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ERROR BOUNDS FOR THE KRYLOV SUBSPACE METHODS FOR
COMPUTATIONS OF MATRIX EXPONENTIALS∗

HAO WANG† AND QIANG YE‡

Abstract. In this paper, we present new a posteriori and a priori error bounds for the Krylov
subspace methods for computing e−τAv for a given τ > 0 and v ∈ Cn, where A is a large sparse non-

Hermitian matrix. The a priori error bounds relate the convergence to λmin(
A+A∗

2
), λmax(

A+A∗
2

)

(the smallest and the largest eigenvalue of the Hermitian part of A), and |λmax(
A−A∗

2
)| (the largest

eigenvalue in absolute value of the skew-Hermitian part of A), which define a rectangular region
enclosing the field of values of A. In particular, our bounds explain an observed convergence behavior
where the error may first stagnate for a certain number of iterations before it starts to converge.
The special case that A is skew-Hermitian is also considered. Numerical examples are given to
demonstrate the theoretical bounds.
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1. Introduction. The problem of computing matrix exponentials arises in many
theoretical and practical problems. Numerous methods have been developed to effi-
ciently compute e−A or its product with a vector e−Av, where A is an n× n complex
matrix and v ∈ Cn. We refer the reader to the classical paper [23] of Moler and Van
Loan for a survey of a general theory and numerical methods for matrix exponen-
tials. For matrix exponential problems involving a large and sparse matrix A, it is
usually the product of the exponential with a vector that is of interest. This arises,
for example, in solving the initial value problem [14, 27]

(1.1) ẋ(t) = −Ax(t) + b(t), x(0) = x0.

See [12, 17, 25] for some other applications.
A large number of matrix exponential problems concern a positive definite A (i.e.,

A+A∗ is Hermitian positive definite), which defines a stable dynamical system (1.1)
with a solution converging to a steady state. Another important class of problems
involves a skew-Hermitian matrix A (i.e., A = iH with H being Hermitian), for
which (1.1) has a norm-conserving solution. Such systems can be used to model a
variety of physical problems where certain quantities such as energy are conserved.
For example, a spectral method for solving the time-dependent Schrödinger equation
modeling N electrons leads to (1.1) with a skew-Hermitian matrix; see [15, 26, 28].
While we will study a general non-Hermitian A, we are particularly interested in these
two important classes of problems, where stronger theoretical results can be derived.

The Krylov subspace methods are a powerful class of iterative algorithms for
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solving many large-scale linear algebra problems. For the matrix exponential problem

(1.2) w(τ) := e−τAv,

where τ ∈ R is a fixed parameter typically representing a time step in applications, the
Lanczos/Arnoldi approximations, introduced by Gallopoulos and Saad (see [14, 27]),
have become very popular methods. Some earlier works on other Krylov subspace
methods for matrix functions including the exponential are reviewed in [12]; see the
references cited there. A comprehensive theory has been developed in the literature
with error bounds demonstrating convergence of the approximation and its relation
to certain properties of the matrix. For example, earlier results in [14, 27] relate
convergence of the Lanczos/Arnoldi methods to the norm of the matrix τA. More
refined error bounds have since been derived, which provide sharper estimates of the
errors by considering additional spectral information such as enclosing regions of the
field of values of A or positive definiteness of A; see [2, 12, 11, 16, 18, 24, 27] and
the references contained therein. For a real symmetric positive definite matrix A, it
has been shown in a recent work [31] that the speed of convergence is also related to
the condition number of A as in the conjugate gradient method. For positive definite
matrices that are not necessarily Hermitian, stronger convergence bounds have also
been obtained in [12, 16, 18] in terms of the field of values. However, most of these
bounds are derived by assuming the field of values lying in a certain predefined region,
and are not easy to apply or interpret. In general, there is an inherited theoretical
difficulty in quantitatively characterizing the influence on the convergence by the field
of values, a two-dimensional object. In [2], Beckermann and Reichel have derived a
sharp convergent bound with an exponential factor determined from the inverse of a
conformal mapping from the exterior of a region enclosing the field of values to the
exterior of the unit disk in the complex plane. Although this reduces the dependence
of convergence on the field of values to a single value as determined by the conformal
map, this connection through the conformal map to be constructed is still indirect
and not easy to interpret.

In this paper, we extend the previous works, [2] in particular, by relating the con-
vergence of the Krylov subspace methods to the field of values through its bounding
rectangle [a, b] × [−c, c], where a = λmin(

A+A∗
2 ), b = λmax(

A+A∗
2 ) (the smallest and

the largest eigenvalue of the Hermitian part of A), and c = |λmax(
A−A∗

2 )| (the largest
eigenvalue in absolute value of the skew-Hermitian part of A). With this approach,
we will derive new a priori error bounds in terms of a, b, and c that relate the speed
of convergence to the size and the shape of the rectangle. In particular, our bounds
explain an interesting observed convergence behavior where the error may first stag-
nate for a certain number of iterations before it starts to converge. Simplified bounds
will be presented for non-Hermitian positive definite matrices and skew-Hermitian
matrices. Numerical examples will be presented to demonstrate the behavior of the
new error bounds.

In developing our a priori error bounds, we also derive a new a posteriori error
bound that is shown to provide a sharp and computable estimate of the error. Our new
a priori error bounds are derived from that of Beckermann and Reichel [2], as well as
from our a posteriori bound combined with some decay bounds on the exponential of a
Hessenberg matrix derived using the same technique as in the literature [2, 3, 6, 16, 18]
by constructing Faber polynomial approximations of the exponential function in a
region containing the field of values. The novelty in this work is using the Jacobi
elliptic functions to construct a conformal mapping for the rectangular region that
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tightly encloses the field of values and showing that this highly complicated mapping
can be simplified to yield some simple and interesting bounds.

The paper is organized as follows. In section 2, we first present some preliminar-
ies about the Faber polynomial approximation and the Jacobi elliptic functions. In
section 3, we present a new a posteriori error bound, which relates the convergence to
the decay properties of the exponential of a Hessenberg matrix. To study this decay
behavior, we construct a conformal mapping in section 4 and present our new a priori
error bound in section 5. In section 6, we apply the same idea to skew-Hermitian
matrices and derive simpler a priori bounds. Numerical examples are presented in
section 7, with some concluding remarks in section 8.

Throughout this paper, ‖ · ‖ denotes the 2-norm ‖ · ‖2 unless otherwise stated.
We will also assume throughout that v in (1.2) is normalized such that ‖v‖ = 1.

2. Preliminaries. In this section, we briefly discuss some related results in com-
plex analysis that will be needed.

2.1. Faber polynomials. Faber polynomials extend the theory of power se-
ries to domains more general than a disk. This starts with the Riemann mapping
theorem [21, Theorem 1.2] that states that every simply connected domain in the ex-
tended complex plane whose boundary contains more than one point can be mapped
conformally onto a disk with its center at the origin. Let C̄ = C ∪ {∞} be the ex-
tended complex plane, and let D be a bounded continuum in the complex plane with
boundary Γ such that the complement of D is a simply connected domain in the
extended plane and contains the point at ∞. A continuum is a nonempty, compact,
and connected subset of C. Then there exists a function w = Φ(z) which maps the
complement of D conformally onto the exterior of a circle |w| = ρ > 0 and satisfies
the normalization conditions

(2.1) Φ(∞) =∞, lim
z→∞

Φ(z)

z
= 1.

Then, the function Φ(z) has a Laurent expansion at infinity of the form

Φ(z) = z + α0 +
α−1

z
+ · · · .

Moreover, given any integer n > 0, [Φ(z)]n has a Laurent expansion of the form

[Φ(z)]n = zn + α
(n)
n−1z

n−1 + · · ·+ α
(n)
0 +

α
(n)
−1

z
+ · · ·

at infinity [21, p. 104]. Then, we call the polynomial containing nonnegative powers
of z in the expansion,

Φn(z) = zn + α
(n)
n−1z

n−1 + · · ·+ α
(n)
0 ,

the Faber polynomials generated by D.
The Faber polynomials can be used to approximate analytic functions on D,

essentially through the power series approximation of a transformed function on |w| ≤
ρ. Let Ψ be the inverse of Φ, and let CR be the image under Ψ of the circle |w| = R > ρ.
We denote by I(CR) the bounded region enclosed by CR. By [21, Theorem 3.17], every
function f(z) analytic on I(CR) can be represented on I(CR) as a series of the Faber
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polynomials

(2.2) f(z) =

∞∑
n=0

anΦn(z)

with the coefficients an = 1
2πi

∫
|w|=R

f [Ψ(w)]
wn+1 dw. The partial sum of the above series,

(2.3) ΠN (z) =

N∑
n=0

anΦn(z),

is a polynomial of degree at most N that we can use to approximate f(z) on I(CR).
The next theorem of [13] presents some approximation bounds concerning ΠN . We
first need to introduce the definition of total rotation of the boundary. For this, we
assume that D is a closed Jordan region, i.e., its boundary Γ is rectifiable. Then there
exists a tangent vector that makes an angle Θ(z) with the positive real axis at almost
all points z ∈ Γ. We say that Γ has bounded total rotation V if V =

∫
Γ |dΘ(z)| <∞.

Then V ≥ 2π and the equality holds if D is convex; see [13].

Theorem 2.1 (see [13, Corollary 2.2]). Assume that D is a closed Jordan region
whose boundary Γ has bounded total rotation V . For any R > ρ, let f be an analytic
function in I(CR). We have for any N ≥ 0

(2.4) ‖f −ΠN‖∞ ≤ M(R)V

π

(
ρ
R

)N+1

1− ρ
R

,

where M(R) = maxz∈CR |f(z)| and ‖ · ‖∞ denotes the uniform norm on I(CR).

