
EIGIFP: A MATLAB Program for Solving Large
Symmetric Generalized Eigenvalue Problems

JAMES H. MONEY† and QIANG YE∗

UNIVERSITY OF KENTUCKY

eigifp is a MATLAB program for computing a few extreme eigenvalues and eigenvectors of the
large symmetric generalized eigenvalue problem Ax = λBx. It is a black-box implementation of
an inverse free preconditioned Krylov subspace projection method developed by Golub and Ye
(2002). It has some important features that alow it to solve some difficult problems without any
input from users. It is particularly suitable for problems where preconditioning by the standard
shift-and-invert transformation is not feasible.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra;
G.4 [Mathematical Software]: Documentation

General Terms: Algorithms, Documentation

Additional Key Words and Phrases: Krylov subspace methods, eigenvalue, generalized eigenvalue
problem, preconditioning

1. INTRODUCTION

eigifp is a MATLAB program for computing a few algebraically smallest or largest
eigenvalues and their corresponding eigenvectors of the generalized eigenvalue prob-
lem

Ax = λBx (1)

where A and B are large (and typically sparse) symmetric matrices and B is positive
definite. This eigenvalue problem, sometimes referred to as a pencil eigenvalue
problem for (A,B), arises in a large variety of scientific and engineering applications,
see [Golub and Van Loan 1983; Parlett 1980; Saad 1992] for details. Solving them
efficiently for large scale problems is of great importance.

The underlying algorithm of eigifp is an inverse free preconditioned Krylov
subspace projection method developed in [Golub and Ye 2002]. In this method,
we iteratively improve an approximate eigenvector xk through the Rayleigh-Ritz
projection on the Krylov subspace of dimension m generated by A− ρkB and xk,
where ρk = xT

k Axk/xT
k Bxk. The projection is carried out by constructing a basis

for the Krylov subspace through an inner iteration, where the matrices A and B
are only used to form matrix-vector products and O(m) vector memory is required.
The method is proved to converge at least linearly and a congruence transformation
can be implicitly applied to precondition the original eigenvalue problem so as to
accelerate convergence. eigifp implements this preconditioned algorithm and has
also incorporated several algorithmic enhancements and implementation details to

† Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027. E-mail:
jmoney@ms.uky.edu. Research supported in part by NSF under Grant No. CCR-0098133.
∗ Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027. E-mail:
qye@ms.uky.edu. Research supported in part by NSF under Grant No. CCR-0098133.

Pages 0??–0??.

2 · J. Money and Q. Ye

arrive at an efficient black-box implementation.
Comparing with existing programs, eigifp possesses some important features

that alow it to solve some difficult problems without any input from users. First,
for the generalized eigenvalue problem (with B 6= I), eigifp does not require
inverting B as most other methods do. Second, it includes the congruent transfor-
mation based preconditioning and this is done with no required user inputs such as
a user supplied preconditioner or a shift (as in a shift-and-invert transformation).
The program uses an incomplete LDLT factorization of a shifted matrix A − σB
to generate a preconditioner, where the shift σ is an approximate eigenvalue de-
termined also by the program. With the use of the incomplete factorization, the
computational and memory cost of preconditioning can be controlled and the pre-
conditioning is implemented in the code in a black-box fashion. Thus, eigifp will
be most useful for problems where preconditioning by the standard shift-and-invert
transformation is not feasible; but it can be competitive as well otherwise. Finally,
eigifp is relatively simple in implementation with only one performance tuning
parameter (i.e. the dimension of the Krylov subspace). This parameter can be
either set by users or adaptively chosen by the program.

Over the years, many numerical methods and softwares have been developed to
solve large scale eigenvalue problems, including many publicly distributed programs;
we refer to [Bai et al. 2000] for a comprehensive list of references and softwares in
this area. The links to most of publicly distributed programs can also be found
in [Bai et al. 2000]. A large majority of the programs are based on the Lanczos
algorithm, including ARPACK (implemented in the MATLAB built-in function
eigs) of [Lehoucq et al. 1998] and irbleigs of [Baglama et al. 2003]. Methods
of this type require inverting B and, when eigenvalues are badly separated, they
typically need to use a shift-and-invert transformation, which is not always feasible
or efficient. Other programs such as JDQZ [Fokkema et al. 1999; Sleijpen and
van der Vorst 1996] and LOPBCG [Knyazev 2001] do not require inverting B or a
shift-and-invert transformation, but they appear to require more user inputs, such
as an initial approximate eigenvalue or preconditioners.

