the magnitude

of |ξ| for both cases b = e1 and b = eN (see Figure 3.4.1) and the lower bound in

Theorem 3.4.3 is also accurate regardless of whether k ≤ N/2 or not (see Figure 3.4.4).

This leads us to conjecture that the following equations would hold.

lim
k→∞

‖rk‖1/k
2 = min{(|ξ|ρ)−1, 1} for b = e1, (3.4.19)

lim
k→∞

‖rk‖1/k
2 = min{(|ξ|−1ρ)−1, 1} for b = eN , (3.4.20)

where no constraint is assumed between k and N , except k < N as usual.

3.5 Worst Convergence Speed

Furthermore, Theorem 3.5.1 tells the worst asymptotic speed for ‖rk‖2.

Theorem 3.5.1. Under the conditions of Theorem 3.3.1,

lim
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

= lim
k→∞

[
max

r0∈{e1,eN}

‖rk‖2

‖r0‖2

]1/k

= min{(ζρ)−1, 1}. (3.5.1)

Proof: Note again that lim supk→∞
(
supr0

‖rk‖2/‖r0‖2

)1/k ≤ 1.

First we prove

lim sup
k→∞

[
max

r0∈{e1,eN}

‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

≤ min{(ζρ)−1, 1}. (3.5.2)

The first inequality is obvious because {e1, eN} ∈ {r0}. We now prove the second one.

If ρ = 1, then min{(ζρ)−1, 1} = 1 because ζ−1 ≥ 1; no proof is needed. If ρ > 1,
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then |Tj(τ)| ∼ 1
2
ρj, and thus (3.4.16). Now if ζρ > 1, then (3.4.16) and Theorem 3.3.1

imply lim supk→∞
(
supr0

‖rk‖2/‖r0‖2

)1/k ≤ (ζρ)−1 which also holds if ζρ ≤ 1 because

then (ζρ)−1 ≥ 1.

Next we prove

lim inf
k→∞

[
max

r0∈{e1,eN}

‖rk‖2

‖r0‖2

]1/k

≥ min{(ζρ)−1, 1}. (3.5.3)

If |ξ| ≤ 1, then ζ = |ξ| and thus

lim inf
k→∞

[
max

r0∈{e1,eN}

‖rk‖2

‖r0‖2

]1/k

≥ lim inf
k→∞

[
max
r0=e1

‖rk‖2

‖r0‖2

]1/k

= min{(ζρ)−1, 1},

by (3.4.12) in Theorem 3.4.4. This is (3.5.3) for |ξ| ≤ 1. For the case |ξ| ≥ 1, we also have

(3.5.3) similarly by (3.4.15). The proof is completed by combining (3.5.2) and (3.5.3).

Copyright c© Wei Zhang 2007
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Chapter 4

Convergence Analysis Using Chebyshev Polynomials of the Second Kind

In this chapter, we use Chebyshev polynomials of the second kind to analyze the residuals

of GMRES on tridiagonal Toeplitz. Section 4.1 introduces how to evaluate the residuals

by applying Chebyshev polynomials of the second kind. Section 4.2 derives the upper

bound of the residuals. Section 4.3 analyzes the residuals on special cases b = e1 or

b = eN . Some of the complicated computations, needed in Section 4.2, are presented in

Section 4.4.

4.1 Residual Reformulation Using Chebyshev Polynomials of the Second
Kind

As in Section 3.2, for a nonsymmetric linear system (3.2.1), the kth GMRES residual

can be written as

‖rk‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2. (4.1.1)

In Section 3.2, the Chebyshev polynomial of the first kind is used to calculate the

residual; here the kth residual is calculated through applying the Chebyshev polynomial

of the second kind. We define the mth Translated Chebyshev Polynomial of the second

kind in z of degree m as

Um(z;ω, τ)
def
= Um(z/ω + τ) (4.1.2)

= ãmmz
m + ãm−1 mz

m−1 + · · ·+ ã1mz + ã0m, (4.1.3)
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where ãjm ≡ ãjm(ω, τ) are functions of ω and τ , and upper triangular R̃m ∈ Cm×m, a

matrix-valued function in ω and τ , too, as

R̃m+1 ≡ R̃m+1(ω, τ)
def
=


ã00 ã01 ã02 · · · ã0 m

ã11 ã12 · · · ã1 m

ã22 · · · ã2 m

. . .
...
ãm m

 , (4.1.4)

i.e., the jth column consists of the coefficients of Uj−1(z;ω, τ). Set

UN
def
=


U0(t1) U0(t2) · · · U0(tN)
U1(t1) U1(t2) · · · U1(tN)

...
...

...
UN−1(t1) UN−1(t2) · · · UN−1(tN)

 (4.1.5)

and again VN = VN,N for short. Then

V T
N R̃N = UT

N . (4.1.6)

Equation (4.1.6) yields V T
N = UT

N R̃
−1
N . Extracting the first k+1 columns from both sides

of V T
N = UT

N R̃
−1
N yields

V T
k+1,N = UT

k+1,N R̃
−1
k+1, (4.1.7)

where Uk+1,N = (UN)(1:k+1,:).

