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ABSTRACT

Recurrent Neural Networks (RNNs) are designed to handle sequential data but
suffer from vanishing or exploding gradients. Recent work on Unitary Recurrent
Neural Networks (uRNNs) have been used to address this issue and in some cases,
exceed the capabilities of Long Short-Term Memory networks (LSTMs). We pro-
pose a simpler and novel update scheme to maintain orthogonal recurrent weight
matrices without using complex valued matrices. This is done by parametrizing
with a skew-symmetric matrix using the Cayley transform. Such a parametrization
is unable to represent matrices with negative one eigenvalues, but this limitation is
overcome by scaling the recurrent weight matrix by a diagonal matrix consisting
of ones and negative ones. The proposed training scheme involves a straightfor-
ward gradient calculation and update step. In several experiments, the proposed
scaled Cayley orthogonal recurrent neural network (scoRNN) achieves superior
results with fewer trainable parameters than other unitary RNNs.

1 INTRODUCTION

Deep neural networks have been used to solve numerical problems of varying complexity. RNNs
have parameters that are reused at each time step of a sequential data point and have achieved state
of the art performance on many sequential learning tasks. Nearly all optimization algorithms for
neural networks involve some variant of gradient descent. One major obstacle to training RNNs
with gradient descent is due to vanishing or exploding gradients, as described in Bengio et al. (1993)
and Pascanu et al. (2013). This problem refers to the tendency of gradients to grow or decay expo-
nentially in size, resulting in gradient descent steps that are too small to be effective or so large that
the network oversteps the local minimum. This issue significantly diminishes RNNs’ ability to learn
time-based dependencies, particularly in problems with long input sequences.

A variety of architectures have been introduced to overcome this difficulty. The current preferred
RNN architectures are those that introduce gating mechanisms to control when information is re-
tained or discarded, such as LSTMs (Hochreiter & Schmidhuber, 1997) and GRUs (Cho et al.,
2014), at the cost of additional trainable parameters. More recently, a number of papers have ex-
plored constraints and schemes that force the recurrent weight matrix to remain orthogonal or unitary
throughout training. The first breakthrough appears in a paper by Arjovsky et al. (2016), which uses
unitary matrices of a special form constructed from diagonal and rotation matrices in tandem with
the discrete Fourier transform. The resulting network, called unitary evolution recurrent neural net-
works (uRNNs), exhibited superior performance to LSTMs on a variety of synthetic and real-world
tasks. For clarity, we follow the convention of Wisdom et al. (2016) and refer to this network as the
restricted-capacity uRNN.

Since the introduction of uRNNs, orthogonal and unitary RNN schemes have increased in both pop-
ularity and complexity. Wisdom et al. (2016) use a multiplicative update method detailed in Tagare
(2011) and Wen & Yin (2013) to expand uRNNs’ capacity to include all unitary matrices. These net-
works are referred to as full-capacity uRNNs. Jing et al. (2016)’s EURNN parametrizes this same
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space with Givens rotations, while Jing et al. (2017)’s GORU introduces a gating mechanism for
unitary RNNs to enable short term memory. Vorontsov et al. (2017) introduced modified optimiza-
tion and regularization methods that restrict the singular values of the recurrent matrix to an interval
around 1. Each of these methods involve complex valued recurrent weights. For additional related
work in addressing the vanishing and exploding gradient problem, see Henaff et al. (2017) and Le
et al. (2015).

In this paper, we consider RNNs with a recurrent weight matrix taken from the set of all orthogonal
matrices. To construct the orthognal weight matrix, we parametrize it with a skew-symmetric matrix
through a scaled Cayley transform. This scaling allows us to avoid the singularity issue occuring
for −1 eigenvalues that may arise in the standard Cayley transform. With the parameterization, the
network optimization involves a relatively simple gradient descent update. The resulting method
achieves superior performance on sequential data tasks with a smaller number of trainable parame-
ters and hidden sizes than other unitary RNNs and LSTMs.

