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Abstract

We propose an effective outlier detection algorithm for high-dimensional
data. We consider manifold models of data as is typically assumed in di-
mensionality reduction/manifold learning. Namely, we consider a noisy data
set sampled from a low-dimensional manifold in a high-dimensional data
space. Our algorithm uses local geometric structure to determine inliers,
from which the outliers are identified. The algorithm is applicable to both
linear and nonlinear models of data. We also discuss various implementation
issues and we present several examples to demonstrate the effectiveness of
the new approach.
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1. Introduction

Outlier detection is a classical problem in data analysis that arises in a
variety of applications. Outliers in a data set may exist because of abnor-
mality of the subjects underlying the data, inclusion of data from different
categories, or contamination/corruption of the data. Their identification is
important and often a major task in data analysis. High-dimensional data is
typically analyzed with a dimensionality reduction technique, but most ex-
isting dimensionality reduction methods are very sensitive to the existence of
outliers; namely existence of a single outlier point could significantly distort
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the result of dimensionality reduction. Thus, while dimensionality reduction
can usually detect some underlying patterns/structures of data, they are
not apt to deal with outliers. In this paper, we are concerned with outlier
detection for high-dimensional data that admits a certain low-dimensional
structure and is well suited for analysis through dimensionality reduction.

There have been many techniques developed in the literature for the task
of outlier detection; see the recent book [1] for a comprehensive survey. Many
of these methods identify outliers as a by-product of another data mining task
such as clustering or dimensionality reduction. Proximity-based methods [1,
Chapter 4] use relative distances among data points or density to detect
outliers. For high dimensional data, they may suffer from curse of dimen-

sionality, where points with a few outlying components are masked by the
noise effects of high dimensions; see [2]. Various methods have been devel-
oped to address this issue such as the approach of selecting and projecting
on abnormal lower dimensional spaces [3, 4, 5, 6, 7]; see [2, 8, 9] for some
others.

Another class of outlier detection methods is based on linear models of
data where data points are assumed to lie approximately on a low dimen-
sional plane. Principal component analysis (PCA) is a major dimensionality
reduction algorithm that uncovers linear relations among data points, and
there is a large body of literature on robust PCA that aims at overcoming
the sensitivity of PCA to the existence of outliers; see [1, 10, 11, 12, 13, 14].
One approach is to estimate the robust covariance matrix of a data set first
and then perform classical PCA on the covariance matrix estimator; see [15]
for example. Another approach is to compute the robust principal directions
by maximizing the covariance of the projected data set; see [16]. Such ap-
proaches do not attempt to detect the outliers of the data set but rather to
robustly compute the principal component space and principal components
in the presence of outliers. One difficulty associated with such robust PCA
methods is that their computational efficiency deteriorates drastically as the
size of data set and the dimension of data increase. A recent approach, called
outlier pursuit, is to first detect outliers by minimizing the so-called nuclear
norm of the data matrix subject to perturbations in the columns correspond-
ing to outliers [17]. This is adapted for outlier detection from another robust
PCA method called PCA pursuit [12, 18] which minimizes the nuclear norm
of a data matrix subject to a sparse perturbation. Such methods have the ef-
fect of minimizing the rank of the data matrix and, as a convex optimization
problem, they can be more efficiently solved [12, 17, 18].
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For data that does not admit a linear relation, nonlinear dimensionality
reduction algorithms [19, 20, 21, 22, 23] introduced in the last decade are
effective alternatives but they are also very sensitive to the presence of out-
liers. This is the problem discussed in [24, 25] in the context of the Local
Linear Embedding (LLE) method [19]. In [24], the standard construction of
local linear structure in LLE is replaced by a robust PCA that is based on
iteratively weighted least squares. In [25], outliers are detected by testing
density (or gaps in pairwise distances) in local neighborhoods. There are
other works dealing with small random noise in nonlinear dimensionality re-
duction problems; see [26, 23]. We note that all these methods appear to
be intended for some specific nonlinear dimensionality reduction methods or
problems.