The paper is organized as follows. In Section 2, we give a brief description of
the inverse free preconditioned Krylov subspace method and some enhancements
developed for eigifp . In Section 3, we present details in calling eigifp , which is
followed by some examples in Section 4.

2. INVERSE FREE PRECONDITIONED KRYLOV SUBSPACE METHOD

The core of eigifp is the inverse free preconditioned Krylov subspace projection
method developed in [Golub and Ye 2002]. We describe in this section first this
basic method and then some enhancements incorporated into eigifp .

Throughout, we shall consider the smallest eigenvalue of (A, B). Indeed, a direct
call to eigifp computes the k smallest eigenvalues. To compute the largest eigen-
value of (A,B), we just need to compute the smallest eigenvalue of (−A,B) and
reverse the sign to obtain the largest eigenvalue of (A,B).

EIGIFP: Large Symmetric Generalized Eigenvalue Problems · 3

2.1 Basic Method

Given an approximate eigenvector xk, we construct a new approximation xk+1 by
the Rayleigh-Ritz projection of (A, B) onto the Krylov subspace

Km(A− ρkB, xk) ≡ span{xk, (A− ρkB)xk, . . . , (A− ρkB)mxk}
where ρk = xT

k Axk/xT
k Bxk is the Rayligh quotient and m is a parameter to be

chosen. Specifically, let Zm be the matrix consisting of the basis vectors of Km.
We then form the matrices

Am = ZT
m(A− ρkB)Zm

and

Bm = ZT
mBZm,

and find the smallest eigenpair (µ1, v1) for (Am, Bm). Then the new approximate
eigenvector is

xk+1 = Zmv1

and, correspondingly, the Rayleigh quotient

ρk+1 = ρk + µ1

is a new approximate eigenvalue.
Iterating with k, the above forms the outer iteration of the method. Now, to

construct the basis vectors Zm, an inner iteration will be used. We use either the
Lanczos algorithm to compute an orthonormal basis or the Arnoldi algorithm to
compute a B-orthonormal basis. While in theory the outer iteration is independent
of the bases constructed, they have different numerical stability. Experiments lead
us to use an orthonormal basis by the Lanczos method when the outer iteration
is not preconditioned and to use a B-orthonormal basis by the Arnoldi algorithm
when the outer iteration is preconditioned (see below).

It is shown in [Golub and Ye 2002] that ρk converges to an eigenvalue and xk

converges in direction to an eigenvector. Furthermore, we have the following local
convergence result.

Theorem 2.1. Let λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of (A,B) and
(ρk+1, xk+1) be the approximate eigenpair obtained from (ρk, xk) by one step of
the inverse free Krylov subspace method. Let σ1 < σ2 ≤ · · · ≤ σn be the eigenvalues
of A− ρkB. If λ1 < ρk < λ2, then

ρk+1 − λ1 ≤ (ρk − λ1)ε2m +O((ρk − λ1)3/2) (2)

where

εm = min
p∈Pm,p(σ1)=1

max
i 6=1

|p(σi)| ≤ 2
(

1−√ψ

1 +
√

ψ

)m

Pm denotes the set of all polynomials of degree not greater than m and

ψ =
σ2 − σ1

σn − σ1
.

4 · J. Money and Q. Ye

The bound shows that the speed of convergence depends on ψ, the relative gap
between σ1 and σ2, in addition to m. We also note that a key condition of the
theorem is that ρk ∈ (λ1, λ2).

Now we would like to speed up the convergence by increasing the spectral gap
ψ through an equivalent transformation that we call preconditioning. One way of
doing this is the congruence transformation

(Â, B̂) ≡ (L−1AL−T , L−1BL−T), (3)

which preserves the eigenvalues but changes σi. Indeed, applying our algorithm to
(Â, B̂), the speed of convergence depends on the spectral gap of

Â− ρkB̂ = L−1(A− ρkB)L−T .