The method we present in this paper works entirely with real matrices, and as such, our results deal
only with orthogonal and skew-symmetric matrices. However, the method and all related theory
remain valid for unitary and skew-Hermitian matrices in the complex case. The experimental re-
sults in this paper indicate that state of the art performance can be achieved without the increased
complexity of optimization along the Stiefel manifold and using complex matrices.

2 BACKGROUND

2.1 ORTHOGONAL & UNITARY MATRICES

A real matrixW is orthogonal if it satisfiesWTW = I . The complex analog of orthogonal matrices
are unitary matrices, which satisfyW ∗W = I , where ∗ denotes the conjugate transpose. Orthogonal
and unitary matrices have the desirable property that ‖Wx‖2 = ‖x‖2 for any vector x. This property
motivates the use of orthogonal or unitary matrices in RNNs to avoid vanishing and exploding
gradients, as detailed in Arjovsky et al. (2016).

2.2 RECURRENT NEURAL NETWORKS

A recurrent neural network (RNN) is a function with input parameters U ∈ Rn×m, recurrent pa-
rameters W ∈ Rn×n, recurrent bias b ∈ Rn, output parameters V ∈ Rp×n, and output bias c ∈ Rp
where m is the data input size, n is the number of hidden units, and p is the output data size.
From an input sequence x = (x1, x2, ..., xT ) where xi ∈ Rm, the RNN returns an output sequence
y = (y1, y2, ..., yT ) where each yi ∈ Rp is given recursively by

ht = σ (Uxt +Wht−1 + b)

yt = V ht + c

where h = (h0, . . . , hT−1), hi ∈ Rn is the hidden layer state at time i and σ(·) is the activation
function, which is often a pointwise nonlinearity such as a hyperbolic tangent function or rectified
linear unit (Nair & Hinton, 2010).

2.3 UNITARY RNNS

Arjovsky et al. (2016) follow the framework of the previous section for their restricted-capacity
uRNN, but introduce a parametrization of the recurrent matrix W using a product of simpler matri-
ces. This parametrization is given by

W = D3R2F−1D2PR1FD1

whereD are diagonal matrices with complex norm 1 diagonal elements,R are complex Householder
reflection matrices, F is a discrete Fourier transform, and P is a fixed permutation matrix. Because
W is a product of both F and F−1, as well as other unitary matrices, W itself is unitary.
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Wisdom et al. (2016) note that this representation has only 7n parameters, which is insufficient to
represent all unitary matrices for n > 7. In response, they present the full-capacity uRNN, which
uses a multiplicative update step that is able to reach all unitary matrices of order n.

The full-capacity uRNN aims to construct a unitary matrix W (k+1) from W (k) by moving along
a curve on the Stiefel manifold {W ∈ Cn×n | W ∗W = I}. For the network optimization, it
is necessary to use a curve that is in a descent direction of the cost function L := L(W ). In
Tagare (2011), Wen & Yin (2013), and Wisdom et al. (2016), a descent direction is constructed as
B(k)W (k), which is a representation of the derivative operator DL(W (k)) in the tangent space of
the Stiefel manifold at W (k), where

B(k) =

(
∂L

∂W

)∗
W (k) −

(
W (k)

)∗ ∂L
∂W

.

Then, with B(k)W (k) defining the direction of a descent curve, an update along the Stiefel manifold
is obtained as

W (k+1) =

(
I +

λ

2
B(k)

)−1(
I − λ

2
B(k)

)
W (k) (1)

where λ is the learning rate.

3 SCALED CAYLEY ORTHOGONAL RNN

In this section, we present an RNN with an orthogonal recurrent weight matrix. First we discuss
the scaled Cayley transform and then we derive a differentiation formula for updating the recurrent
weight matrix.