Theorem 2.1 is stated with CR defined from the conformal map Φ satisfying
the normalization condition (2.1). In the literature (see [2], for example), another
normalization has also been used and may be more convenient in our application. We
may consider a conformal map Φ̂ that maps the exterior of D onto the exterior of
the unit disk (i.e., requiring ρ = 1 rather than (2.1)). The above theorem can be

adapted to Φ̂ through a simple normalization transformation. Namely, given Φ̂, let
ρ = limz→∞ z

̂Φ(z)
and Φ(z) := ρΦ̂(z). Then Φ satisfies the normalization condition

(2.1), but now maps the exterior of D onto the exterior of the disk |w| = ρ. Applying
Theorem 2.1 to Φ, (2.4) holds for any R > ρ. Let r := R/ρ > 1. Let CR be the inverse

image under Φ of the circle |w| = R, and let Ĉr be the inverse image under Φ̂ of the

circle |w| = r. It is easy to check that CR = Ĉr , and then M(R) := maxz∈CR |f(z)| =
maxz∈ ̂Cr

|f(z)|. Thus, (2.4) is reduced to

(2.5) ‖f −ΠN‖∞ ≤ M̂(r)V

π

(
1
r

)N+1

1− 1
r

,

where M̂(r) := max
̂Φ(z)=r |f(z)|. Namely, Theorem 2.1 holds verbatim for a conformal

map that is normalized to map the exterior of D onto the exterior of the unit disk. We
note, however, that ρ as defined in the two normalizations is invariant and is called
the logarithmic capacity of D.

2.2. Jacobi elliptic functions. In this subsection, we introduce the Jacobi
elliptic functions, which will be used to construct a conformal mapping in section 5.
More details about the Jacobi elliptic functions can be found in [1].
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Elliptic functions were first introduced as inverse functions of (incomplete) elliptic
integrals. So before the introduction of the Jacobi elliptic functions, we first state the
definition and properties of elliptic integrals. Given φ ∈ C and a real parameter m
with 0 < m < 1, the (incomplete) Jacobi elliptic integral of the first kind is defined
as

(2.6) F (φ,m) :=

∫ φ

0

(1−m sin2 θ)−
1
2 dθ.

The (incomplete) Jacobi elliptic integral of the second kind is defined as

E(φ,m) :=

∫ φ

0

(1−m sin2 θ)
1
2 dθ.

When φ = π
2 , the corresponding integrals

K(m) := F
(π
2
,m

)
=

∫ π
2

0

(1−m sin2 θ)−
1
2 dθ,

E(m) := E
(π
2
,m

)
=

∫ π
2

0

(1−m sin2 θ)
1
2 dθ

are called the complete Jacobi elliptic integrals of the first kind and the second kind.
Let m1 := 1 − m, the complementary parameter of m. Then, 0 < m1 < 1. For
simplicity, we shall use the following notation:

(2.7)
K := K(m), K ′ := K(m1) = K(1−m);

E := E(m), E′ := E(m1) = E(1−m).

We now introduce the Jacobi elliptic functions. There are a total of twelve Jacobi
elliptic functions in the family, but we will discuss only the basic three that will be
used in this work. If u = F (φ,m), where F (φ,m) is the incomplete elliptic integral
of the first kind defined in (2.6), three of the Jacobi elliptic functions are defined as

(2.8)

sn(u|m) := sinφ,

cn(u|m) := cosφ,

dn(u|m) :=

√
1−m sin2 φ.

The notation sn(u|m), cn(u|m), and dn(u|m) indicates that sn, cn, and dn are func-
tions of two independent arguments: a complex argument u and a real parameter
m ∈ (0, 1). Furthermore, for a fixed m ∈ (0, 1), sn(u) := sn(u|m), cn(u) := cn(u|m),
and dn(u) := dn(u|m) are doubly periodical meromorphic functions defined on u ∈ C

[22, p. 14].
In later sections, we will need some properties of the Jacobi elliptic integrals and

Jacobi elliptic functions. We summarize them in the proposition below. For details,
see [1, 20, 22].

Proposition 2.2. The following properties hold:
1. K = K(m) and E = E(m) are positive-valued functions of m. Moreover,

they are differentiable with respect to the parameter m ∈ (0, 1), and

dK

dm
=
E −m1K

2mm1
,(2.9)

dE

dm
=
E −K
2m

.(2.10)
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2. (See [1, p. 591].)

(2.11) lim
m→1

[
K − 1

2
ln

(
16

m1

)]
= 0.

3. (See [1, p. 592].)

(2.12) E(u + 2iK ′) = E(u) + 2i(K ′ − E′).

4. sn, cn, and dn satisfy

sn2(u|m) + cn2(u|m) = 1,

m · sn2(u|m) + dn2(u|m) = 1.

5. (See [1, Table 16.2, p. 570].) sn, cn, and dn are one-valued, doubly periodic
functions. For any l, n ∈ Z,

sn(u+ 2lK + 2niK ′|m) = (−1)l sn(u|m),

cn(u+ 2lK + 2niK ′|m) = (−1)l+n cn(u|m),

dn(u+ 2lK + 2niK ′|m) = (−1)n dn(u|m).

6. (See [1, Table 16.8, p. 572].)

sn(2iK ′ − σ|m) = sn(−σ|m) = − sn(σ|m),

cn(2iK ′ − σ|m) = − cn(−σ|m) = − cn(σ|m),

dn(2iK ′ − σ|m) = − dn(−σ|m) = − dn(σ|m).(2.13)

7. (See [1, Table 16.16, p. 574].)

d

du
sn(u|m) = cn(u|m) · dn(u|m),(2.14)

d

du
cn(u|m) = − sn(u|m) · dn(u|m),(2.15)

d

du
dn(u|m) = −m · sn(u|m) · cn(u|m).(2.16)

8. (See [1, Table 16.21, p. 575].) Let u = x+ iy, where x, y ∈ R, and denote

s = sn(x|m), c = cn(x|m), d = dn(x|m),

s1 = sn(y|m1), c1 = cn(y|m1), d1 = dn(y|m1).

Then

sn(x+ iy|m) =
s · d1 + ic · d · s1 · c1

c21 +ms2 · s21
,(2.17)

cn(x+ iy|m) =
c · c1 + is · d · s1 · d1

c21 +ms2 · s21
,(2.18)

dn(x+ iy|m) =
d · c1 · d1 + ims · c · s1

c21 +ms2 · s21
.(2.19)

We will also need to use the signs of the real and imaginary parts of sn(u|m),
cn(u|m), and dn(u|m) when m ∈ (0, 1) and u ∈ C is in the rectangular domain
[−K,K]× [0, 2iK ′] (i.e., Re(u) ∈ [−K,K] and Im(u) ∈ [0, 2K ′]). This is discussed in
[20, pp. 172–176], and we summarize it in Tables 1–3 for easy reference.
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Table 1

Signs of (Re(sn(u|m)), Im(sn(u|m))).

��������Im(u)
Re(u)

(−K, 0) (0, K)

(K ′, 2K ′) (−,−) (+,−)
(0, K ′) (−,+) (+,+)

Table 2

Signs of (Re(cn(u|m)), Im(cn(u|m))).

��������Im(u)
Re(u)

(−K, 0) (0, K)

(K ′, 2K ′) (−,+) (−,−)
(0, K ′) (+,+) (+,−)

Table 3

Signs of (Re(sn(u|m)), Im(sn(u|m))).

��������Im(u)
Re(u)

(−K, 0) (0, K)

(K ′, 2K ′) (−,+) (−,−)
(0, K ′) (+,+) (+,−)

3. A posteriori error bound. In this section, we first introduce the Arnoldi
method for approximating w(τ) = e−τAv and then discuss an a posteriori error bound.
Given A ∈ C

n×n and v ∈ C
n with ‖v‖ = 1, k iterations of the Arnoldi process with

the initial vector v1 = v generate an orthonormal basis {v1, v2, . . . , vk, vk+1} for the
Krylov subspace Kk+1(A, v) = span{v,Av,A2v, . . . , Akv} by

hk+1,kvk+1 = Avk −
k∑
i=1

hi,kvi, hk+1,k ≥ 0.

Simultaneously, a k × k upper Hessenberg matrix Hk = [hij ] is generated satisfying

(3.1) AVk = VkHk + hk+1,kvk+1e
T
k ,

where Vk = [v1, v2, . . . , vk] and ek ∈ Rn is the kth coordinate vector. We note that

(3.2) h2k+1,k = ‖Avk‖2 −
k∑
i=1

h2i,k ≤ ‖A‖2.

We can approximate w(τ) = e−τAv by its orthogonal projection on Kk(A, v),
VkV

T
k e

−τAv, which is further approximated as

VkV
T
k e

−τAv = VkV
T
k e

−τAVke1 ≈ Vke−τV T
k AVke1 = V Tk e

−τHke1.

We call

(3.3) wk(τ) := V Tk e
−τHke1

the Arnoldi approximation to w(τ) in (1.2); see [14, 27].
LetW (A) := {x∗Ax : x ∈ Cn; ‖x‖ = 1} be the field of values of A, and let μ(A) :=

max {Re(z) : z ∈ W (A)} be the logarithmic norm of A (associated with the Euclidean
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inner product). We also define ν(A) := −μ(−A) = min {Re(z) : z ∈ W (A)}. Then
we have

(3.4) μ(A) = λmax

(
A+A∗

2

)
and ν(A) = λmin

(
A+A∗

2

)
,

where λmax and λmin denote the largest and the smallest eigenvalue, respectively. In
this notation, A is positive definite if and only if ν(A) > 0. An important property
associated with the logarithmic norm [9, 29] is that for t ≥ 0,

(3.5) ‖etA‖ ≤ etμ(A).

We now present a bound on the approximation error ‖w(τ)−wk(τ)‖ in terms of
the (k, 1) entry of the matrix e−tHk .