By choosing L to be the factor in the LDLT factorization of A−ρkB with D being
a diagonal matrix of ±1, we obtain an ideal situation of ψ = 1 and hence εm = 0.
In practice, we can use an incomplete LDLT factorization to arrive at a small εm.

As in the preconditioned conjugate gradient method, preconditioning transfor-
mation (3) can be carried out implicitly. See [Golub and Ye 2002] for a detailed
algorithm. Indeed, the only operation involving the preconditioning transforma-
tion is L−T L−1. Thus, if M is approximately A − λ1B and is symmetric positive
definite, then we only need M−1 to implement the preconditioned iteration. We
call M−1 a preconditioner, which need not be in the factorized form L−T L−1.

2.2 LOBPCG Type Subspaces Enhancement

Our algorithm reduces to the steepest descent method when m = 1. [Knyazev
2001; 1998] has derived a method called locally optimal preconditioned conjugate
gradient method (LOBPCG), where the previous approximate eigenvector xk−1 in
the steepest descent method is added to span{xk, (A−ρkB)xk} and a new approxi-
mate eigenvector is constructed from span{xk−1, xk, (A−ρkB)xk} by projection. It
results in a conjugate gradient like algorithm and Knyazev has observed a dramatic
speedup in convergence over the steepest descent method.

Here, we also apply this technique to our method to enhance the Krylov subspace
Km(A − ρkB, xk), namely, at step k, we use the Rayleigh-Ritz projection on the
enhanced subspace span{xk−1, xk, (A − ρkB)xk, . . . , (A − ρkB)mxk}. In eigifp ,
we compute xk − xk−1 at every step and, when a basis Zm has been constructed
for Km(A− ρkB, xk), we orthogonalize xk − xk−1 against Zm to obtain zm+2 and
then extend the basis matrix to

Ẑm =
[
Zm zm+2

]
.

Our experiments have shown that this provides noticeable speedup in convergence;
yet it only incurs very little extra cost.

2.3 Deflation

The algorithm we have described finds the smallest eigenvalue. Once it is done, we
can go to find the next smallest eigenvalue by the same procedure through deflation.
Because of the form of the Krylov subspace, the deflation needs to be done slightly
differently from standard methods like the Lanczos algorithm.

EIGIFP: Large Symmetric Generalized Eigenvalue Problems · 5

When p eigenpairs have been found, let Vp be the matrix consisting of the p
eigenvectors with V T

p BVp = I and Λp be the diagonal matrix consisting of the
corresponding eigenvalues, i.e. AVp = BVpΛp. Then, we consider

(Ap, B) ≡ (A + (BVp)Σ(BVp)T , B) (4)

where Σ = diag{σi−λi} with σi any value chosen to be greater than λp+2. Then, it
is easy to check that the eigenvalues of (4) are the union of {λp+1, λp+2, · · · , λn} and
{σ1, · · · , σp}. Thus, its smallest eigenvalue is λp+1 and, by applying our method to
(4), we find λp+1.

2.4 Black-box Implementations

In order to implement our method in a black-box routine, we need to address the
following issues:

(1) How do we carry out preconditioned iterations without users’ input of a pre-
conditioner?

(2) How do we choose the number of inner iterations to optimize the overall per-
formance?

(3) When do we terminate the iteration?

We describe now how these are dealt with in eigifp . We note that users always
have options to do differently from the default settings (see Section 3).