3.1 CAYLEY TRANSFORM

Given a (real) skew-symmetric matrix A (i.e. AT = −A), the Cayley transform

W = (I +A)
−1

(I −A)

defines an orthogonal matrix. Such an orthogonal matrix W cannot have -1 as an eigenvalue. Con-
versely, if W is an orthogonal matrix that does not have −1 as an eigenvalue, it is the Cayley
transform of the skew-symmetric matrix A defined by the same transform

A = (I +W )
−1

(I −W ) .

Thus, the Cayley transform forms a bijection between the set of orthogonal matrices without −1
eigenvalues and the set of skew-symmetric matrices.

We can use this bijection to parametrize the set of orthogonal matrices without −1 eigenvalues
using skew-symmetric matrices. This parametrization is attractive from a machine learning perspec-
tive because it is closed under addition: the sum or difference of two skew-symmetric matrices is
also skew-symmetric, so we can use gradient descent algorithms like RMSprop or Adam to train
parameters.

However, this parametrization cannot represent orthogonal matrices with −1 eigenvalues, since in
this case I +W is not invertible. Theoretically, we can still represent matrices with eigenvalues that
are arbitrarily close to−1; however, it can require large entries ofA. For example, suppose we would
like to learn the following 2x2 orthogonal matrix W with eigenvalues ≈ −0.99999 ± 0.00447i, as
parametrized by its Cayley transform, A:

W =

[
−0.99999 −

√
1− 0.999992√

1− 0.999992 −0.99999

]
A ≈

[
0 447.212

−447.212 0

]
Gradient descent algorithms will learn this A matrix very slowly, if at all.

This difficulty can be overcome through a suitable diagonal scaling according to results from
O’Dorney (2014) and Kahan (2006).
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Theorem 3.1 Every orthogonal matrix W can be expressed as

W = (I +A)−1(I −A)D

where A = [aij ] is real-valued, skew-symmetric with |aij | ≤ 1, and D is diagonal with all nonzero
entries equal to ±1. Similarly, every unitary matrix U can be expressed as

U = (I + S)−1(I − S)Φ

where S = [sij ] is skew-Hermitian with |si,j | ≤ 1 and Φ is a unitary diagonal matrix.

Proof: See O’Dorney (2014) for the orthogonal case, and Kahan (2006) for the unitary case.�

We call the transform in Theorem 3.1 the scaled Cayley transform. Then, with an appropriate
choice of D, the scaled Cayley transform can reach any orthogonal matrices including those with
−1 eigenvalues. Further, it ensures that the skew-symmetric matrix A that generates the orthogonal
matrix will be bounded. This allows us to construct any orthogonal matrix using a skew-symmetric
A with moderately sized entries.

Our proposed network, the scaled Cayley orthogonal recurrent neural network (scoRNN), is based
on this theorem. We parametrize the recurrent weight matrix W through a skew-symmetric matrix
A, which results in n(n−1)

2 trainable weights. The recurrent matrixW is formed by the scaled Cayley
transform: W = (I+A)−1(I−A)D. The scoRNN then operates identically to the set of equations
given in Section 2.2, but during training we update the skew-symmetric matrix A using gradient
descent, while D is fixed throughout the training process. The number of −1s on the diagonal of D,
which we call ρ, is considered a hyperparameter in this work and is manually chosen based on the
task.

3.2 UPDATE SCHEME

We now derive the update scheme for the recurrent weight matrixW . This is done through an update
on the skew-symmetric parameterization matrix A. We compute the gradients by backpropagating
through the Cayley transform. The next theorem describes how to compute these gradients with
respect to A.