Theorem 3.1. Let A ∈ C
n×n and v ∈ C

n with ‖v‖ = 1. Let Vk be the orthogonal
matrix, and let Hk be the upper Hessenberg matrix generated by the Arnoldi process
for A and v satisfying (3.1). Let wk(τ) = Vke

−τHke1 be the Arnoldi approximation
to w(τ) = e−τAv. Then the approximation error satisfies

(3.6) ‖w(τ) − wk(τ)‖ ≤ hk+1,k

∫ τ

0

|h(t)| · e(t−τ)ν(A)dt,

where

(3.7) h(t) := eTk e
−tHke1

is the (k, 1) entry of the matrix e−tHk and ν(A) is defined in (3.4). In particular, if
ν(A) ≥ 0, we have an a posteriori error bound

(3.8) ‖w(τ) − wk(τ)‖ ≤ hk+1,k

∫ τ

0

|h(t)|dt.

Proof. First, we have w′(t) = −Ae−tAv = −Aw(t) and

w′
k(t) = −VkHke

−tHke1

= −(AVk − hk+1,kvk+1e
T
k )e

−tHke1

= −Awk(t) + hk+1,kh(t)vk+1.

Let Ek(t) := w(t) − wk(t). Then

E′
k(t) = −Aw(t)− (−Awk(t) + hk+1,kh(t)vk+1)

= −AEk(t)− hk+1,kh(t)vk+1.

Note that Ek(0) = w(0) − wk(0) = v − Vke1 = 0. Solving the initial value problem
for Ek(t), we have

Ek(τ) = −hk+1,k

∫ τ

0

h(t)e(t−τ)Avk+1dt.

Since τ − t > 0 in the integral, using (3.5), we have

‖e(t−τ)A‖ = ‖e(τ−t)(−A)‖ ≤ e(τ−t)μ(−A) = e(t−τ)ν(A).
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Then the approximation error satisfies

‖Ek(τ)‖ ≤ hk+1,k

∥∥∥∥
∫ τ

0

h(t)e(t−τ)Avk+1dt

∥∥∥∥
≤ hk+1,k

∫ τ

0

|h(t)| · ‖e(t−τ)A‖dt

≤ hk+1,k

∫ τ

0

|h(t)| · e(t−τ)ν(A)dt.

This proves (3.6). Now, if ν(A) ≥ 0, we have e(t−τ)ν(A) ≤ 1, since t−τ ≤ 0. Applying
this bound to (3.6) completes the proof.

h(t) in the above bound is computable a posteriori for any given t. Being the
(k, 1) entry of the matrix e−tHk , it is expected to become small as k increases because
of a decay property associated with functions of a banded matrix (see [3, 4, 5, 6]).
This provides an understanding of the convergence of the error. Indeed, in section 5,
we shall extend the techniques introduced in [3, 6] to derive some sharp decay bounds
on h(t), which will result in some new a priori bounds. Before we do that, we will
need to construct some conformal mapping first in the next section.

We remark that (3.6) is an a posteriori bound if ν(A) or a lower bound is known.
If ν(A) is unknown but the matrix is positive semidefinite, then (3.8) provides an
a posteriori bound. Both bounds contain an integral of h(t) that is not directly
computable. For practical error estimates, we can approximate it using a quadrature
rule, say, the Simpson’s rule, by computing h(t) at some selected discrete points.
This provides very sharp a posteriori error estimates; see the numerical examples in
section 7. Note that several a posteriori error estimates presented in [27] are derived
from approximation of a different error expression, one of which is τh(τ).

4. Conformal mapping. In this section, we construct a conformal mapping
which maps the exterior of a rectangle onto the exterior of a unit disk and discuss
some of its properties. Given a rectangle in the z̃-plane whose vertices are a± ic and
b± ic, where b > a and c > 0, we map the exterior of this rectangle conformally onto
|u| > 1. This can be done in the following three steps:

• Step 1:

(4.1) z = φ1(z̃) = z̃ − a+ b

2

shifts the original rectangle to a new rectangle with vertices ±α± iβ, where
α = b−a

2 and β = c.
• Step 2: φ2 : z 	→ w is defined through an auxiliary variable σ by

(4.2)

⎧⎪⎪⎨
⎪⎪⎩
z = α− i

λ
{E(σ|m)−m1σ},

w =
1− dn(σ|m)√
m sn(σ|m)

,

where sn(σ|m), cn(σ|m), and dn(σ|m) are Jacobi elliptic functions and E(σ|m)
:=

∫ σ
0 dn2(z|m)dz. The parameterm is determined from α, β by the equation

(4.3)
E(m)−m1K(m)

β
=
E(m1)−mK(m1)

α
,
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where K and E are functions of m defined in (2.7) and m1 := 1 −m . The
existence and uniqueness of m will be shown in Lemma 4.1 below. It is
shown in [20, p. 178] that φ2 conformally maps the exterior of the rectangle
[−α, α]× [−β, β] to the upper half-plane {Im(w) > 0} and that the range of
σ is in the rectangle [−K(m),K(m)]× [0, 2iK(m1)].
• Step 3:

(4.4) u = φ3(w) =
i+ w

i− w
maps {Im(w) > 0} onto {|u| > 1}.

Now let

(4.5) Φ̃ := φ3 ◦ φ2 ◦ φ1
be the composition of the above three conformal mappings defined in (4.1), (4.2), and
(4.4). Then Φ̃ maps the exterior of the rectangle [a, b]× [−c, c] conformally onto the
exterior of the unit circle.

The rest of this section will present several results concerning Φ̃ that we will use
in the next section, but first we give a proof of existence of a unique solution of (4.3)
that is not readily available in the literature.

Lemma 4.1. E(m)−(1−m)K(m) ∈ (0, 1) is an increasing function of m ∈ (0, 1),
and E(1 −m) −mK(1−m) ∈ (0, 1) is a decreasing function of m ∈ (0, 1). For any
0 < α, β < +∞, there exists a unique m ∈ (0, 1), as a function of β/α, satisfying
(4.3).

Proof. Let f(m) := E−m1K = E(m)− (1−m)K(m) be a function of m ∈ (0, 1),
where m1 := 1−m. Then E(m1)−mK(m1) = f(1−m). By the definition of K(m)
and E(m), K(0) = π

2 , E(0) = π
2 , and then

(4.6) lim
m→0

f(m) = 0.

Moreover, by (2.11),

lim
m→1

m1

[
K(m)− 1

2
ln

(
16

m1

)]
= 0,

and therefore

lim
m→1

m1K(m) = lim
m→1

m1 ln

(
16

m1

)
= lim
m1→0

m1 ln

(
16

m1

)
= 0.

Again by the definition of E(m), E(1) = 1. Then

(4.7) lim
m→1

f(m) = E(1)− lim
m→1

m1K(m) = 1.

By (2.9) and (2.10), f(m) is differentiable in (0, 1) and

d

dm
f(m) =

K(m)

2
> 0.

So f is an increasing function of m over (0, 1). Now consider

(4.8) g(m) :=
f(m)

f(1−m)
=

E(m)− (1−m)K(m)

E(1 −m)−mK(1−m)
.
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By (4.6) and (4.7), g(m) is an increasing function of m over (0, 1) with

lim
m→0

g(m) = 0, lim
m→1

g(m) = +∞.

Then for any 0 < α, β < +∞, there exists a unique m ∈ (0, 1) such that g(m) = β
α ,

i.e., (4.3) holds.

The parameter m determined by (4.3) is defined by the aspect ratio β/α (or the
shape) of the rectangle [a, b] × [−c, c]. For example, from the proof, m ≈ 0 if the
rectangle is a long flat one around the real axis, while m ≈ 1 if the rectangle is nearly
a vertical line in the complex plane. When m = 1/2, the rectangle is a square.

As in section 2, we denote by Cr in the z̃-plane the inverse image of the circle
|u| = r under Φ̃ for a given r > 1. We need to determine the minimum of Re(z̃) in
Cr, i.e., the leftmost point of Cr. First we prove a lemma about the Jacobi elliptic
functions, which is a direct result of Proposition 2.2.

Lemma 4.2. For u = x+ iy, where −K(m) < x < K(m) and 0 < y < 2K(m1),

sgn(Im(cn(u|m))) = sgn(Im(dn(u|m))).

Proof. By (2.18) and (2.19),

Im(cn(u|m)) =
sn(x|m) dn(x|m) sn(y|m1) dn(y|m1)

1− dn2(x|m) sn2(y|m1)
,

Im(dn(u|m)) =
m · sn(x|m) cn(x|m) sn(y|m1)

1− dn2(y|m) sn2(y|m1)
.

So,

(4.9) sgn(Im(cn(u|m))) = sgn(Im(dn(u|m))) · sgn(cn(x|m) · dn(x|m) · dn(y|m1)).

Write x = F (φ,m). When −K(m) < x < K(m), we have φ ∈ (−π2 , π2 ). So,

(4.10) cn(x|m) = cosφ > 0.

By the definition of dn(u|m), for any x, y ∈ R,

(4.11) dn(x|m) > 0, dn(y|m1) > 0.

Applying (4.10) and (4.11) to (4.9), we conclude that the imaginary parts of cn(u|m)
and dn(u|m) have the same sign.

The following lemma shows that the minimum of Re(z̃) in Cr is attained at the
inverse of u = −r.

Lemma 4.3. Let Φ̃ : z̃ 	→ u be defined as in (4.5). Let Ψ̃ : u 	→ z̃ be its inverse
mapping, and let Cr be the image of |u| = r > 1 under Ψ̃. Then

min{Re(z̃) : z̃ ∈ Cr} = Ψ̃(−r).

Proof. By (4.1),

(4.12)
dz̃

dz
= 1.



166 HAO WANG AND QIANG YE

Recalling the definition E(σ|m) =
∫ σ
0
dn2(z|m)dz and the identities sn2 +cn2 ≡ 1

and m · sn2 +dn2 ≡ 1, we have from (4.2) that

(4.13)
dz

dσ
= − i

λ
{dn2−(1−m)} = − i

λ
{m−m · sn2} = − i

λ
·m · cn2 .