In this paper, we present a new approach towards outlier detection for
high-dimensional data. We use the prevailing data model in dimensionality
reduction/manifold learning. Namely, we assume that the given data set is
sampled from a low-dimensional manifold (linear or nonlinear) M embedded
in a high-dimensional space R

m as defined by a smooth mapping f : C ⊂
R

d → M ⊂ R
m, where C is a compact and connected subset of Rd. Let

{x1, · · · , xN} ⊂ R
m be the data set. Then, inlier points of the set are those

that can be written as

xi = f(τi),+ǫi, i = 1, . . . , N, (1)

where τi ∈ C and ǫi represents small noise (i.e. a small number relative to
f(τi))). If f is sufficiently smooth and sample points are sufficiently dense,
then neighboring inlier points lie approximately on a d-dimensional plane.
Thus, instead of detecting outliers directly, we attempt to identify inliers
through this low-dimensional structure, i.e whether it is in a small neigh-
borhood lying approximately on a d-dimensional plane. Specifically, we con-
struct a collection of subsets of data, typically small local neighborhoods such
as k-nearest point neighborhoods, and examine their geometric structure as
characterized by the intrinsic dimension. Then neighborhoods with outlying
geometric structures are deemed to contain outliers whereas the remaining
contain inliers only. In this way, the inliers are determined, from which
the outliers are detected. Our method applies to both linear and nonlinear
models of data and can be easily combined with a dimensionality reduction
method to further process the data.

The paper is organized as follows. We present our outlier detection
method in Section 2. We then discuss its combination with a dimension-
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ality reduction algorithm for further analysis in section 3. We finally present
several examples to demonstrate the effectiveness of the method in Section
4 and conclude with some remarks in Section 5.

2. Outlier Detection

Consider a given data set X = {x1, · · · , xN} modeled by (1) but contam-
inated with some outliers. Then, the inliers are points satisfying (1) and they
can be characterized by the local low-dimensional structure. Namely, if points
in a small neighborhood are all inliers satisfying (1), then they approximately
span a d-dimensional plane (i.e. after centering, they approximately span a
d-dimensional subspace). Indeed, if a local neighborhood approximately lies
on a d-dimensional plane, then every point can be defined though (1) with
a suitably small noise term and smooth f and hence can be considered an
inlier point.

For each xi ∈ X, let X i = {xi1 , . . . , xik} be the k-nearest point neigh-
borhood of xi including itself, i.e. xi1 , . . . , xik are the nearest k data points
from X to xi in Euclidean distance. We can also use the ǫ-ball neighborhood
that consists of xj such that ‖xj − xi‖ ≤ ǫ (where ǫ > 0 is a given param-
eter) but we shall restrict our discussion to k-nearest point neighborhoods.
Let Xi = [xi1 , . . . , xik ] and let x̄i = Xie/k be the mean of the points in X i,
where e ∈ R

k is the column vector of all ones. Let the SVD decomposition
of Xi − x̄ie

T be
Xi − x̄ie

T = UiΣiV
T
i , (2)

where Ui ∈ R
m×m and Vi ∈ R

k×k are orthogonal and Σi = diag
(

σ
(i)
1 , . . . , σ

(i)
k

)

∈

R
m×k with σ

(i)
1 ≥ σ

(i)
2 ≥ · · · ≥ σ

(i)
k ≥ 0. Then separating out the first d

columns of Ui on the right hand side of (2), we have

‖Xi − x̄ie
T − U

(d)
i Σ

(d)
i (V

(d)
i )T‖2 = σ

(i)
d+1,

where U
(d)
i and V

(d)
i are the matrices consisting of the first d columns of

Ui and Vi respectively and Σ
(d)
i = diag

(

σ
(i)
1 , . . . , σ

(i)
d

)