Theorem 3.2 Let L = L(W ) : Rn×n → R be some differentiable cost function for an RNN with
the recurrent weight matrix W . Let W = W (A) := (I +A)

−1
(I −A)D where A ∈ Rn×n is

skew-symmetric and D ∈ Rn×n is a fixed diagonal matrix consisting of -1 and 1 entries. Then the
gradient of L = L(W (A)) with respect to A is

∂L

∂A
= V T − V (2)

where V := (I −A)
−1 ∂L

∂W

(
D +WT

)
and we have used the notation ∂L

∂A =
[
∂L
∂Ai,j

]
∈ Rn×n and

∂L
∂W =

[
∂L

∂Wi,j

]
∈ Rn×n

Proof: Let Z := (I +A)−1(I −A). We consider the (i, j) entry of ∂L
∂A . Taking the derivative with

respect to Ai,j where i 6= j we obtain:

∂L

∂Ai,j
=

n∑
k,l=1

∂L

∂Wk,l

∂Wk,l

∂Ai,j
=

n∑
k,l=1

∂L

∂Wk,l
Dl,l

∂Zk,l
∂Ai,j

= tr

[(
∂L

∂W
D

)T
∂Z

∂Ai,j

]

Using the identity (I +A)Z = I − A and taking the derivative with respect to Ai,j to both sides
we obtain:
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∂Z

∂Ai,j
+

∂A

∂Ai,j
Z +A

∂Z

∂Ai,j
= − ∂A

∂Ai,j

and rearranging we get:

∂Z

∂Ai,j
= − (I +A)

−1
(

∂A

∂Ai,j
+

∂A

∂Ai,j
Z

)
LetEi,j denote the matrix whose (i, j) entry is 1 with all others being 0. SinceA is skew-symmetric,
we have ∂A

∂Ai,j
= Ei,j − Ej,i. Combining everything, we have:

∂L

∂Ai,j
= − tr

[(
∂L

∂W
D

)T
(I +A)

−1
(Ei,j − Ej,i + Ei,jZ − Ej,iZ)

]

= − tr

[(
∂L

∂W
D

)T
(I +A)−1Ei,j

]
+ tr

[(
∂L

∂W
D

)T
(I +A)−1Ej,i

]

− tr

[(
∂L

∂W
D

)T
(I +A)−1Ei,jZ

]
+ tr

[(
∂L

∂W
D

)T
(I +A)−1Ej,iZ

]

= −

(( ∂L

∂W
D

)T
(I +A)

−1

)T
i,j

+

[(
∂L

∂W
D

)T
(I +A)

−1

]
i,j

−

(( ∂L

∂W
D

)T
(I +A)

−1

)T
ZT


i,j

+

[
Z

(
∂L

∂W
D

)T
(I +A)

−1

]
i,j

=

[
(I + Z)

(
∂L

∂W
D

)T
(I +A)

−1

]
i,j

−

(( ∂L

∂W
D

)T
(I +A)

−1

)T (
I + ZT

)
i,j

=

[
(I + Z)

(
∂L

∂W
D

)T
(I −AT )−1

]
i,j

−
[
(I −A)

−1 ∂L

∂W
D
(
I + ZT

)]
i,j

Using the above formulation, ∂L
∂Aj,j

= 0 and ∂L
∂Ai,j

= − ∂L
∂Aj,i

so that ∂L∂A is a skew-symmetric matrix.
Finally, by the definition of V we get the desired result. �

From the above theorem, at each training step of scoRNN, we first use the standard backpropagation
algorithm to compute ∂L

∂W , from which ∂L
∂A is computed by (2). We then update the A matrix by

implementing an optimizer such as gradient descent

A(k+1) = A(k) + γ
∂L

∂A(k)

where γ is the learning rate. Then we construct the recurrent weight matrix as

W (k+1) =
(
I +A(k+1)

)−1 (
I −A(k+1)

)
D (3)

Since ∂L
∂A is skew-symmetric, then A(k+1) will be skew-symmetric and, in turn, W (k+1) will be

orthogonal.

Comparing our scoRNN and the full-capacity uRNNs from Section 2.3, they both have the capacity
to optimize the network with respect to a general orthogonal or unitary matrix. However, the training
iterations are different; namely, from the same weight matrix W (k), the new weight matrix W (k+1)
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as constructed by either the full-capacity uRNN via (1), or the scoRNN by (3) are different. In
particular, the full-capacity uRNN performs a multiplicative update that goes in the direction of a
certain projection of the gradient ∂L

∂W in the tangent space of the Stiefel manifold. This projection
can be shown to be a descent direction but not necessary the steepest one. In contrast, scoRNN
performs an additive update in the direction of steepest descent with respect to its parametrization.