Note that by (2.14) and (2.16), we have d(dn)
dσ = −m · sn · cn and d(sn)

dσ = cn · dn. Then
by (4.2),

dw

dσ
=
−(−m · sn · cn) · √m · sn−(1− dn) · √m · cn · dn

m · sn2

=

√
m · cn ·(m · sn2− dn+dn2)

m · sn2
=

√
m · cn ·(1− dn)

1− dn2

=

√
m · cn

1 + dn
.(4.14)

By (4.4), w = iu−1
u+1 and then

(4.15)
dw

du
=

2i

(u+ 1)2
.

Combining (4.12)–(4.15), we have

dz̃

du
=
dz̃

dz
· dz
dσ
· dσ
dw
· dw
du

= − i
λ
·m · cn2 · 1 + dn√

m · cn ·
2i

(u+ 1)2

=
2
√
m · cn(1 + dn)

λ(u + 1)2
.(4.16)

Equation (4.4) also implies

w2 = − (u− 1)2

(u+ 1)2
.

On the other hand, by (4.2),

w2 =
(1 − dn)2

m · sn2 =
(1− dn)2

1− dn2 =
1− dn

1 + dn
.

So,

(4.17) dn =
1− w2

1 + w2
=

(u + 1)2 + (u− 1)2

(u + 1)2 − (u− 1)2
=

1

2

(
u+

1

u

)
,

and hence

1 + dn =
(u+ 1)2

2u
.
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Substituting this into (4.16), we have

(4.18)
dz̃

du
=

√
m · cn
λu

.

Now let u be on the circle of radius r on the complex u-plane. Then we can write
u = reiθ , where −π < θ ≤ π. Hence

(4.19)
du

dθ
= reiθ · i = iu.

Treating z̃ ∈ Cr as a function of θ, we have from (4.18) and (4.19) that

(4.20)
dz̃

dθ
=
i
√
m

λ
· cn(σ|m).

So

d(Re(z̃))

dθ
= Re

(
dz̃

dθ

)
= −
√
m

λ
Im(cn(σ|m)).

From (4.17) and u = r cos θ + ir sin θ, we write dn(σ|m) as a function of θ,

dn(σ|m) =
1

2

(
r +

1

r

)
cos θ +

i

2

(
r − 1

r

)
sin θ.

So Im(dn(σ|m)) < 0 when θ ∈ (−π, 0), and Im(dn(σ|m)) > 0 when θ ∈ (0, π].
By Lemma 4.2, the imaginary part of cn(σ|m) always has the same sign as that of

dn(σ|m). Thus, by (4.20), d(Re(z̃))
dθ > 0 when θ ∈ (−π, 0), and d(Re(z̃))

dθ < 0 when
θ ∈ (0, π]. The minimum value of Re(z̃) is attained when θ = π, i.e., u = −r.

Next, we find the explicit form for Ψ̃(−r) in Lemma 4.3.

Lemma 4.4. Let Φ̃ : z̃ 	→ u be the conformal mapping from the exterior of the
rectangle [a, b]× [−c, c] onto the exterior of the unit disk, as defined in (4.5), and let
Ψ̃ : u 	→ z̃ be its inverse. Then for any r > 1, we have

(4.21) Ψ̃(−r) = a− 1

λ

∫ 1
2 (r− 1

r )

0

√
m+ s2√
1 + s2

ds,

where the parameter m is determined by (4.3) and λ is the ratio in (4.3).

Proof. Recall that Φ̃ = φ3 ◦ φ2 ◦ φ1 with φ1, φ2, and φ3 the three conformal
mappings defined in (4.1), (4.2), and (4.4). Let

(4.22) Φ := φ3 ◦ φ2,

and let Ψ be its inverse. Then obviously

(4.23) Ψ̃(−r) = φ−1
1 ◦Ψ(−r).

The proof of this lemma consists of two parts. First, we prove that for any r > 1,

(4.24) Ψ(r) = α+
1

λ

∫ 1
2 (r− 1

r )

0

√
m+ s2√
1 + s2

ds.
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By the same equation (4.17) that was derived from (4.2) and (4.4), w in the map can
be eliminated to define Φ: z ←→ σ ←→ u through the auxiliary parameter σ as

(4.25)

⎧⎪⎪⎨
⎪⎪⎩

z(σ) = α− i

λ
{E(σ|m)−m1σ},

dn(σ|m) =
1

2

(
u+

1

u

)
.

To compute Ψ(r), set u = r above. Then the corresponding σ satisfies

(4.26) dn(σ|m) =
1

2

(
r +

1

r

)
> 1.

By Table 3, σ ∈ C is on the line segment connecting 0 and iK ′. Let

(4.27) s = −i√m · sn(ξ|m),

where ξ is on the line segment connecting 0 and σ. By Tables 1–3, sn(ξ|m) is purely
imaginary with positive imaginary part, and cn(ξ|m) and dn(ξ|m) are both real and
positive. Then

m · sn2(ξ|m) = −s2,
m · cn2(ξ|m) = m−m · sn2(ξ|m) = m+ s2 =⇒ √m · cn(ξ|m) =

√
m+ s2,

dn2(ξ|m) = 1−m · sn2(ξ|m) = 1 + s2 =⇒ dn(ξ|m) =
√
1 + s2.

By (4.27) and (2.14),

ds = −i√m · cn(ξ|m) · dn(ξ|m)dξ;

then

dξ =
ds

−i√m · cn(ξ|m) · dn(ξ|m)
=

ds

−i√m+ s2
√
1 + s2

.

By (4.26),

m · sn2(σ|m) = 1− dn2(σ|m) = −1

4

(
r − 1

r

)2

;

then

√
m · sn(σ|m) =

i

2

(
r − 1

r

)
.

Thus, as ξ moves along the positive imaginary axis from 0 to σ, s as defined by (4.27)
moves along the positive real axis from 0 to 1

2 (r − 1
r ). Then

Ψ(r) = z(σ) = α− i

λ
{E(σ|m)−m1σ}

= α− i

λ

{∫ σ

0

dn2(ξ|m)ds−m1σ

}

= α− i

λ

∫ σ

0

m · cn2(ξ|m)ds
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= α− i

λ

∫ 1
2 (r− 1

r )

0

(m+ s2)
ds

−i√m+ s2
√
1 + s2

= α+
1

λ

∫ 1
2 (r− 1

r )

0

√
m+ s2√
1 + s2

dt.

This completes the proof of the first part (4.24). We next prove that for any r > 1,

(4.28) Ψ(−r) = −Ψ(r).

Let σ and σ̃ be the auxiliary parameters in (4.25) corresponding to r and −r, respec-
tively. Then

dn(σ̃|m) =
1

2

(
−r + 1

−r
)

= −1

2

(
r +

1

r

)
= − dn(σ|m).

By (2.13), σ̃ = 2iK ′ − σ. Thus, using (2.12) and (4.3), we get

Ψ(−r) = z(σ̃) = α− i

λ
{E(2iK ′ − σ|m)−m1(2iK

′ − σ)}

= α− i

λ
{2i(K ′ − E′)− E(σ|m) − 2m1iK

′ +m1σ}

= α− i

λ
{−2i(E′ −mK ′)− [E(σ|m)−m1σ]}

= α− i

λ
{−2i · λα − [E(σ|m)−m1σ]}

= −α+
i

λ
{E(σ|m)−m1σ} = −z(σ) = −Ψ(r).

Finally, applying φ−1
1 to Ψ(−r) as in (4.23) and noting that α = b−a

2 , equation (4.21)
is proved.

Finally, we show that Φ̃ can be normalized according to (2.1).

Lemma 4.5. Let λ be the ratio in (4.3). We have

(4.29) lim
z̃→∞

Φ̃(z̃)

z̃
= 2λ > 0.

Proof. First, by (4.17) and m · sn2(σ|m)+dn2(σ|m) = 1, we have
√
m · sn(σ|m) =

i
2 (u− 1

u ). Applying this to (4.18), we have

(4.30)
dz̃

du
=

i

2λ
· cn(σ|m)

sn(σ|m)

(
1− 1

u2

)
.

As z̃ →∞, σ → iK ′ and u→∞ (see [20, p. 178]). Since

lim
σ→iK′

cn(σ|m)

sn(σ|m)
= lim

σ→iK′

cn′(σ|m)

sn′(σ|m)
= lim
σ→iK′

− sn(σ|m) dn(σ|m)

cn(σ|m) dn(σ|m)
= −

(
lim

σ→iK′

cn(σ|m)

sn(σ|m)

)−1

,

we have limσ→iK′ cn(σ|m)
sn(σ|m) = −i. Applying this to (4.30), dz̃

du → 1
2λ or du

dz̃ → 2λ as

z̃ →∞. Then Φ̃(z̃)
z̃ → 2λ as z̃ →∞. λ > 0 follows from Lemma 4.1.
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5. A priori error bound for non-Hermitian matrices. In this section, we
derive new a priori error bounds for the Arnoldi approximations of e−τAv. We shall
bound the error in terms of the following spectral information of A:

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a = min
i

{
λi

(
A+A∗

2

)}
= ν(A),

b = max
i

{
λi

(
A+A∗

2

)}
= μ(A),

c = max
i

{∣∣∣∣λi
(
A−A∗

2

)∣∣∣∣
}
,

where λi(M) (1 ≤ i ≤ n) are the eigenvalues of M . These three numbers provide
a region bounding W (A), the field of values of A; i.e., W (A) is contained in the
rectangle [a, b]× [−c, c].

We shall study the convergence of the Arnoldi method through bounding |h(t)|
(the (k, 1) entry of e−tHk) in the a posteriori bound of section 3, as in [31]. As men-
tioned before, analytic functions of banded matrices have a decay property, i.e., their
entries decrease away from the main diagonal. Sharp decay bounds were originally
derived by Benzi and Golub [5] for Hermitian matrices; see [4, 7] and the references
therein for some further improvements. Generalizations to the non-Hermitian case,
which is applicable to the Hessenberg matrix Hk here, have been obtained by Benzi
and Razouk [6] and Benzi and Boito [3]. Specifically, for non-Hermitian matrices, the
Faber polynomial approximation and the conformal mappings on a circular region
containing the field of values have been introduced in [3, 6] to bound the decay rate.
Here we will follow the same approach of [3, 6], but we will use the conformal mapping
that is constructed in section 4 so as to utilize a more precise region [a, b] × [−c, c]
that encloses the field of values. By using a smaller bounding region, a stronger
approximation result and hence a stronger bound are obtained as follows.