To implement the preconditioned iteration, we use an approximate eigenvalue σ
and compute an incomplete LDLT factorization of A − σB using the MATLAB
threshold ILU routine luinc (with a default threshold 10−3). If an initial approx-
imation σ is not provided by users, eigifp will start with the non-preconditioned
iterations and switch to the preconditioned one when a good approximate eigen-
value is identified. For this, we first estimate the error λ1−ρk using the eigenvector
residual and an estimated gap between the first two eigenvalues of A−ρkB. We then
switch to the preconditioned iterations when the error is below a certain threshold.
As a safeguard against that the switching may occur too early, we reverse it back
to the non-preconditioned iteration if the subsequent approximate eigenvalues ρk

significantly drift away from the shift point chosen.
The only parameter to be chosen in our method is the number of inner iterations

m. Experiments have shown that an optimal value of m is larger if the problem
is more difficult while it is smaller if the problem is easier (e.g. with a good pre-
conditioner). However, we do not know which value works best for a given matrix.
Without users’ input, we adaptively choose m in eigifp as follows. Starting with
a small value of m (2 for non-preconditioned iterations and 1 for preconditioned
iterations), we double the value m and compute its convergence rate after some
iterations. We continue increasing m as long as the rate of convergence has been
roughly double, but reset it to the previous value when the rate of convergence is
not increased proportionally.

Finally, we terminate the iteration when the 2-norm of the residual rk = (A −
ρkB)xk drops below a certain threshold (where ‖xk‖2 = 1). The default threshold
is

‖rk‖2 ≤ p(n)ε(‖A‖+ ‖ρkB‖), (5)

6 · J. Money and Q. Ye

where ε is the machine roundoff unit and we set p(n) = 10
√

n. We note that if
p(n) is the maximal number of non-zero entries in each row of the matrices, (5)
is approximately the size of roundoff errors encountered in computing the residual
rk = (A− ρkB)xk and would be the smallest threshold one can expect.

When eigifp terminates with a converged eigenpair, its residual satisfies the ter-
mination criterion (5). It can be easily checked that (ρk, xk) is an exact eigenvalue
and eigenvector of a slightly perturbed problem, i.e.

(A + E)xk = ρk(B + F)xk

where
‖E‖2
‖A‖2 ≤ p(n)ε and

‖F‖2
‖B‖2 ≤ p(n)ε.

3. EIGIFP CALLS

eigifp has a simple calling structure but also take several options. We will first
discuss the basic calling structure of the program, working our way up to the more
complex cases, and finally introduce all the advanced optional arguments a user
can use to optimize performance.

The most basic call to eigifp is

>> [Evalues, Evectors] = eigifp(A)

where A is a matrix in sparse format. This returns the smallest eigenvalue of A
Evalues and and its corresponding eigenvector Evectors.

To compute the k smallest eigenpairs of the matrix A, one appends the value k
to the above call

>> [Evalues, Evectors] = eigifp(A, k)

where k ≥ 1 is an integer. Then the returned results are a vector of k small-
est eigenvalues Evalues and an n × k matrix of the corresponding eigenvectors
Evectors.

Now, for solving the pencil eigenvalue problem of (A,B) which is Ax = λBx, one
appends B after A in the above calls, namely,

>> [Evalues, Evectors] = eigifp(A, B)

returns the smallest eigenpair and

>> [Evalues, Evectors] = eigifp(A, B, k)

returns the k smallest eigenpairs as above.
In all cases, replacing A by −A in the input argument and multiplying the output

by −1 compute the largest eigenvalue correspondingly. For example,

>> [Evalues, Evectors] = −eigifp(−A, B, k)
returns the k largest eigenpairs of (A,B).
eigifp also uses an option structure to provide extra information to the algo-

rithm and to help improve performance. Users can pass a set of optional parameters

EIGIFP: Large Symmetric Generalized Eigenvalue Problems · 7

via a structure in MATLAB. This is done by first setting the value in the structure,
e.g.

>> opt.initialvec = ones(n, 1)

and then pass opt to eigifp by calling

>> [Evalues, Evectors] = eigifp(A, B, k, opt)

One can pass less parameters, as long as the opt structure is the last parameter in
the list.

The following discuss various optional parameters one can set.

3.1 Informational Options

Below is a list of the informational options eigifp takes:

opt.size The dimension of A.
opt.normA An estimate of the norm of A.
opt.normB An estimate of the norm of B.
opt.tolerance Sets the termination threshold for the norm of the

residual.
opt.maxiterations Set the maximal number of outer iterations to per-

form.
The first three options are primarily used when the matrices are passed as func-

tions (discussed in Sec.3.3 below). The first one provides the dimension of vectors
and is required in the use of functions. The other two are optional, and estimate
the norm of A and B. If they are not provided, then the norms are estimated by
‖Ax‖ and ‖Bx‖ for a random vector x.