4 OTHER ARCHITECTURE DETAILS

The basic architecture of scoRNN is very similar to the standard RNN as presented in Section 2.2.
From a network layer perspective, one can think of the application of the recurrent weight in a three
layer process. Let ht ∈ Rn be the current state of the scoRNN at a particular time step, t. We then
pass ht through the following layers:

• Layer 1: ht → Dht =: h
(1)
t

• Layer 2: h(1)t → (I −A)h
(1)
t =: h

(2)
t

• Layer 3: h(2)t → (I +A)
−1
h
(2)
t =: h

(3)
t

Note that the above scheme is the same as taking ht →Wht as discussed previously.

For each experiment, the number of negative ones on the diagional of D were manually adjusted to
get the best results. In the unitary case, the diagonals would be of the form Dj,j = eiθj where θj
could be set as a trainable variable.

During the update step, it is possible to update the input and output weights using a different opti-
mizer and learning rate than the recurrent matrix. During the experiments, several different combi-
nations of optimizers were used with varying degress of success.

4.1 MODRELU ACTIVATION FUNCTION

The modReLU function was first implemented by Arjovsky et al. (2016) to handle complex valued
functions and weights. Unlike previous methods, our method only uses real-valued functions and
weights. Nevertheless, we have found that the modReLU function in the real case also performed
better than other activation functions. The function is defined as follows:

σmodReLU(z) =

{
(|z|+ b) z

|z| if |z|+ b ≥ 0

0 if |z|+ b < 0

=
z

|z|
σReLU (|z|+ b)

In the real case, this simplifies to sign(z)σReLU(|z|+ b). We believe that the improved performance
of the modReLU over other activation functions is because it admits both positive and negative
activation values, which is important for the state transition in orthogonal RNNs. This is similar to
the hyperbolic tangent function, but unlike the hyperbolic tangent function the modReLU does not
have vanishing gradient issues.

4.2 INITIALIZATIONS

We found that modifying the initialization of our parameter matrices, in particular our recurrent
parameter matrix A, had a significant effect on performance. We found two initializations to be
particular effective. The first initializes all elements of A to 0. This will generate an initial recurrent
matrix of W = (I − 0)−1(I − 0)D = D. With a scaling matrix of all 1s, this will give us an
initial W equal to the identity; a recurrent matrix initialized in this manner has been shown to be
particularly effective in certain contexts by Le et al. (2015).
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Our other initialization method, hereafter referred to as unit circle initialization, uses a similar tech-
nique as Henaff et al. (2017). We initialize all of the entries of A to be 0 except for 2x2 blocks along
the diagonal, which are given as

A =

B1

. . .
Bbn/2c

 where Bj =

[
0 sj
−sj 0

]

with sj =
√

1−cos (tj)
1+cos (tj)

, where tj is sampled uniformly from
[
0, π2

]
. The Cayley transform of this A

will have eigenvalues equal to ±eitj for each j, which will be distributed uniformly along the right
unit half-circle. Multiplication by the scaling matrix D will reflect ρ of these eigenvalues across the
imaginary axis.

5 EXPERIMENTS

Several experiments were performed to compare scoRNN with LSTM, restricted capacity uRNN,
and full-capacity uRNN as discussed previously. Different optimizers, learning rates, and initializers
were used as identified below.

5.1 COPYING PROBLEM

This experiment follows descriptions found in Arjovsky et al. (2016) and Wisdom et al. (2016), and
tests an RNN’s ability to reproduce a sequence seen many timesteps earlier. In the problem setup,
there are 10 input classes, which we denote using the digits 0-9, with 0 being used as a ’blank’ class
and 9 being used as a ’marker’ class. The RNN receives an input sequence of length T + 20. This
sequence consists of entirely zeros, except for the first ten elements, which are uniformly sampled
from classes 1-8, and a 9 placed ten timesteps from the end. The goal for the machine is to output
zeros until it sees a 9, at which point it should output the ten elements from the beginning of the
input sequence.