Now we can estimate the kth GMRES residual

‖rk‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2

for Ax = b, where Y = X diag(X−1b). Now notice Y = X diag(X−1b) and X = ΩZ with

Z in (3.2.6) being real and orthogonal to get

Y V T
k+1,N = ΩZ diag(ZT Ω−1b) (UT

N)(:,1:k+1)R̃
−1
k+1

= ΩM̃(:,1:k+1)R̃
−1
k+1 (4.1.8)

= ΩM̃(:,1:k+1)Ω
−1
k+1 Ωk+1R̃

−1
k+1. (4.1.9)
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where Ωk+1 = Ω(1:k+1,1:k+1), the (k + 1)th leading submatrix of Ω,

M̃ = Z diag(ZT Ω−1b)UT
N . (4.1.10)

It follows from (4.1.1) and (4.1.9) that

σmin(ΩM̃(:,1:k+1)Ω
−1
k+1) ≤

‖rk‖2

minu(1)=1 ‖Ωk+1R̃
−1
k+1u‖2

≤ ‖ΩM̃(:,1:k+1)Ω
−1
k+1‖2. (4.1.11)

Hence, the upper bound and lower bound of the residual ‖rk‖2 could be estimated.

4.2 Estimation of Residual in General Case

Similarly to the previous chapter, we also define

ζ
def
= min

{
|ξ|, 1

|ξ|

}
,

Φ̃
(+)
k+1(τ, ξ)

def
=

k∑
j=0

′ |ξ|2j |Uj(τ)|2 ,

Φ̃
(−)
k+1(τ, ξ)

def
=

k∑
j=0

′ |ξ|−2j |Uj(τ)|2 ,

Φ̃k+1(τ, ξ)
def
=

k∑
j=0

′ ζ2j |Uj(τ)|2 ≡ min
{

Φ̃
(+)
k+1(τ, ξ), Φ̃

(−)
k+1(τ, ξ)

}
,

where
∑′

j means the first term is halved. In the following part of this section, we try to

calculate the upper bound of the residuals.

Based on inequality (4.1.11), we have

‖rk‖2 ≤ min
u(1)=1

‖Ωk+1R̃
−1
k+1u‖2 ‖ΩM̃(:,1:k+1)Ω

−1
k+1‖2, (4.2.1)

and according to inequality (3.3.13), we have

min
u(1)=1

‖Ωk+1R̃
−1
k+1u‖2 = ‖Ω−∗

k+1R̃
∗
k+1e1‖−1

2 =

[
1

2
+ Φ

(+)
k+1(τ, ξ)

]−1/2

. (4.2.2)
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Hence, if we can estimate the second part ‖ΩM̃(:,1:k+1)Ω
−1
k+1‖2, then the upper bound is

obtained.

Similarly, we analyze M̃ to calculate the second part. Recall Chebyshev polynomials

of the second kind:

Um−1(t) =
sin(m arccos t)

sin(arccos t)
for |t| ≤ 1, (4.2.3)

=

(
t+

√
t2 − 1

)m
+
(
t−

√
t2 − 1

)m
2
√
t2 − 1

for |t| ≥ 1, (4.2.4)

and the definition of UN in (4.1.5) and tj = cos θj, θj = jπ
N+1

in (3.2.5). We rewrite UN

as

UN
def
=


sin(θ1)
sin(θ1)

sin(θ2)
sin(θ2)

· · · sin(θN )
sin(θN )

sin(2θ1)
sin(θ1)

sin(2θ2)
sin(θ2)

· · · sin(2θN )
sin(θN )

...
...

...
sin(Nθ1)
sin(θ1)

sin(Nθ2)
sin(θ2)

· · · sin(NθN )
sin(θN )

 . (4.2.5)

Then we rewrite M̃ as:

M̃ = Z diag(ZT Ω−1b)UT
N

=
N∑

`=1

Z diag(ZΩ−1b(`)e`)U
T
N

=
N∑

`=1

b(`)ξ
`−1Z diag(Ze`)U

T
N

=
N∑

`=1

b(`)ξ
`−1Z diag(Z(:,`))U

T
N

=
N∑

`=1

b(`)ξ
`−1M̃`, (4.2.6)

where M̃` = Z diag(Z(:,`))U
T
N . Now recall Z(:,`) =

√
2

N+1
(sin `θ1, . . . , sin `θN)T , then M̃`
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can be written as

M̃` =

√
2

N + 1


sin(θ1) sin(2θ1) · · · sin(Nθ1)
sin(θ2) sin(2θ2) · · · sin(Nθ2)

...
...