Theorem 5.1. Let Hk be a k × k upper Hessenberg matrix, and let h(t) =

eTk e
−tHke1 be the (k, 1) entry of the matrix e−tHk . Let ak = mini{λi(Hk+H

∗
k

2 )}, bk =

maxi{λi(Hk+H
∗
k

2 )}, and ck = maxi{|λi(Hk−H∗
k

2 )|}. Then for any q with 0 < q < 1,

(5.2) |h(t)| ≤ 2Q
qk−1

1− q e
−tz̃,

where Q = 11.08,

z̃ = ak − 1

λ

∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds,

and the parameter m is determined from ak, bk, ck by (4.3) and λ is the ratio in (4.3).

Proof. Let Φ̃ : z̃ 	→ u be the conformal mapping from the exterior of the rectangle
[ak, bk] × [−ck, ck] onto the exterior of the unit disk, as defined in (4.5). For a fixed
t ≥ 0, let f(z) = e−tz. Since f is an analytic function, it can be approximated by the
partial sum Πk−2(z) of the series of Faber polynomials generated by Φ̃ as defined in
(2.3). Let r = 1

q > 1, and consider Cr, the inverse image under Φ̃ of the circle |w| = r.

Applying Theorem 2.1 or (2.5), the approximation error in I(Cr) is bounded as

‖f −Πk−2‖∞ = max
z∈I(Cr)

|f(z)−Πk−2(z)| ≤ 2M(r)
(1r )

k−1

1− 1
r

,
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where M(r) = maxz∈Cr |f(z)| and we note that the total rotation around the rect-
angle is V = 2π. Since Πk−2(z) is a polynomial of degree k − 2, [Πk−2(Hk)]k1 =
eTkΠk−2(Hk)e1 = 0. Then

|h(t)| = |[f(Hk)]k1| = |[f(Hk)]k1 − [Πk−2(Hk)]k1|
≤ ‖f(Hk)− Πk−2(Hk)‖2
≤ Q max

z∈W (Hk)
|f(z)−Πk−2(z)|,

where W (Hk) is the field of values of Hk and the last inequality is by Crouzeix’s
theorem [8]. Since W (Hk) ⊆ [ak, bk]× [−ck, ck] ⊆ Cr, we have

|h(t)| ≤ Q max
z∈I(Cr)

|f(z)−Πk−2(z)| ≤ 2QM(r)

(
1
r

)k−1

1− 1
r

.

Now, the theorem follows from M(r) = maxz∈Cr e
−tz = maxz∈Cr e

−tRe(z) = e−tz̃,
where

z̃ = min{Re(z) : z ∈ Cr} = Ψ̃(−r) = ak − 1

λ

∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds

by Lemmas 4.3 and 4.4.

We remark that Q = 11.08 is called Crouzeix’s constant, and it is conjectured
that it can be reduced to 2 [8]. In [2], Crouzeix’s theorem is also used to derive an
error bound for the Arnoldi method, which contains Crouzeix’s constant Q, but using
some highly sophisticated technique from the approximation theory, the same result
is proved with the constant reduced to its conjectured value 2. This is a very strong
result that we will use to derive an a priori bound or to reduce Q in our bound (5.2)
to 2. We first state Beckermann and Reichel’s result.

Theorem 5.2 (Beckermann and Reichel [2, Theorem 3.2 and Corollary 4.1]). Let
E ⊂ C be a convex compact set symmetric with respect to the real axis that contains
W (A). Then for all k > 1 and r > 1, the error of the Arnoldi approximation satisfies

(5.3) ‖eτAv − VkeτHke1‖ ≤ 4
eτψ(r)

rk(1− r−1)
,

where ψ is the inverse of the conformal mapping φ from C̄\E to C̄\D (D is the closed

unit disk) satisfying limz→∞
φ(z)
z > 0.

We remark that [2, Theorem 3.2] actually shows that ‖eτAv − Vke
τHke1‖ ≤

4
∑∞
j=k |fj |, where fj are the Faber coefficients in the Faber series expansion of ex.

This generalizes an earlier result in the symmetric case [12]. Although this bound can
be numerically computed and may be quite a bit sharper than (5.3) [19], it is not easy
to interpret, and we will not consider it further. Indeed, the bound (5.3) can also be
numerically computed for a rectangular region E [13, 19]. However, we can apply the
conformal mapping Φ̂ that we construct in (4.5) to derive the following more explicit
bound.

Theorem 5.3. Let A ∈ Cn×n and v ∈ Cn with ‖v‖ = 1. Let wk(τ) = Vke
−τHke1

be the Arnoldi approximation (3.3) to w(τ) = e−τAv. Then for any q with 0 < q < 1,
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the approximation error satisfies

‖w(τ)− wk(τ)‖ ≤ 4qk

1− q e
−τ z̃,

where

(5.4) z̃ = a− 1

λ

∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds,

the parameter m is determined by (4.3) from a, b, c of (5.1), and λ is the ratio in
(4.3).

Proof. Let E = [a, b] × [−c, c]. Under our construction in section 4, Φ̂ in (4.5)
maps C̄\E conformally onto C̄\D, where D is the unit disk, satisfying (4.29). Let
B = −A. Then −E contains the field of values of B. Then φ := (− id) ◦ Φ̂ ◦ (− id),
where id is the identity mapping, maps C̄\(−E) conformally onto C̄\D, satisfying
limz→∞

φ(z)
z > 0. Clearly, the inverse mapping is ψ = (− id) ◦ Ψ̂ ◦ (− id). Thus,

(5.5) ψ(r) = −Ψ̂(−r) = −z̃,
where z̃ is given in (5.4). Now, the theorem follows from applying this to Theorem
5.2 and letting q = 1

r .

Applying Theorem 5.2 to the upper Hessenberg matrix Hk obtained after k steps
of Arnoldi iterations gives us the following corollary, which reduces the constant Q
to 2.

Corollary 5.4. Theorem 5.1 holds with Q in (5.2) being 2.

Proof. Applying k − 1 Arnoldi iterations to Hk with initial vector e1, we obtain

HkEk−1 = Ek−1Hk−1 + hk,k−1eke
T
k−1,

where Ek−1 = [e1, e2, . . . , ek−1] and ej ∈ Rk is the jth coordinate vector. Using
eTkEk−1 = 0, we have

|h(t)| = |eTk e−tHke1| = |eTk (e−tHk − Ek−1e
−tHk−1)e1|

≤ ‖e−tHke1 − Ek−1e
−tHk−1e1‖.(5.6)

Applying Theorem 5.3 to (5.6) with A, Qk, and Hk being, respectively, Hk, Ek−1,
and Hk−1, we obtain

|h(t)| ≤ ‖e−tHke1 − Ek−1e
−tHk−1e1‖ ≤ 4qk

1− q e
−tz̃

with z̃ defined by ak, bk, ck as in (5.4). This completes the proof.

Although the above corollary supersedes Theorem 5.1, we have kept Theorem 5.1
as it provides a more direct proof. Finally, combining the results in Theorem 5.3 and
Corollary 5.4 with Theorem 3.1 leads to the following a priori error bound.

Theorem 5.5. Let A ∈ C
n×n and v ∈ C

n with ‖v‖ = 1, and let wk(τ) =
Vke

−τHke1 be the Arnoldi approximation (3.3) to w(τ) = e−τAv. Then for any
0 < q < 1, the approximation error satisfies

(5.7) ‖w(τ) − wk(τ)‖ ≤ 4qk−1

1− q e
−τ z̃min {τ‖A‖, q} ,

where z̃ is given in (5.4).



KRYLOV SUBSPACE METHODS FOR MATRIX EXPONENTIALS 173

Proof. First note that Hk = V Tk AVk for an orthogonal Vk. Then

W (Hk) ⊆W (A) ⊆ [a, b]× [−c, c].
Now, Corollary 5.4 holds for h(t) = eTk e

−tHke1, and indeed, from the inclusion relation
above and following the same proof as for Theorem 5.3, it holds with a, b, c in place

of ak, bk, ck. Namely, |h(t)| ≤ 4qk−1

1−q e
−tz̃, with z̃ defined as in (5.4) from a, b, c. Now,

using this bound in the a posteriori error bound (3.6) in Theorem 3.1 and noting that
hk+1,k ≤ ‖A‖ (see (3.2)), we have that

‖w(τ) − wk(τ)‖ ≤ hk+1,k

∫ τ

0

4qk−1

1− q e
−tz̃e(t−τ)adt

≤ 4‖A‖ q
k−1

1− q e
−τa

∫ τ

0

et(a−z̃)dt

≤ 4‖A‖ q
k−1

1− q e
−τaτeτ(a−z̃)

= 4τ‖A‖ q
k−1

1− q e
−τ z̃,

where we note that a − z̃ > 0. Combining this with Theorem 5.3, the theorem is
proved.

The bound in the above theorem can be simplified for easy interpretation by
bounding z̃ in the following corollary.

Corollary 5.6. Under the assumptions of Theorem 5.5, for any q with 0 < q <
1, the approximation error satisfies

(5.8) ‖w(τ) − wk(τ)‖ ≤ 4qk−1− τ
√

m
λ

1− q min {τ‖A‖, q} e−τ(a−L),

where L = L(q) := 1
2λ(

1
q + q − 2). If A is positive definite (i.e., a > 0), for q0 :=

1

aλ+1+
√

(aλ+1)2−1
, we have

(5.9) ‖w(τ) − wk(τ)‖ ≤ 4q
k−1− τ

√
m

λ
0

1− q0 min {τ‖A‖, q0} .