. Therefore, if σ
(i)
d+1 is

small, each column of Xi is approximately x̄i plus a linear combination of the
columns of U

(d)
i , i.e. it lies approximately in the plane through x̄i and spanned

by the columns of U
(d)
i . So, σ

(i)
d+1 measures whether X i approximately lies

on a d-dimensional plane and hence whether it consists entirely of inliers.
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However, it is difficult to detect this by examining the magnitude of σ
(i)
d+1, as

placing a right threshold depends on the distribution of σ
(i)
d+1 with respect to

i.
We consider instead the set of neighborhoods {X i : 1 ≤ i ≤ N}. We as-

sume that most of X i contains inliers only. This happens when the number
of outliers is not too large or when the outliers are distributed so that most
k-nearest neighborhoods of inliers do not contain outliers. Then a neighbor-
hood containing outliers will be an outlier of the set of neighborhoods {X i}
in the sense that it has an outlying geometric structure. To determine which
neighborhood has an outlying structure, we consider the set of (d + 1)-st

largest singular values {σ(i)
d+1, i = 1, . . . , N}. Then the outlying neighbor-

hoodsX i correspond to outlying singular values σ
(i)
d+1 in {σ(i)

d+1, i = 1, . . . , N}.

Outliers in {σ(i)
d+1, i = 1, . . . , N} can be detected using a well-established

statistical criterion. Since the set of singular values are nonnegative and most
values are near 0, we find Hampel’s method [27] work well for this task. Using
the median and the median absolute deviation (MAD) as robust estimates
of the location and the spread of the data set. The Hampel identifier is
often found to be practically very effective. We apply Hampel’s method to
{σ(i)

d+1, i = 1, . . . , N} as follows (see [27] for details). First we compute the
median and the median absolute deviation (MAD) as

Mσ = medi{σ
(i)
d+1} (3)

and
σ̂MAD = medi{|σ

(i)
d+1 −Mσ|}. (4)

Then the standard deviation σ is estimated as σ ≈ cσ̂MAD, where c = 1.4826.
We consider σ

(j)
d+1 an outlier of {σ(i)

d+1, i = 1, . . . , N} if

σ
(j)
d+1 > Mσ + 3cσ̂MAD. (5)

This in turn determines the set of outlying neighborhoods, namely those
neighborhoods containing at least one outlier.

The set of inlying neighborhoods is M = {Xi : σ
(i)
d+1 ≤ (Mσ +3cσ̂MAD)}.

Its union
⋃

X i∈M
X i consists of inliers only. If every inlier is contained

in a neighborhood consisting entirely of inliers, then the remaining points

X \
(

⋃

X i∈M
X i

)

are outliers. We present the outlier detection method in

Algorithm 1.
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Algorithm 1 Outliers Detection Algorithm

Input: X = {x1, · · · , xN} ⊂ R
m; intrinsic dimension d, and k ≥ d+ 1

1. For each xi, construct its k-nearest neighborhood X i = {xi1 , . . . , xik};

2. For each X i, compute σ
(i)
d+1 through (2);

3. For {σ(i)
d+1, i = 1, . . . , N}, compute Mσ by (3) and σ̂MAD by (4).

4. Output: outliers are contained in X \
(

⋃

σ
(i)
d+1≤Mσ+3cσ̂MAD

X i

)

;

The algorithm takes the size of local neighborhoods k as an input. This
need to be at least d+1. We have found that k = d+5 is usually sufficient. If
we also want to find a low dimensional parametrization using a nonlinear di-
mensionality reduction algorithm, then the local neighborhoods also need to
have sufficient overlaps [28], in which case a slightly bigger k may be needed.
Also, the algorithm requires the intrinsic dimension d of the manifold. If this
is not available, we can determine it from the local geometric structures. We
present the details in Subsection 2.1 below.