...
sin(θN) sin(2θN) · · · sin(NθN)



×
√

2

N + 1


sin(`θ1)

sin(`θ2)
. . .

sin(`θN)



×


sin(θ1)
sin(θ1)

sin(2θ1)
sin(θ1)

· · · sin(Nθ1)
sin(θ1)

sin(θ2)
sin(θ2)

sin(2θ2)
sin(θ2)

· · · sin(Nθ2)
sin(θ2)

...
...

...
sin(θN )
sin(θN )

sin(2θN )
sin(θN )

· · · sin(NθN )
sin(θN )



= Z


sin(`θ1)
sin(θ1)

sin(`θ2)
sin(θ2)

. . .
sin(`θN )
sin(θN )

 Z.

Since Z = ZT , we also can write

M̃` = Z D` Z
T , (4.2.7)

where

D` =


sin(`θ1)
sin(θ1)

sin(`θ2)
sin(θ2)

. . .
sin(`θN ))
sin(θN )

 . (4.2.8)

4.2.1 Residual with General Right-hand Sides

Given a tridiagonal Toeplitz with a general right-hand side, we have

Theorem 4.2.1. For Ax = b, where A is tridiagonal Toeplitz as in (3.2.1) with nonzero

(real or complex) parameters ν, λ, and µ. Then given 1 ≤ k ≤ N , the kth GMRES

residual rk satisfies

‖rk‖2

‖r0‖2

≤
√
k + 1ψ(k, ζ)

[
1

2
+ Φ̃k+1(τ, ξ)

]−1/2

, (4.2.9)
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where

ψ(k, ζ) =
1− |ζ|2min{k+1,bN+1

2
c}

1− |ζ|2
, ζ = min

{
|ξ|, 1

|ξ|

}
. (4.2.10)

Specially, for |ξ| ≤ 1,

‖rk‖2

‖r0‖2

≤
√
k + 1ψ(k, ζ)

[
1

2
+ Φ̃

(+)
k+1(τ, ξ)

]−1/2

, (4.2.11)

and for |ξ| > 1,

‖rk‖2

‖r0‖2

≤
√
k + 1ψ(k, ζ)

[
1

2
+ Φ̃

(−)
k+1(τ, ξ)

]−1/2

. (4.2.12)

The proof relies on (4.2.1)

‖rk‖2 ≤ min
u(1)=1

‖Ωk+1R̃
−1
k+1u‖2 ‖ΩM̃(:,1:k+1)Ω

−1
k+1‖2, (4.2.13)

and according to inequality (3.3.13), we have

min
u(1)=1

‖Ωk+1R̃
−1
k+1u‖2 = ‖Ω−∗

k+1R̃
∗
k+1e1‖−1

2 =

[
1

2
+ Φ̃

(+)
k+1(τ, ξ)

]−1/2

. (4.2.14)

Now we need to analyze ΩM̃(:,1:k+1)Ω
−1
k+1 to finish the proof.

According to (4.2.7), we can calculate M̃`, and find some properties of b`ξ
`−1ΩM̃`Ω

−1,

which is a part of ΩM̃`Ω
−1 =

∑N
`=1 b`ξ

`−1 ΩM̃`Ω
−1.

It turns out that M̃`’s have the following forms, whose theoretical justifications are
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very complicated and thus are postponed to Section 4.4.

M̃1 =



1
1

1
1

. . .

1


,

M̃2 =



1
1 1

1 1

1
. . .

. . . 1
1


,

M̃3 =



1
1 1

1 1
. . .

1
. . . 1

. . . 1
1


,

...
...

M̃N−1 =



1
1 1

· 1
· ·

· ·
1 ·

1


,

M̃N =



1
1

·
·

·
1

1


. (4.2.15)
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Now for b(`)ξ
`ΩM̃`Ω

−1, we have the following result

b(1)ΩM̃1Ω
−1 = b(1)



1
1

1
1

. . .

1


,

b(2)ξ
1ΩM̃2Ω

−1 = b(2)



ξ2

1 ξ2

1 ξ2

1
. . .

. . . ξ2

1


,

b(3)ξ
2ΩM̃3Ω

−1 = b(3)



ξ4

ξ2 ξ4

1 ξ2 . . .

1
. . . ξ4

. . . ξ2

1


,

...
...

b(N−1)ξ
N−2ΩM̃N−1Ω

−1 = b(N−1)



ξ2N−4

ξ2N−6 ξ2N−4

· ξ2N−6

· ·
· ·

1 ·
1


,

b(N)ξ
N−1ΩM̃NΩ−1 = b(N)



ξ2N−2

ξ2N−4

·
·

·
ξ2

1


, (4.2.16)

and ΩM̃Ω−1 =
∑N

`=1 b(`)ξ
`−1ΩM̃`Ω

−1.