Proof. It is easy to check that√
m+ s2 ≤ √m+ s.

Then ∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds ≤
∫ 1

2 (
1
q−q)

0

[ √
m√

1 + s2
+

s√
1 + s2

]
ds

=
[√
m sinh−1(s) +

√
1 + s2

] ∣∣∣s= 1
2 (

1
q−q)

s=0

=
√
m sinh−1

(
1

2

(
1

q
− q

))
+

1

2

(
1

q
+ q

)
− 1

=
√
m ln

(
1

q

)
+

1

2

(
1

q
+ q − 2

)
.
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Noting (5.4), it follows that

−z̃ = −a+ 1

λ

∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds ≤ −a+
√
m

λ
ln

(
1

q

)
+ L,

and hence

e−τ z̃ ≤ e−τa+τ
√

m
λ ln( 1

q )+τL = q−
τ
√

m
λ e−τ(a−L).

Using this in Theorem 5.5 yields (5.8). Finally, (5.9) follows from (5.8) by noting that
−a+ L = 0 if q = q0.

The above bounds show that the error starts to decrease at the rate of q only
when

(5.10) k ≥ ks := τ
√
m

λ
.

Namely, we may not expect convergence to take place until ks steps; i.e., the iterations
may stagnate for the first ks steps. This theoretical prediction is nicely confirmed in
our numerical testing; see section 7. On the other hand, the fixed rate convergent
bound (5.9) is usually very pessimistic.

For a positive definite A, the bound (5.9) guarantees the convergence at least at
the rate of q0, up to initial ks stagnation steps. This guaranteed overall linear rate
may be expected to be pessimistic as superlinear convergence is generally observed.
The superlinear convergence behavior can be explained by noting that optimal q value
for the error bounds changes with k. Note that q influences the error bound through
two opposing actions of qk and e−τ z̃. Namely, choosing smaller q results in a faster
geometrically decreasing term qk, but e−τ z̃ may be much larger, resulting in an overall
larger bound. So the best choice of q should balance the two effects and will depend
on k. For example, smaller q may be used for larger k so that the more significant
decrease in qk can offset the increase in e−τ z̃.

The optimal q to be used in the bound (5.7) can be determined by minimizing at
each step k

E(q) :=
qk−1

1− q e
−τ z̃.

Taking the derivative of E with respect to q and using

dz̃

dq
= − 1

λ

√
m+ 1

4

(
1
q − q

)2

√
1 + 1

4

(
1
q − q

)2

1

2

(
− 1

q2
− 1

)
=

√
m+ 1

4

(
1
q − q

)2

λq
,

we have

dE

dq
=

(k − 1)qk−2(1− q)− qk−1(−1)
(1 − q)2 e−τ z̃ +

qk−1

1− q e
−τ z̃(−τ)dz̃

dq

= e−τ z̃
qk−3

(1 − q)2
[
(k − 1)q + (2− k)q2 − C(1 − q)

√
(1− q2)2 + 4mq2

]
,

where C = τ
2λ . Thus optimal q = q(k) can be found by solving

(5.11) (k − 1)q + (2− k)q2 − C(1− q)
√

(1− q2)2 + 4mq2 = 0.
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Note that a solution q ∈ (0, 1) exists because the function in the equation is 1 when
q = 1, and −C < 0 when q = 0.

We note that Beckermann and Reichel [2, Corollary 4.1] have also discussed choos-
ing r for their bound (5.3) by optimizing eτψ(r)/rm (an upper bound of the Faber
coefficient) with respect to r. Their optimal r is 1 if k >

√
mτ/λ, and is given by

the solution of rψ′(r) = k/τ otherwise. We choose q by optimizing the entire upper
bound E(q). As a result, we have found numerically that using their optimal value of
r with q = 1/r gives clearly worse bounds than the one determined by (5.11).

Finally, we note that the bound in Corollary 5.6 is derived using
√
m+ s2 ≤√

m+ s, which is quite tight for most values of m as each of
√
m and s is also a lower

bound of
√
m+ s2. When m ≈ 1, it is better to simply bound it as

−z̃ ≤ −a+ 1

λ

∫ 1
2 (

1
q−q)

0

√
1 + s2√
1 + s2

ds = −a+ 1

2λ

(
1

q
− q

)

to obtain

||w(τ) − wk(τ)|| ≤ 4qk−1

1− q min {τ‖A‖, q} e−τ{a− 1
2λ (

1
q−q)}.

The special case that m = 1 and a = 0 will be discussed in the next section. Here,
we finish this section with a discussion of the special case that A is nearly Hermitian
positive definite, i.e., m ≈ 0.

Corollary 5.7. Under the assumptions of Theorem 5.5, A being positive defi-
nite, and m ≈ 0, the approximation error satisfies

‖w(τ) − wk(τ)‖ ≤ 4
qk−1
0

1− q0 min {τ‖A‖, q0} ,

where q0 =
√
κ−1√
κ+1

+O(
√
m) and κ = b

a .

Proof. E(m1) = E(1−m) and K(m1) = K(1−m) are both functions of m and
have the following expansions at m = 0 [1, p. 591]:

E(m1) = E(1 −m) = 1− 1

4
m lnm+O(m),

K(m1) = K(1−m) = −1

2
lnm+O(1).

Then E(m1)−mK(m1) can be expanded at m = 0 as

(5.12) E(m1)−mK(m1) = 1 +
1

4
m lnm+O(m).

Since α = b−a
2 ,

λ =
E(m1)−mK(m1)

α
=

2

b− a
(
1 +

1

4
m lnm

)
+O(m).

Then

(5.13) aλ =
2

κ− 1

(
1 +

1

4
m lnm

)
+O(m).
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As we have proved,

∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds ≤ √m ln

(
1

q

)
+

1

2

(
1

q
+ q − 2

)
,

so

(5.14)

∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds =
1

2

(
1

q
+ q − 2

)
+O(

√
m).

Let q = q0 be the unique solution of

aλ =

∫ 1
2 (

1
q−q)

0

√
m+ s2√
1 + s2

ds,

where the existence of q0 and the uniqueness follow from the fact that the integral
on the right is a function of q monotonically decreasing from ∞ to 0 for 0 < q < 1.
Using (5.13) and (5.14), the equation is written as

2

κ− 1
=

1

2

(
1

q
+ q

)
− 1 +O(

√
m).

Solving this, the solution q0 with 0 < q0 < 1 is

q0 =

√
κ− 1√
κ+ 1

+O(
√
m).

Using this q0 in the bound (5.7), we have z̃ = 0, and the theorem is proved.

Note that m is determined by β/α. In particular, for m ≈ 0, E(m) and K(m)
have the expansions

E = E(m) =
π

2
− π

8
m+O(m2),

K = K(m) =
π

2
+
π

8
m+O(m2).

We also have the expansion of E(m1)−mK(m1) in (5.12). Then

β

α
=

E −m1K

E(m1)−mK(m1)
=
π

2
m+O(m2), or c =

(b− a)π
4

m+O(m2).

So the above theorem applies to the case when c/(b − a) is small or A is nearly
Hermitian.

6. A priori error bound for skew-Hermitian matrices. In this section, we
consider the special case that A is skew-Hermitian, which, as discussed in the intro-
duction, arises in some interesting applications. We write A = −iH , with H being a
Hermitian matrix. In this case, the Arnoldi algorithm is theoretically equivalent to
the Lanczos algorithm for H . As we will see, the error bound for computing

w(τ) := eiτHv

is also significantly simplified.
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Applying k steps of the Lanczos method to H and v1 = v with ‖v‖ = 1 (see [10]),
we obtain an orthonormal basis {v1, v2, . . . , vk, vk+1} and a k × k tridiagonal matrix
Tk such that

HVk = VkTk + βk+1vk+1e
T
k ,

where Vk = [v1, v2, . . . , vk]. This is equivalent to (3.1) for the Arnoldi algorithm for
A = −iH with Hk = −iTk and hk+1,k = βk+1. Then, the corresponding approxima-
tion of w(τ) is

(6.1) wk(τ) := Vke
iτTke1,

which we call the Lanczos approximation. Then the same a posteriori error bound of
Theorem 3.1 holds with hk+1,k = βk+1 and h(t) := eTk e

itTke1. Namely,

(6.2) ‖w(τ)− wk(τ)‖ ≤ βk+1

∫ τ

0

|h(t)|dt ≤ ‖H‖
∫ τ

0

|h(t)|dt.

Furthermore, slightly better bounds may be obtained by shifting the matrix and
exploring the fact that such a shift only results in a multiplication by e−iτα which has
modulus 1. Specifically, for any α ∈ R, we can consider the shifted matrix H−αI and
correspondingly w(τ, α) := eiτ(H−αI)v = e−iταw(τ) and wk(τ, α) := Vke

iτ(Tk−αI)e1 =
e−iταwk(τ). Since (H − αI)Vk = Vk(Tk − αI) + βk+1vk+1e

T
k , we can apply (6.2) to

H − αI to get

‖w(τ, α)− wk(τ, α)‖ ≤ ‖H − αI‖
∫ τ

0

|h(t, a)|dt,

where h(t, α) := eTk e
it(Tk−αI)e1 = e−itαh(t, α). Thus

(6.3) ‖w(τ) − wk(τ)‖ = ‖w(τ, α) − wk(τ, α)‖ ≤ ‖H − αI‖
∫ τ

0

|h(t)|dt.

We now bound h(t) as in the previous section to obtain the following a priori error
bound.

Theorem 6.1. Let A = −iH ∈ Cn×n be a skew-Hermitian matrix, and let v ∈ Cn

with ‖v‖ = 1. Then, for any q with 0 < q < 1, the error of the Lanczos approximation
wk(τ) = Vke

iτTke1 (6.1) satisfies

(6.4) ‖w(τ) − wk(τ)‖ ≤ 4min{1/(1− q2), τρ/q}
1− q qkeτρ(

1
q−q),

where ρ = (λmax(H)−λmin(H))/4 with λmin(H) and λmax(H) being the smallest and
largest eigenvalues of H, respectively.