The tolerance option allows the user to specify a tolerance different from default
(5). It can be set to be much smaller (e.g. of O(

√
ε)) if only eigenvalues are desired.

The maxiterations option lets the user specify how many outer iterations eigifp
will perform before it terminates without convergence. The user can set a larger
value for particularly difficult problems. The default is set at 500.

3.2 Performance Options

Below is a list of performance options one can specify to optimize the performance.

opt.initialvec An n × k matrix whose j-th column is the initial
guess for the j-th eigenvector.

opt.inneriteration Set the number of inner iteration (i.e. the dimen-
sion of the Krylov subspaces).

opt.useprecon Setting this to ’NO’ causes no preconditioning to
happen. Otherwise, this is assumed to be the ini-
tial shift to be used for computing the precondi-
tioner.

8 · J. Money and Q. Ye

opt.iluthresh Set the threshold used in the incomplete LU fac-
torization that is called for preconditioning. Set-
ting it to 0 will lead to full (exact) factorization
while setting it to 1 corresponds to incomplete fac-
torization with no fill-in.

opt.preconditioner Input a matrix or a function to be used as a user
specified preconditioner.

The initialvec option allows the user to input initial eigenvector guesses and
should be provided whenever they are available. If it is an n×p, then initialvec(:,1)
is used as the initial vector for the first eigenvalue, initialvec(:,2) for the second,
and so on.

The inneriteration option allows the user to set a fixed inner iteration. This
will disable the adaptive setting by default. It can be used either to limit memory
usage in the inner iteration or to improve convergence for more difficult problems.
Thus, it should be set to a small value if eigifp runs out of memory but to a larger
value when a very slow convergence is observed.

The useprecon option allows the user either to disable preconditioning totally
when computing the incomplete factorization is not efficient, or to input an approx-
imate eigenvalue to be used as a shift for computing a preconditioner. The latter
setting saves the program to search for an initial approximation and will use the
preconditioned iteration throughout.

The iluthresh option sets the threshold value for computing the incomplete
LDLT decomposition. Setting it to a smaller value leads to a better preconditioner
which is more expensive to compute. The default value is 10−3.

Finally, the preconditioner option allows the user to supply either a matrix or
a function for the preconditioner. If it is a matrix, it should be the factor L; if it is
a function, it should perform L−T L−1x for an input x.

3.3 Matrices as Functions

In addition to passing A and B as sparse matrices, one can pass in the name of
functions to call. The function should be of the form

>> Ax = functionA(x)

where functionA returns the result of A ∗x as a vector. Similarly, one can provide
a function call for B. In this case, the dimension of the matrices must be passed
through opt.size. Then, one can call eigifp as

>> [Evalues, Evectors] = eigifp(′functionA′, k, opt)

It is also desirable to pass the norms of the matrices through opt.normA and
opt.normB.

4. EXAMPLES

In this section, we will present some examples of calling eigifp and its outputs
(with part of on-screen printout omitted) from execution. All the executions were
carried out using MATLAB version 6.0 with the most recent patches from Math-
Works on a Pentium III Xeon 1.8Ghz with 1GB of RAM. Below, A is the 7668×7668
matrix from discretizing the 2 dimension Laplacian operator on a unit disc using

EIGIFP: Large Symmetric Generalized Eigenvalue Problems · 9

a 5 point stencil. The boundary conditions are Dirichlet boundary conditions. We
generate the sparse matrix in MATLAB and call eigifp as follows

>>A=delsq(numgrid(’D’,100));
>>eigenvalues=eigifp(A)
Eigenvalue 1 converged.
of multiplications by A (and B): 196.
of multiplications by preconditioner: 8.

CPU Time:2.890000.

eigenvalues =

0.0023

For the pencil problem, we use a diagonal matrix for B.