As the result of (4.2.16), if k + 1 ≤ bN+1
2
c, the (k + 1)th column of ΩM̃Ω−1 can be

expressed as the sum of (k + 1) vectors {v1, ξ
2v2, . . . , ξ

2kvk+1}, where ‖vi‖2 ≤ ‖b‖2 for

i = 1, . . . , k + 1. Then we have ‖(ΩM̃Ω−1)(:,k+1)‖2 ≤ ‖b‖2(1 + |ξ|2 + . . . + |ξ|2k). For
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|ξ| ≤ 1, if j ≥ bN+1
2
c, we still have 1

‖(ΩM̃Ω−1)(:,j)‖2 ≤ ‖b‖2(1 + |ξ|2 + . . .+ |ξ|2b
N−1

2
c).

Therefore, when |ξ| ≤ 1,

‖ΩM̃(:,1:k+1)Ω
−1
k+1‖2 ≤

√√√√k+1∑
j=1

‖(ΩM̃Ω−1)(:,j)‖2
2 ≤

√
k + 1 ‖b‖2ψ(k, ζ), (4.2.17)

where ψ(k, ζ) = 1−|ζ|2 min{k+1,bN+1
2 c}

1−|ζ|2 , ζ = min
{
|ξ|, 1

|ξ|

}
.

Now we can prove Theorem 4.2.1.

Proof : First let us prove the second part of Theorem 4.2.1, i.e. for |ξ| ≤ 1, the residual

satisfied (4.2.11).

According to the inequality (4.2.1)

‖rk‖2 ≤ min
u(1)=1

‖Ωk+1R̃
−1
k+1u‖2 ‖ΩM̃(:,1:k+1)Ω

−1
k+1‖2,

and the relation(3.3.13)

min
u(1)=1

‖Ωk+1R̃
−1
k+1u‖2 = ‖Ω−∗

k+1R̃
∗
k+1e1‖−1

2 =

[
1

2
+ Φ̃

(+)
k+1(τ, ξ)

]−1/2

.

We have

‖rk‖2 ≤
[
1

2
+ Φ̃

(+)
k+1(τ, ξ)

]−1/2

‖ΩM̃(:,1:k+1)Ω
−1
k+1‖2.

Now consider the relation (4.2.17), then

‖rk‖2 ≤
[
1

2
+ Φ̃

(+)
k+1(τ, ξ)

]−1/2 √
k + 1 ‖b‖2 ψ(k, ζ). (4.2.18)

Since ‖r0‖2 = ‖b‖2, for |ξ| ≤ 1, (4.2.11) is proved. For |ξ| ≥ 1, just apply (4.2.11) to the

permuted system (3.3.19). Theorem 4.2.1 is now proved.

1Since M̃ is symmetric and also symmetric about antidiagonal, we have

‖(ΩM̃Ω−1)(:,j)‖2 ≤ ‖b‖2(1 + |ξ|2 + . . . + |ξ|2(N+1−j)).

Note (N + 1− j) ≤ bN−1
2 c now. So we can write ‖(ΩM̃Ω−1)(:,j)‖2 ≤ ‖b‖2(1 + |ξ|2 + . . . + |ξ|2bN−1

2 c).
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4.2.2 Numerical Examples

Similar to Theorem 3.3.1, which gives

‖rk‖2

‖r0‖2

≤
√
k + 1

[
1

2
+ Φk+1(τ, ξ)

]−1/2

, (4.2.19)

Theorem 4.2.1 gives a bound with similar format,

‖rk‖2

‖r0‖2

≤
√
k + 1ψ(k, ζ)

[
1

2
+ Φ̃k+1(τ, ξ)

]−1/2

.

We can compare these two upper bounds by evaluating the ratio[
1
2

+ Φ̃
(+)
k+1(τ, ξ)

]−1/2

ψ(k, ζ)[
1
2

+ Φk+1(τ, ξ)
]−1/2

. (4.2.20)

Numerical examples are showed in Figures 4.2.1, 4.2.2, 4.2.3. The parameters

in Section 3.3.3 are used again. The upper bounds (blue solid lines with squares) are

calculated according to Theorem 4.2.1, and the other upper bounds(green dashed lines)

obtained by Theorem 3.3.1. These two upper bounds are very close to each other.

The ratio (4.2.20) is showed in Figure 4.2.4. The curve with circles is the ratio

when µ > 0; the lower plot with triangles presents the ratio when µ < 0, i.e. τ is

pure imaginary. The upper bounds, through applying Chebyshev polynomials of the

second kind, have better performance when µ > 0. The upper bounds, through applying

Chebyshev polynomials of the first kind, are better when µ < 0. Note in Figure 4.2.4, the

bottom two graphs only contain one curve for the case µ < 0; for the other case µ > 0,

since τ = 1, the denominator in the Chebyshev polynomial of the second kind is zero.