A baseline strategy with which to compare machine performance is that of outputting 0 until the
machine sees a 9, and then outputting 10 elements randomly sampled from classes 1-8. The expected
cross-entropy for such a strategy is 10 log (8)

T+20 . In practice, it is common to see gated RNNs such as
LSTMs converge to this local minimum.

We vary the number of hidden units of the machines to match the number of parameters, approxi-
mately 22k each. This results in an LSTM with n = 68, a restricted-capacity uRNN with n = 470,
a full-capacity uRNN with n = 128, and a scoRNN with n = 190. We found the best performance

Figure 1: Cross entropy of each machine on the copying problem with time gaps of 1000 (left) and
2000 (right).
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with the scoRNN came from unit circle initialization and ρ = n/2, which gives an initial W with
eigenvalues distributed uniformly on the entire unit circle.

Figure 1 compares each machine’s performance for T = 1000 and T = 2000, with the baseline
solution cross entropy given as a dashed blue line. In both cases, the restricted-capacity uRNN and
LSTM fail to find a zero entropy strategy, instead converging quickly to the baseline solution. For
the T = 1000 test, the full-capacity uRNN and scoRNN converge immediately to zero entropy
solutions. For T = 2000, the scoRNN error converges more gradually, but is able to bypass the
baseline strategy entirely, which even the full-capacity uRNN remains stuck at for several thousand
iterations before finding a correct solution.

5.2 ADDING PROBLEM

We examined a variation of the adding problem as proposed by Arjovsky et al. (2016) which is based
on the work of Hochreiter & Schmidhuber (1997). This variation involves passing two sequences
concurrently into the RNN, each of length T . The first sequence is a sequence of digits sampled
uniformly with values ranging in a half-open interval, U [0, 1). The second sequence is a marker
sequence consisting of all zeros except for two entries that are marked by one. The first 1 is located
uniformly within the interval [1, T2 ) of the sequence and the second 1 is located uniformly within the
interval [T2 , T ) of the sequence. The label for each pair of sequences is the sum of the two entries
that are marked by one. Naively predicting one regardless of the sequence gives an expected mean
squared error (MSE) of approximately 0.167. This will be considered as the baseline.

The number of hidden units for each network were adjusted so that each had approximately 14k
trainable parameters. This results in n = 170 for the scoRNN, n = 60 for the LSTM, n = 120 for
the Full-Capacity uRNN, and n = 950 hidden units for the restricted-capacity uRNN.

The test set MSE results for sequence lengths T = 200, T = 400, and T = 750 can be found in
Figure 2. A training set size of 100,000 and a testing set size of 10,000 were used for each sequence
length. For each case, the networks start at or near the baseline MSE and drop towards zero after
a few epochs. As the sequence length increases, the number of epochs before the drop increases.
We found the best initialization for the scoRNN was the unit circle with ρ = n/2. As can be seen,
the LSTM appears to drop first followed by the full-capacity uRNN, scoRNN, and the restricted-
capacity uRNN. Although the full-capacity uRNN drops below the baseline before the scoRNN, the
full-capacity uRNN does not drop as quickly and has a more irregular descent curve.

Figure 2: Test set MSE of each machine on the adding problem with sequence lengths of 200 (top),
400 (middle), and 750 (bottom).
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5.3 PIXEL-BY-PIXEL MNIST

This experiment involves classifying samples from the well-known MNIST dataset (LeCun et al.).
Following the implementation of Le et al. (2015), each pixel is fed into the RNN sequentially. Since
each image is 28 pixels by 28 pixels, this results in a single pixel sequence length of 784. All
machines were trained with the RMSProp optimization algorithm (Hinton, 2012). The recurrent
parameters in the scoRNN with n = 170 had a learning rate of 10−4, while the recurrent parameters
in the scoRNN with n = 360 hidden units had a learning rate of 10−5. All other parameters had a
learning rate of 10−3. We also used unit circle initialization and ρ = n/10.