Proof. Let a = λmin(H) and b = λmax(H). We first bound h(t) := eTk e
itTke1

as in Theorem 5.1 by constructing a conformal map and using the Faber polynomial
approximation. Let Φ := φ3 ◦ φ2 ◦ φ1, where z1 = φ1(z) = −iz maps the exterior of
E := {iλ : λ ∈ [a, b]} to the exterior of [a, b], z2 = φ2(z1) =

2
b−a (z1 − a+b

2 ) maps the

exterior of [a, b] to the exterior of [−1, 1], and w = φ3(z2) = i(z2 +
√
z22 − 1) maps

the exterior of [−1, 1] to {|w| > 1}. In the definition of φ3, we choose the branch of√
z2 − 1 such that limz 	→∞

√
z2−1
z = 1. Then Φ maps the exterior of E to the exterior
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of the unit circle {|w| = 1} with ρ := limz→∞ z
Φ(z) = b−a

4 . Construct the Faber

polynomials from this conformal map Φ and the Faber polynomial approximation
Πk−2 of f(z) := etz as defined in (2.3). Let r := 1

q > 1, and let Cr be the inverse

image under Φ of the circle |w| = r. Applying Theorem 2.1 or (2.5), the approximation
error in I(Cr) is bounded as

‖f −Πk−2‖∞ ≤ 2M(r)
(1r )

k−1

1− 1
r

= 2M(r)
qk−1

1− q ,

whereM(r) = maxz∈Cr |f(z)| and we note that the total rotation of E (a line segment)
is V = 2π. To find M(r), for any z ∈ Cr , we write z = Φ−1(w) with w = reiθ , where
θ ∈ [0, 2π). Then, it follows from the definition of Φ that

z2 =
1

2

(
−iw +

1

−iw
)

=
1

2

(
−i e

iθ

q
+

iq

eiθ

)
= − i

2

[(
1

q
− q

)
cos θ + i

(
1

q
+ q

)
sin θ

]
,

z1 =
b− a
2

z2 +
b+ a

2
=

[
b− a
4

(
1

q
+ q

)
sin θ +

b + a

2

]
− i

[
b− a
4

(
1

q
− q

)
cos θ

]
,

z = iz1 =
b− a
4

(
1

q
− q

)
cos θ + i

[
b − a
4

(
1

q
+ q

)
sin θ +

b+ a

2

]
.

Thus

M(r) = max
z∈Cr

|etz| = max
z∈Cr

etRe(z) = e
t(b−a)

4 ( 1
q−q).

Now, let λj (1 ≤ j ≤ n) be the eigenvalues of iTk. Then λj ⊂ E. As in the proof of
Theorem 5.1, we have

|h(t)| = |[f(iTk)]k1| = |[f(iTk)]k1 − [Πk−2(iTk)]k1|
≤ ‖f(iTk)−Πk−2(iTk)‖2 = max

j
|f(λj)−Πk−2(λj)|

≤ max
z∈E
|f(z)−Πk−2(z)| ≤ ‖f −Πk−2‖∞

≤ 2qk−1

1− q e
t(b−a)

4 ( 1
q−q).

Finally, using (6.3) with α = (a+ b)/2, we have ‖H − αI‖ = (b− a)/2 and hence

‖w(τ) − wk(τ)‖ ≤ b− a
2

∫ τ

0

2qk−1

1− q e
t(b−a)

4 ( 1
q−q)dt

=
4qk−1

(1− q)
(

1
q − q

) (
e

τ(b−a)
4 ( 1

q−q) − 1
)

≤ 4qk

(1− q) (1− q2) min

{
1,
τ(b − a)

4

(
1

q
− q

)}
e

τ(b−a)
4 ( 1

q−q)

=
4qk

1− q min

{
1

1− q2 ,
τρ

q

}
eτρ(

1
q−q),

where we have used ex − 1 ≤ min{1, x}ex for any x ≥ 0.

As before, we have an error bound for any given q ∈ (0, 1). Using smaller q results

in a faster geometrically decreasing term qk, but eτρ(
1
q−q) is expected to be larger.
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So, again, we study the value of q that minimizes the bound

E(q) :=
qk

(1− q)(1 − q2)e
τρ( 1

q−q).

Taking the derivative of E(q) with respect to q, we get

dE

dq
=

qk−2eτρ(
1
q−q)

(1− q)3(1 + q)2
[
τρq4 + (3− k)q3 + q2 + kq − τρ] .

With E(q) → ∞ as q → 0 or 1, the optimal value q0 = q0(k) that minimizes E(q) is
given by the solution of the equation

(6.5) τρq4 + (3− k)q3 + q2 + kq − τρ = 0.

Note that it can be shown that the above equation has a unique solution q0 ∈ (0, 1)
(see [30] for details).

Note that 1
1−q in E(q) is a well-bounded term unless q ≈ 1. For example, it is

bounded by 10 if q ≤ 0.9. To quantitatively interpret the bound, we can consider
minimization of

Es(q) = qkeτρ(
1
q−q),

which is essentially the same as E(q) unless q ≈ 1. Differentiate Es to get

dEs
dq

= eτρ(
1
q−q)qk−2

[−τρq2 + kq − τρ] .
The discriminant of the quadratic −τρq2 + kq − τρ is Δ = k2 − 4(τρ)2. So, if
k ≤ ks := 2τρ, Es(q) is monotonically decreasing with the minimum occurring at

q0 = 1. If k > ks, Es(q) is minimized at q0 =
k−
√
k2−4(τρ)2

2τρ < 1. Thus, the bound
implies different convergence behavior at two stages of the Lanczos iterations.

1. When 1 ≤ k ≤ ks, there is essentially no decrease in the error bound.
2. For k > ks, the error bounds for subsequent steps decrease at least at the

rate of q0.
The convergence behavior as implied from this theory is indeed what has been ob-
served in the numerical examples (see section 7), where the error initially stagnates
for approximately ks steps and then begins to decrease superlinearly. This ks is the

same as ks =
τ
√
m
λ defined in (5.10), as m = 1 and 1

λ = 2ρ here. Thus, the stagnation
steps ks can be explained from the optimal value of q here or a delayed convergence
term qk−1−ks in (5.8).

Finally, we note that the convergence bound for skew-Hermitian matrices has also
been studied by Hochbruck and Lubich [16, Theorem 4]. It is proved there that for
k ≥ 2ρτ ,

(6.6) ‖w(τ) − wk(τ)‖ ≤ 12e
−(ρτ)2

k

(eρτ
k

)k
.

Interestingly, the range of validity of the bound coincides with the point of initial
convergence, as implied by our bound. It turns out that this bound can be implied
from a special case of our error bound (6.4). For k ≥ 2ρτ , let q = τρ

k ≤ 1
2 . Then our



180 HAO WANG AND QIANG YE

bound (6.4), simply using 1/(1− q2) for the minimum, reduces to (6.6) as follows:

‖w(τ)− wk(τ)‖ ≤
4
(
τρ
k

)k
(1− 1

2 )(1− 1
2 )

2
eτρ(

k
τρ− τρ

k )

=
32

3
e−

(τρ)2

k

(eτρ
k

)k
≤ 12e−

(τρ)2

k

(eτρ
k

)k
.

7. Numerical examples. In this section, we present several numerical examples
to demonstrate the error bounds obtained in this paper. All tests were carried out on
a PC in MATLAB (R2013b) with the machine precision ≈ 2e-16. The Jacobi elliptic
integrals that are needed for our bounds were computed using MATLAB built-in
functions ellipticK and ellipticE.

We will construct several testing matrices with different spectral distributions
and compare the actual approximation error with the new a posteriori error estimate
(3.8) and a priori bounds (5.7) or (6.4). The convergence rate q in the bounds (5.7)
and (6.4) was chosen to satisfy (5.11) and (6.5), respectively. The a posteriori error
estimate (3.8) assumes A is positive semidefinite. When that is not the case, i.e.,
ν(A) < 0, we use (3.6) with the value of ν(A) assumed known. The integrals in the a
posteriori error estimates (3.6) and (3.8) are approximated using Simpson’s rule with
10 subintervals on [0, τ ].

We shall compare our bounds with the bounds by Saad [27] and those of Hochbruck
and Lubich [16]. Specifically, we consider the bound [27, Theorem 4.5]

(7.1) ‖w(τ) − wk(τ)‖ ≤ 2(τρα)
keτ(ρα−α)

k!
,

where ρα = ‖A− αI‖, and the bound [16, Theorem 2]

(7.2) ‖w(τ) − wk(τ)‖ ≤ 12e−ρτ
(eρτ
k

)k
,

which holds for k ≥ 2ρτ and with the assumption that the field of values W (A) is
contained in the disk |z − ρ| < ρ. When the latter assumption does not hold, we
consider the circumscribing circle of the rectangle [a, b]× [−c, c] enclosing W (A), and
shift it by some α to |z − ρ| < ρ. Then (7.2) can be applied, from which a bound on
the original error is obtained by multiplying e−τα. For Saad’s bound, we set α to be
the center of the rectangle α = (a+ b)/2 to minimize ρα.

In comparison with our bounds, (7.1) and (7.2) are based on enclosing W (A) by
a disk and are tight if W (A) is known to be tightly enclosed in a disk. Note that our
bounds are derived essentially by first mapping a rectangle to a disk and then bounding
on the disk; so when W (A) is already tightly enclosed by a disk, an additional step of
mapping a circumscribing square to a larger disk is redundant, and using the original
enclosing disk as in (7.1) or (7.2) is a better approach. We therefore consider examples
where the enclosing rectangle is the best available information about W (A).