4.3 Exact Residual for Special Right-hand Sides: b = e1, b = eN

Now let us consider some cases for special right-hand side. First, given the right hand

side: b = e1, we can calculate the exact residual through the analysis using Chebyshev

polynomials of the second kind.
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Figure 4.2.1: GMRES residuals for random b with |τ | = 0.8, and the upper bounds by Theo-
rem 3.3.1 and Theorem 4.2.1.
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Figure 4.2.2: GMRES residuals for random b with |τ | = 1.2, and the upper bounds by Theo-
rem 3.3.1 and Theorem 4.2.1.
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Figure 4.2.3: GMRES residuals for random b with |τ | = 1, and the upper bounds by Theo-
rem 3.3.1 and Theorem 4.2.1.
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Figure 4.2.4: Upper bound ratios between the bounds obtained from Theorem 4.2.1 and those
from Theorem 3.3.1.
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The kth GMRES residual is

‖rk‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2,

and the equation (4.1.9) gives

Y V T
k+1,N = ΩM̃(:,1:k+1)Ω

−1
k+1 Ωk+1R̃

−1
k+1, (4.3.1)

then

‖rk‖2 = min
u(1)=1

‖ΩM̃(:,1:k+1)Ω
−1
k+1 Ωk+1R̃

−1
k+1‖2. (4.3.2)

Recall (4.2.6)

M̃ =
N∑

`=1

b(`)ξ
`−1M̃`,

Now, if b = e1, i.e. only b(1) = 1, then

M̃ = M̃1

= Z D1 Z
T

= IN ,

since (4.2.7) gives M̃1 = Z D1 Z
T , and D1 = IN . Hence, ΩM̃Ω−1 = IN , and

ΩM̃(:,1:k+1)Ω
−1
k+1 =

(
ΩM̃Ω−1

)
(:,1:k+1)

= (IN)(:,1:k+1) . (4.3.3)
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Recall the relation (3.3.13), the kth GMRES residual is

‖rk‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2

= min
u(1)=1

‖ΩM̃(:,1:k+1)Ω
−1
k+1 Ωk+1R̃

−1
k+1u‖2

= min
u(1)=1

‖ (IN)(:,1:k+1) Ωk+1R̃
−1
k+1u‖2

= min
u(1)=1

‖Ωk+1R̃
−1
k+1u‖2

=

[
1

2
+ Φ̃

(+)
k+1(τ, ξ)

]−1/2

. (4.3.4)

The above calculation leads to Theorem 4.3.1.

Theorem 4.3.1. If b = e1, then the kth GMRES residual rk satisfies for 1 ≤ k < N

‖rk‖2

‖r0‖2

=

[
1

2
+ Φ̃

(+)
k+1(τ, ξ)

]−1/2

. (4.3.5)

Note that b = e1 and ‖r0‖2 = ‖b‖2 = 1.

Now apply Theorem 4.3.1 to the permuted system (3.3.19) to get Theorem 4.3.2.

Theorem 4.3.2. If b = eN , then the kth GMRES residual rk satisfies for 1 ≤ k < N

‖rk‖2

‖r0‖2

=

[
1

2
+ Φ̃

(−)
k+1(τ, ξ)

]−1/2

. (4.3.6)

4.4 The Structure of M̃`

According to (4.2.7), we have

Proposition 4.4.1. Let M̃`
def
= Z diag(Z(:,`))U

T
N for 1 ≤ ` ≤ N . Then

M̃`(i, j) =
2

N + 1

N∑
k=1

sin(iθk) sin(jθk)
sin(`θk)

sin(θk)
, (4.4.7)

and M̃` is symmetric, i.e. M̃`(i, j) = M̃`(j, i), and is also symmetric about the anti-

diagonal, i.e.

M̃`(i, j) = M̃`(N + 1− j,N + 1− i).

77



Furthermore,

M̃`(i, j) = M̃N+1−`(i, N + 1− j),

i.e., M̃N+1−` is M̃` after its columns reordered backwards from the last to the first.

Proof: The relation (4.4.7) follows the computation of M̃`. According to (4.4.7), we

have

M̃`(i, j) =
2

N + 1

N∑
k=1

sin(i θk) sin(j θk)
sin(`θk)

sin(θk)

=
2

N + 1

N∑
k=1

sin(j θk) sin(i θk)
sin(`θk)

sin(θk)

= M̃`(j, i),

i.e. M̃` is symmetric.

To prove M̃` is symmetric about the anti-diagonal, we need to show

M̃`(i, j) = M̃`(N + 1− j,N + 1− i).

According to (4.4.7), we have

M̃`(N + 1− j,N + 1− i) =
2

N + 1

N∑
k=1

sin((N + 1− j) θk) sin((N + 1− i) θk)
sin(`θk)

sin(θk)

=
2

N + 1

N∑
k=1

sin(kπ − j θk) sin(kπ − i θk)
sin(`θk)

sin(θk)

=
1

N + 1

N∑
k=1

[cos((i− j) θk)− cos(2kπ − (i+ j) θk)]
sin(`θk)

sin(θk)

=
1

N + 1

N∑
k=1

[cos((i− j) θk)− cos((i+ j) θk)]
sin(`θk)

sin(θk)

=
2

N + 1

N∑
k=1

sin(i θk) sin(j θk)
sin(`θk)

sin(θk)

= M̃`(i, j).
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For the last part, we have