Our experiment uses a training set of 55,000 images and a test set of 10,000 testing images. Each
machine was trained for 70 epochs, and test set accuracy was evaluated at the conclusion of each
epoch. Figure 3 shows test set accuracy over time for each machine, and the best performance over
all epochs by each machine is given in Table 1.

As in experiments presented in Arjovsky et al. (2016) and Wisdom et al. (2016), orthogonal and
unitary RNNs are unable to outperform the LSTM on this task. However, the 360 hidden unit
scoRNN performs the best of these, and the 170 hidden unit scoRNN gives comparable performance
to both of the 512 hidden unit uRNNs using a much smaller hidden dimension and in the case of the
full-capacity uRNN, an order of magnitude fewer parameters.

Table 1: Results for unpermuted pixel-by-pixel MNIST. Evaluation accuracies are based on the best
test accuracy at the end of every epoch.

Model n # parameters Test Accuracy
scoRNN 170 ≈ 16k 0.973
scoRNN 360 ≈ 69k 0.983
LSTM 128 ≈ 68k 0.987
LSTM 256 ≈ 270k 0.989
Restricted-capacity uRNN 512 ≈ 16k 0.976
Full-capacity uRNN 116 ≈ 16k 0.947
Full-capacity uRNN 512 ≈ 270k 0.974

Figure 3: Test accuracy for unpermuted MNIST over time.
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5.4 PERMUTED PIXEL-BY-PIXEL MNIST

This experiment follows the same setup as the pixel-by-pixel MNIST experiment except that a fixed
permutation is applied to the training and test data sets. The architecture of the scoRNN was identical
to the unpermuted case except we found that setting ρ to n/2, resulting in a scaling matrix diagonal
with half ones and half negative ones, increased accuracy. We suspect that this difference from
the unpermuted case, where we found ρ = n/10 to be optimal, comes from the different types of
dependencies in each: the unpermuted MNIST experiment has mostly local dependencies, which
seem to benefit from a lower proportion of −1s in D, while permuted MNIST requires learning
many long-term dependencies, which appears to be more easily modeled when the diagonal of D is
half 1s and half −1s.

The experiment setup was the same as in the unpermuted task. Results can be found in Table 2 and
Figure 4. As in the unpermuted case, the smaller scoRNN does as well as restricted-capacity and
full-capacity uRNNs with triple the number of hidden units. The 360 hidden unit scoRNN achieves
a test-set accuracy of 96.2%, outperforming all of the uRNNs and both sizes of LSTM. We believe
this is a state of the art result on this task.

Table 2: Results for permuted pixel-by-pixel MNIST. Evaluation accuracies are based on the best
test accuracy at the end of every epoch.

Model n # parameters Test Accuracy
scoRNN 170 ≈ 16k 0.943
scoRNN 360 ≈ 69k 0.962
LSTM 128 ≈ 68k 0.920
LSTM 256 ≈ 270k 0.929
Restricted-capacity uRNN 512 ≈ 16k 0.945
Full-capacity uRNN 116 ≈ 16k 0.925
Full-capacity uRNN 512 ≈ 270k 0.947

Figure 4: Test accuracy for permuted MNIST over time.
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6 CONCLUSION

There have been recent breakthroughs with RNNs using unitary recurrent weight matrices. These
uRNNs are implemented with complex valued matrices and so require additional complexity in ar-
chitectures and computations. Unlike the uRNNs, the scoRNN developed here can use real valued
orthogonal recurrent weight matrices with a simpler implementation scheme. Results from the copy-
ing, unpermuted and permuted MNIST, and adding problem tasks show that scoRNNs can achieve
superior performance. Its mathematical simplicity and ease with implementation is another impor-
tant advantage in applications.
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