Example 1. Given an odd integer N and a rectangle [a, b]× [−c, c] in the complex
plane where a, b, and c are all positive real numbers, let A be the N2 × N2 block
diagonal matrix with the diagonal blocks being 2× 2 matrices B�,j for � = 1, 2, . . . , N
and j = 1, 2, . . . , N−1

2 , where

B�,j =

[
x� yj
−yj x�

]
, x� = a+

(�− 1)(b− a)
N − 1

and yj =
2jc

N − 1
.



KRYLOV SUBSPACE METHODS FOR MATRIX EXPONENTIALS 181

Then, the eigenvalues of A are x�±iyj (i being the imaginary unit), which are the grid
points of the N×N lattice on [a, b]× [−c, c]. Clearly, A is a normal matrix, so the field
of values of A is the convex hull of its eigenvalues, i.e., the rectangle [a, b]× [−c, c].

We choose [a, b]× [−c, c] to be the square [1−
√
2
2 , 1 +

√
2
2 ] × [−

√
2
2 ,

√
2
2 ] which is

enclosed in the circle |z− 1| < 1, and we construct a matrix A as above such that the
eigenvalues of A form a 31×31 lattice in the square. We apply the Arnoldi method to
compute e−τAv, where v is a random normalized vector and we use τ = 10, 20, 30, 40.
In Figure 1, we plot against the iteration number the actual error ‖w(τ) −wk(τ)‖ in
the solid line, our a posteriori error estimate (3.8) in the +-line, our a priori bound
(5.7) in the dashed line, Hochbruck and Lubich’s bound (7.2) in the dotted line, and
Saad’s bound (7.1) in the x-line. Note that Hochbruck and Lubich’s bound is only
valid for k ≥ 2ρτ .
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Fig. 1. Example 1. W (A) in |z − 1| < 1 and τ = 10, 20, 30, 40; ks = 12, 24, 35, 47. Error
(solid), our a posteriori estimate (+), our a priori bound (dashed), Hochbruck and Lubich’s bound
(dotted), and Saad’s bound ( x).

We observe that when τ is relatively small, our new a priori bound slightly out-
performs the classical bounds, but as τ increases, our bound improves significantly. In
particular, the error has an initial stagnation before the convergence takes place. Our

theoretically predicted values for the stagnation steps ks = τ
√
m
λ are 12, 24, 35, and

47 for the four corresponding τ values. They sharply capture the actual stagnation
stage of iterations in all cases. Our a posteriori error estimate (3.8) is sharp at the
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Fig. 2. Example 2.
√
m = 0.1, 0.3, 0.6, 0.9; ks = 5, 15, 30, 45. Error (solid), a posteriori estimate

(+), a priori bound (dashed), Hochbruck and Lubich’s bound (dotted), and Saad’s bound (x).

convergence stage for all tests. If we assume ν(A) is known and use (3.6), the resulting
a posteriori error estimate (not plotted here) will be sharp at all steps.

In the next example, we use the same construction as in Example 1, but consider
the field of values contained in rectangles of different shapes. This is to investigate
the influence on the convergence by the shape of the rectangle through the parameter
m in (4.3).

Example 2. For a given parameter m ∈ (0, 1), we determine the dimensions of
the rectangle α and β by α = E(m1)−mK(m1), β = E(m)−m1K(m), which means
λ = 1. We then construct as in Example 1 a matrix whose field of values is contained
in the rectangle [0, 2α]× [−β, β]. We use τ = 50 and

√
m ∈ {0.1, 0.3, 0.6, 0.9}, whose

corresponding values of ks = τ
√
m
λ are 5, 15, 30, and 45. Note from section 5 that

m ≈ 0 means that the matrix is close to being Hermitian, and that m ≈ 1 means that
the matrix is close to being skew-Hermitian with a real spectral shift. We apply the
Arnoldi method to compute e−τAv for a random normalized vector v. In Figure 2 we
plot the error ‖w(τ) − wk(τ)‖ in the solid line, our a posteriori error estimate (3.8)
in the +-line, our a priori bound (5.7) in the dashed line, Hochbruck and Lubich’s
bound (7.2) in the dotted line, and Saad’s bound (7.1) in the x-line. In the last plot
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Fig. 3. Example 2. Nonpositive definite matrix with negative ν(A): σ = −1 and −10; ks =
17, 17. Error (solid), our a posteriori bound (+), our a priori bound (dashed), Hochbruck and
Lubich’s bound (dotted), and Saad’s bound ( x).

(
√
m = 0.9), Saad’s bound is out of range and is not shown.
Figure 2 shows that the convergence is related to m. For smaller m when the

eigenvalues lie close to the real axis, the convergence occurs at early iterations and
at a faster rate. As m increases, the convergence has an initial stagnation stage
before the convergence occurs. Again, this behavior is captured in our new a priori
bound (5.8). In particular, our theoretically predicted values for the stagnation steps
ks sharply capture the actual stagnation stage of iterations in all cases. Our bound
also significantly improves both Hochbruck and Lubich’s and Saad’s bounds. Our a
posteriori error estimate is sharp for all tests.

We further demonstrate our new bounds for nonpositive definite matrices. We
construct as in Example 1 a matrix A whose field of values is contained in the square
[σ, 2 + σ] × [−1, 1] with σ = −1 and −10. For τ = 10, we plot in Figure 3 the
approximation error (solid), our a posteriori estimate (3.6) (+), our a priori bound
(5.7) (dashed), Hochbruck and Lubich’s bound (7.2) (dotted), and Saad’s bound (7.1)
(x). We see that our bounds are still valid and sharp when A is not positive definite.
The predicted stagnation steps ks are 17 for both cases, and they agree with the
actual results.

In the next example, we consider matrices arising in the convection diffusion
equation

(7.3)
∂

∂t
u(x, y) = �u(x, y)− ux(x, y)− uy(x, y), u = 0 in ∂Ω,

where (x, y) ∈ Ω = [0, 1]2. The finite-difference discretization in x, y with a uniform
mesh leads to an initial value problem (1.1) and hence the problem of computing
w(τ) = e−τAv.

Example 3. Let −A be the finite-difference discretization of (7.3) in a 20 × 20
grid in [0, 1]2 scaled with h2 so that ‖A‖ ≈ 8. Then A is non-Hermitian but positive
definite. We let v be a random vector with ‖v‖ = 1 and compute the matrix expo-
nential w(τ) = e−τAv. We use various values of τ = 1, 2, 5, 10 and apply the Arnoldi
method to A and v. The results are presented in Figure 4, with ‖w(τ) − wk(τ)‖ in
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Fig. 4. Example 3. τ = 1, 2, 5, 10; ks = 1, 1, 3, 6. Error (solid), a posteriori estimate (+), a
priori bound (dashed), Hochbruck and Lubich’s bound (dotted), and Saad’s bound ( x).

the solid line, our a posteriori estimate (3.8) in the +-line, our a priori bound (5.7) in
the dashed line, Hochbruck and Lubich’s bound (7.2) in the dotted line, and Saad’s
bound (7.1) in the x-line. In the first plot, Hochbruck and Lubich’s bound (the dotted
line) and Saad’s bound (x-line) coincide and are indistinguishable.

We observe that our a posteriori error estimate and our a priori bounds closely
follow the convergence curve and are significant improvements on the classical bounds.
The predicted stagnation steps ks are 1, 1, 3, 6. This is consistent with the actual
convergence, where there is little initial stagnation shown.

Our final example concerns skew-Hermitian matrices.

Example 4. Let H be an n× n diagonal matrix whose jth diagonal entry is j/n.
Let v be a random n × 1 normalized vector. Then ‖H‖ = 1, and the spectral gap
4ρ = λmax(H) − λmin(H) is approximately 1. We apply k iterations of the Lanczos
method to compute w(τ) = eiτHv. We will test n = 1000 with τ = 2, 10, 20, 50;
the results are presented in Figure 5, with ‖w(τ) − wk(τ)‖ in the solid line, our a
posteriori error estimate (6.2) in the +-line, our a priori bound (6.4) in the dashed
line, Hochbruck and Lubich’s bound (6.6) in the dotted line, and Saad’s bound (7.1)
in the x-line.

We first observe that our bound only improves Hochbruck and Lubich’s bound
very slightly. It is significantly better than Saad’s bound when τ is large. In all cases,
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Fig. 5. Example 4. 1000 × 1000 diagonal matrix with ajj = j/1000 and τ = 2, 10, 20, 50.
ks = 1, 5, 10, 25. Error (solid), a posteriori bound (+), a priori bound (dashed), Hochbruck and
Lubich’s bound (dotted), and Saad’s bound ( x).

our bound and Hochbruck and Lubich’s bound follow the actual error quite closely,
and our a posteriori error estimate is sharp. For τ = 2, 10, 20, 50, the corresponding
predicted stagnation steps ks are 1, 5, 10, and 25, respectively. This again sharply
predicts the actual stagnation stage in Figure 5.

8. Concluding remarks. For the computation of e−τAv with a non-Hermitian
matrix A by the Krylov subspace methods, we have presented an a posteriori error
bound that provides a sharp estimate of the error. We have also derived from the
bounds of Beckermann and Reichel [2] as well as from our a posteriori bound some
new a priori error bounds based on the largest and the smallest eigenvalues of the
Hermitian and the skew-Hermitian parts of A. Using this simple spectral information,
our bounds capture convergence characteristics of the Krylov subspace methods. They
also provide a sharp prediction of the initial stagnation of the convergence curve as
shown in all numerical examples. Numerical comparisons with existing bounds also
show that our new bounds may significantly improve the a priori bound by Hochbruck
and Lubich [16] that is based on a circular enclosing region of the field of values and
the one by Saad [27] that is based on the norm. Finally, our bounds agree with those
of [31] for the symmetric positive definite case.
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The technique developed in this paper provides a new way to analyze convergence
of the Krylov subspace method for non-Hermitian matrices through the bounding
rectangle for the field of values. It may be extended to other linear algebra problems.
In future work, we plan to study convergence bounds for linear systems based on the
Hermitian and the skew-Hermitian parts of A, which may also add to the theory of
the Krylov subspace method for linear systems.
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