M̃N+1−`(i, N + 1− j) =
2

N + 1

N∑
k=1

sin(i θk) sin((N + 1− j) θk)
sin((N + 1− `)θk)

sin(θk)

=
2

N + 1

N∑
k=1

sin(iθk) sin(kπ − j θk)
sin(kπ − ` θk)

sin(θk)

=
1

N + 1

N∑
k=1

[cos((`− j) θk)− cos(2kπ − (`+ j) θk)]
sin(i θk)

sin(θk)

=
1

N + 1

N∑
k=1

[cos((`− j) θk)− cos((`+ j) θk)]
sin(i θk)

sin(θk)

=
2

N + 1

N∑
k=1

sin(i θk) sin(j θk)
sin(`θk)

sin(θk)

= M̃`(i, j).

According to Proposition 4.4.1, to compute M̃`’s, it suffices to compute the first N+1
2

columns of M̃`, for ` ≤ N+1
2

. This is done in Proposition 4.4.2 below.

Proposition 4.4.2. Let M̃`
def
= Z diag(Z(:,`))U

T
N . Then, for j ≤ N+1

2
and ` ≤ N+1

2
, the

jth column of M̃` has at most min {j, `} nonzero entries. If j ≤ `,

M̃`(`+ j − 1, j) = 1,

M̃`(`+ j − 3, j) = 1,

M̃`(`+ j − 5, j) = 1,

...

M̃`(`+ j − (2j − 1), j) = M̃`(`− j + 1, j) = 1. (4.4.8)
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If ` ≤ j,

M̃`(j + `− 1, j) = 1,

M̃`(j + `− 3, j) = 1,

M̃`(j + `− 5, j) = 1,

...

M̃`(j + `− (2`− 1), j) = M̃`(j − `+ 1, j) = 1. (4.4.9)

Proof: For j ≤ `, the proposition can be proved by induction. When j = 1, the first

column of M̃` can be calculated as

M̃`(i, 1) =
2

N + 1

N∑
k=1

sin(iθk) sin(1 θk)
sin(`θk)

sin(θk)

=
2

N + 1

N∑
k=1

sin(iθk) sin(`θk).

Hence, M̃`(i, 1) = 1 only if i = `; otherwise, M̃`(i, 1) = 0. In other words, the nonzero

entry of the first column is:

M̃`(`+ j − 1, j) = M̃`(`− j + 1, j) = M̃`(`, 1) = 1.

Assume Proposition 4.4.2 is right for the jth column of M̃`’s for j ≤ `. We need to

prove it is correct for the (j + 1)th column of M̃`’s for j + 1 ≤ `.

According to (4.4.7), we have

M̃`(i, j) =
2

N + 1

N∑
k=1

sin(i θk) sin(`θk)
sin((j) θk)

sin(θk)

=
1

N + 1

N∑
k=1

(cos((i− `) θk)− cos((i+ `) θk))
sin(j θk)

sin(θk)
. (4.4.10)

80



Let’s calculate M̃`(i, j + 1) as

M̃`(i, j + 1) =
2

N + 1

N∑
k=1

sin(i θk) sin(`θk)
sin((j + 1) θk)

sin(θk)

=
1

N + 1

N∑
k=1

(cos((i− `) θk)− cos((i+ `) θk))
sin((j + 1) θk)

sin(θk)

=
1

N + 1

N∑
k=1

(cos((i− `) θk)− cos((i+ `) θk))

(
cos(j θk) + cos(θk)

sin(j θk)

sin(θk)

)
= ∆1 + ∆2,

where

∆1 =
1

N + 1

N∑
k=1

(cos((i− `) θk)− cos((i+ `) θk)) cos(j θk)

=
1/2

N + 1

N∑
k=1

[cos((i− `− j) θk) + cos((i− `+ j) θk)]

− [cos((i+ `− j) θk) + cos((i+ `+ j) θk)]

=
1/2

N + 1

N∑
k=1

[cos((i− `− j) θk)− cos((i+ `+ j) θk)]

+ [cos((i− `+ j) θk)− cos((i+ `− j) θk)] , (4.4.11)

and

∆2 =
1

N + 1

N∑
k=1

(cos((i− `) θk)− cos((i+ `) θk)) cos(θk)
sin(j θk)

sin(θk)

=
1/2

N + 1

N∑
k=1

[cos((i− `− 1) θk) + cos((i− `+ 1) θk)]
sin(j θk)

sin(θk)

− [cos((i+ `− 1) θk) + cos((i+ `+ 1) θk)]
sin(j θk)

sin(θk)

=
1/2

N + 1

N∑
k=1

[cos((i− `− 1) θk)− cos((i+ `+ 1) θk)]
sin(j θk)

sin(θk)

+ [cos((i− `+ 1) θk)− cos((i+ `− 1) θk)]
sin(j θk)

sin(θk)
. (4.4.12)
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According to Lemma 3.3.2, if i = `+ j, i.e. i = `+ (j + 1)− 1 , then

N∑
k=1

cos [(i− `− j)θk] = N,

N∑
k=1

− cos [(i+ `+ j)θk] = 1,

N∑
k=1

cos((i− `+ j) θk)− cos((i+ `− j) θk) = 0.