>>B=spdiags([1:size(A,1)]’,0,size(A,1),size(A,2));
>>eigenvalues=eigifp(A,B)

Eigenvalue 1 converged.
of multiplications by A (and B): 153.
of multiplications by preconditioner: 9.

CPU Time:3.780000.

eigenvalues =

5.5653e-07

To compute the first three eigenpairs of (A,B), we use:

>>eigenvalues=eigifp(A,B,3)
Eigenvalue 1 converged.

of multiplications by A (and B): 165.
of multiplications by preconditioner: 9.
Eigenvalue 2 converged.

of multiplications by A (and B): 39.
of multiplications by preconditioner: 37.
Eigenvalue 3 converged.
of multiplications by A (and B): 18.
of multiplications by preconditioner: 16.

CPU Time:7.910000.

eigenvalues =

10 · J. Money and Q. Ye

1.0e-05 *

0.0557
0.1365
0.1557

Now we present some examples using the options. The following specifies an
initial guess for x0 and a tolerance of 10−5:

>>opt.initialvec=ones(size(A,1),1);
>>opt.tolerance=1e-5;
>>eigenvalues=eigifp(A,B,opt)

Eigenvalue 1 converged.
of multiplications by A (and B): 64.
of multiplications by preconditioner: 2.

CPU Time:2.020000.

eigenvalues =

5.5653e-07

Next, we can disable preconditioning totally by setting the useprecon option.

>>opt.useprecon=’NO’;
>>eigenvalues=eigifp(A,B,opt)

Eigenvalue 1 converged.
of multiplications by A (and B): 146.

CPU Time:2.770000.

eigenvalues =

5.5653e-07

On the other hand, since 0 is an approximate eigenvalue here, we can use it as a
shift to start the preconditioned iterations by setting opt.useprecon to 0.

>>opt.useprecon=0;
>>eigenvalues=eigifp(A,B,opt)
Eigenvalue 1 converged.
of multiplications by A (and B): 7.
of multiplications by preconditioner: 5.

CPU Time:1.000000.

eigenvalues =

EIGIFP: Large Symmetric Generalized Eigenvalue Problems · 11

5.5653e-07

Finally, here is an example to manually set a fixed value for the inner iterations:

>>opt.inneriteration=32;
>>eigenvalues=eigifp(A,B,opt)
Eigenvalue 1 converged.
of multiplications by A (and B): 301.
of multiplications by preconditioner: 107.

CPU Time:10.990000.

eigenvalues =

5.5653e-07

Acknowledgement: We would like to thank Andrew Knyazev for suggesting the
approach of adding the previous approximate eigenvector to the Krylov subspace
in Section 2.1.

REFERENCES

Baglama, J., Calvetti, D., and Reichel, L. 2003. Algorithm 827: irbleigs: A MATLAB program
for computing a few eigenpairs of a large sparse Hermitian matrix. ACM Transactions on
Mathematical Software 29, 3 (Sept.), 337–348.

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H. 2000. Templates for the
solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia.

Fokkema, D., Sleijpen, G., and van der Vorst, H. 1999. Jacobi-davidson style qr and qz
algorithms for the reduction of matrix pencils. SIAM Journal on Scientific Computing 20,
94–125.

Golub, G. and Van Loan, C. 1983. Matrix Computations. The Johns Hopkins University Press,
Baltimore.

Golub, G. and Ye, Q. 2002. An inverse free preconditioned krylov subspace methods for sym-
metric generalized eigenvalue problems. SIAM Journal of Scientific Computation 24, 312–334.

Knyazev, A. 1998. Preconditioned eigensolvers - an oxymoron? Electronic Transactions on
Numerical Analysis 7, 104–123.

Knyazev, A. 2001. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM Journal of Scientific Computation 23, 517–541.

Lehoucq, R., Sorenson, D., and Yang, C. 1998. ARPACK Users’ Guides, Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Method. SIAM, Philadelphia.

Parlett, B. 1980. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, N.J.

Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems. Manchester University Press,
Manchester, UK.

Sleijpen, G. and van der Vorst, H. 1996. A jacobi-davidson iteration method for linear eigen-
value problems. SIAM Journal on Matrix Analysis and Applications 17, 401–425.