Hence,

∆1 = 1/2. (4.4.13)

If i = `− j, i.e. i = `− (j + 1) + 1, then

N∑
k=1

cos [(i− `+ j)θk] = N,

N∑
k=1

− cos [(i+ `− j)θk] = 1,

N∑
k=1

cos((i− `− j) θk)− cos((i+ `+ j) θk) = 0.

So we also have

∆1 = 1/2. (4.4.14)

For other cases, we always have

N∑
k=1

cos((i− `− j) θk)− cos((i+ `+ j) θk) = 0,

N∑
k=1

cos((i− `+ j) θk)− cos((i+ `− j) θk) = 0.

It is because that (i − ` − j) and (i + ` + j) are even or odd at the same time, so are

(i − ` + j) and (i + ` − j); and both (i + ` + j) and (i + ` − j) are less than 2(N + 1)

since i ≤ N, ` ≤ N+1
2
, and j ≤ N+1

2
. So the sum must be zero, i.e. ∆1 = 0.
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According to the assumption and (4.4.10),

∆2 = 1, (4.4.15)

for

i = `+ (j + 1)− 3,

...

i = `− (j + 1) + 3,

and

∆2 = 1/2, (4.4.16)

for i = `+ (j + 1)− 1 or i = `− (j + 1) + 1, otherwise ∆2 is zero.

Hence for j + 1 ≤ `, (j + 1)th column of M̃` has (j + 1) nonzero entries, which are

equal to 1.

So for j ≤ `, the proposition is proved. For ` ≤ j, it can be proved by similarly

repeating the above steps again. Proposition 4.4.2 is proved.

According to Propostions 4.4.1 and 4.4.2, we have M̃` as in (4.2.15).

Copyright c© Wei Zhang 2007
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Chapter 5

Conclusions

There are a few GMRES error bounds with simplicity comparable to the well-known

bound for the conjugate gradient method [4, 18, 29, 38]. In [7, Section 6], Eiermann and

Ernst proved

‖rk‖2

‖r0‖2

≤
[
1− γ(A) γ(A−1)

]k/2
, (5.0.1)

where γ(A) = inf{|z∗Az| : ‖z‖2 = 1} is the distance from the origin to A’s field of

values. When A’s Hermitian part, H = (A+A∗)/2, is positive definite, it yields a bound

by Elman [9] (see also [8])

‖rk‖2

‖r0‖2

≤

[
1−

(
1

‖H−1‖2‖A‖2

)2
]
. (5.0.2)

As observed in [3], this bound of Elman can be easily extended to cover the case when

only γ(A) > 0

‖rk‖2

‖r0‖2

≤ (sin θ)k, θ = arccos
γ(A)

‖A‖2

. (5.0.3)

Recently Beckermann, Goreinov, and Tyrtyshnikov [3] improved (5.0.3) to

‖rk‖2

‖r0‖2

≤ (2 + 2/
√

3)(2 + δ)δk, δ = 2 sin
θ

4− 2θ/π
. (5.0.4)

All three bounds (5.0.1), (5.0.3), and (5.0.4) yield meaningful estimates only when γ(A) >

0, i.e. A’s field of values does not contain the origin.

However, in general, there is not much concrete quantitative results for the conver-

gence rate of GMRES, based on limited information on A and/or b. In part, it is a very
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difficult problem, and such a result most likely does not exist, thanks to the negative

result of Greenbaum, Pták, and Strakoš [19] which says that “Any Nonincreasing Con-

vergence Curve is Possible for GMRES.” A commonly used approach, as a step towards

getting a feel of how fast GMRES may be, is through assuming that A is diagonalizable

to arrive at (3.2.13):

‖rk‖2/‖r0‖2 ≤ κ(X) min
pk(0)=1

max
i
|pk(λi)|, (5.0.5)

and then putting aside the effect of κ(X) to study only the effect in the factor of the

associated minimization problem. This approach does not always yield satisfactory re-

sults, especially when κ(X) � 1 which occurs when A is highly nonnormal. Getting

a fairly accurate quantitative estimate for the convergence rate of GMRES for a highly

nonnormal case is likely to be very difficult. Trefethen and Toh [37, 36] established

residual bounds based on pseudospectra, which sometimes is more realistic than (5.0.5)

but is very expensive to compute. In [5], Driscoll, Toh, and Trefethen provided a nice

explanation on this matter.

Our analysis here on tridiagonal Toeplitz A represents one of few diagonalizable cases

where one can analyze rk directly to arrive at simple quantitative results.

Our first main contribution in this thesis is the following error bound (Theorem 3.3.1)

‖rk‖2

‖r0‖2

≤
√
k + 1

[
k∑

j=0

ζ2j |Tj(τ)|2
]−1/2

, (5.0.6)

where Tj(t) is the jth Chebyshev polynomial of the first kind, and

ξ = −
√
µν

ν
, τ =

λ

2
√
µν
, ζ = min{|ξ|, |ξ|−1}.

We also prove that this upper bound is nearly achieved by b = e1 (the first column of the

identity matrix) when |ξ| ≤ 1 or by b = eN (the last column of the identity matrix) when
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|ξ| ≥ 1. By “nearly achieved,” we mean it is within a factor, about at most (k+ 1)3/2, of

the exact relative residual.

Our second main contribution is about the worst asymptotic speed of ‖rk‖2 among

all possible r0. It is proven that (Theorem 3.5.1)

lim
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

= min
{
(ζρ)−1, 1

}
, (5.0.7)

where ρ = max
{∣∣τ +

√
τ 2 − 1

∣∣ , ∣∣τ −√
τ 2 − 1

∣∣}. As a by-product, it says the worst

asymptotic speed can be separated into the factor ζ−1 ≥ 1 contributed by A’s departure

from normality and the factor ρ−1 contributed by A’s eigenvalue distribution. Take, for

example, λ = 0.5, µ = −0.3, and ν = 0.7 which was used in [5, p.562] to explain the

effect of nonnormality on GMRES convergence. We have (ζρ)−1 = 0.90672, whereas in [5,

p.562] it is implied ‖rk‖2/‖r0‖2 ≤ (0.913)k for N = 50, which is rather good, considering

that N = 50 is rather small.

We also estimate error bounds using Chebyshev polynomials of the second kind.

Theorem 4.2.1 gives an upper bound

‖rk‖2

‖r0‖2

≤
√
k + 1ψ(k, ξ)

[
1

2
+ Φ̃k+1(τ, ξ)

]−1/2

, (5.0.8)

where

ψ(k, ζ) =
1− |ζ|2min{k+1,bN+1

2
c}

1− |ζ|2
, ζ = min

{
|ξ|, 1

|ξ|

}
, (5.0.9)

which is comparable to the bound by Theorem 3.3.1.

Ernst [11], in our notation, obtained the following inequality: if A’s field of values

does not contain the origin, then

‖rk‖2

‖r0‖2

≤
(
|ξ|k + |ξ|−k

) ρ̃k

1− ρ̃2k
, (5.0.10)

where ρ̃ = max
{∣∣τ̃ +

√
τ̃ 2 − 1

∣∣ , ∣∣τ̃ −√
τ̃ 2 − 1

∣∣} and τ̃ =
[
cos π

N+1

]−1
τ . Our bound

(5.0.6) is comparable to Ernst’s bound for large N . This can be seen by noting that
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for N large enough, τ̃ ≈ τ and ρ̃ ≈ ρ, and that Tj(τ) ≈ 1
2
ρj when ρ > 1 and

|ζ|−k ≤ |ξ|k + |ξ|−k ≤ 2|ζ|−k. Ernst’s bound also leads to

lim sup
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

≤ min
{
(ζρ)−1, 1

}
. (5.0.11)

In differentiating our contributions here from Ernst’s, we use a different technique to

arrive at (5.0.6) and (5.0.7). While our proof is not as elegant as Ernst’s which was

based on A’s field of values (see also [6]), it allows us to establish both lower and upper

bounds on relative residuals for special right-hand sides to conclude that our bound is

nearly achieved. Also (5.0.7) is an equality while only an inequality (5.0.11) can be

deduced from Ernst’s bound and approach.

We also obtain residual bounds especially for right-hand sides b = e1 and b = eN

(Theorems 3.4.1 and 3.4.2). They suggest, besides the sharpness of (5.0.6), an interesting

GMRES convergence behavior. For b = e1, that |ξ| > 1 speeds up GMRES convergence,

and in fact ‖rk‖2 is roughly proportional to |ξ|−k. So the bigger the |ξ| is, the faster

the convergence will be. Note as |ξ| gets bigger, A gets further away from a normal

matrix. Thus, loosely speaking, the nonnormality contributes to the convergence rate

in the positive way. Nonetheless this does not contradict our usual perception that

high nonnormality is bad for GMRES if the worst behavior of GMRES among all b is

considered. This mystery can be best explained by looking at the extreme case: |ξ| = ∞,

i.e., ν = 0, for which b = e1 is an eigenvector (and convergence occurs in just one step).

In general for ν 6= 0, as |ξ| gets bigger and bigger, roughly speaking b = e1 comes closer

and closer to A’s invariant subspaces of lower dimensions and consequently speedier

convergence is witnessed. Similar comments apply to the case when b = eN .

Applying Chebyshev polynomials of the second kind enables us to obatin the exact
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expressions of residuals for special right-hand sides b = e1 and b = eN (Theorems 4.3.1

and 4.3.2).

Copyright c© Wei Zhang 2007
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