The most computationally intensive part of of our algorithm is to form
local neighborhoods, which requires computing pairwise distances and sort-
ing. However, in the context of nonlinear dimensionality reduction, this is a
step required by most methods such as the Local Linear Embedding (LLE)
method and the Local Tangent Space Alignment (LTSA) method. We note
that for certain very high dimensional data, the Euclidean distance between
points may be dominated by insignificant components of data points in a phe-
nomenon known as curse of dimensionality [2]. In that case, the k-nearest
neighborhoods may be more or less random. However, our algorithm does
not critically depend on the k-nearest neighborhood property as long as the
points selected for the neighborhoods span approximately a d-dimensional
plane, which we will assume to be the case for the present work. For ex-
ample, if the underlying manifold is linear, then neighborhoods we construct
need not be local. In this case, we can avoid the construction of k-nearest
neighborhoods by using random neighborhood (or subset). We discuss such
a method in Subsection 2.2.
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2.1. Determination of the Intrinsic Dimension

Algorithm 1 requires an input parameter of the intrinsic dimension d. In
many problems, d or a guess is available. When d is not available, we propose
to determine it from the set of local neighborhoods {X i : 1 ≤ i ≤ N}
as follows. If X i does not contain any outliers, then there is a large gap
between the singular values σ

(i)
d and σ

(i)
d+1, unless the points in X i happen

to be lying on a lower dimensional plane. However, if there are outliers in
X i, then this gap disappears. To overcome the difficulty brought by the
presence of outliers, we can use the medians of the singular values to exclude
those neighborhoods containing outliers as well as those that happen to lie
on a lower dimensional plane. Then, if we assume that at least half of the
neighborhoods do not contain any outlier, then the median singular values
µℓ = medi{σ

(i)
ℓ } will be given by some neighborhoods consisting of inliers

only. In particular, µd is expected to be large relative to µd+1. We use
this criterion to determine d and we present the process as the following
algorithm, where gap is an input parameter for the gap.

Algorithm 2 Computing intrinsic dimension d

Input: X = {x1, · · · , xN} ⊂ R
m; k and gap;

Output: d
1. For each xi, construct its k-nearest neighborhood X i = {xi1 , . . . , xik};

2. For each X i, compute σ
(i)
1 , · · · , σ(i)

k through (2);

3. Compute µℓ = medi{σ
(i)
ℓ } for ℓ = 1, . . . , m.

4. If µℓ/µℓ+1 ≤ gap for all ℓ, k = k + 5 and repeat steps 1-4; otherwise, d
is the smallest ℓ that satisfies µℓ/µℓ+1 > gap;

Algorithm 2 may be used preceding Algorithm 1 to find the input param-
eter d. Algorithm 2 requires k and the threshold gap as inputs. The initial
input of k is not critical as it is adaptively updates at Step 4. For the choice
of gap, we find that gap = 106 or a value around that works well for data
that clearly admits a low-dimensional structure. The choice may be affected
by the size of noise in the data. For data from real applications that may
not have a clear low-dimensional structure, a good choice of threshold is less
obvious and one may need to invoke trial-and-error.
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2.2. Random Neighborhood for Linear Manifolds

One main computational cost of Algorithm 1 is to form local neighbor-
hoods (subsets) X i = {xi1 , . . . , xiki

}. If f is a linear map, then a low-
dimensional structure exists in any subset of X, as long as it does not con-
tain outliers. Therefore, the composition of X i needs not be constrained to
local points. With this observation, we propose to construct X i in step 1
of Algorithm 1 (and Algorithm 2 as well) by selecting xi and k − 1 other
distinct points randomly from X. We call them k-random neighborhoods.

This construction of k-random neighbors takes negligible amount of com-
puting time and significantly improves the computational efficiency of our
algorithm. One drawback of this method is that it can only deal with data
with a small percentage of outliers as the probability that a k-random neigh-
bor contains an outlier increases very quickly as the density of the outliers
increases. Additionally, as d increases, k ≥ d + 1 needs to increase which
in turn also increases the probability that a k-random neighbor constructed
contains an outlier. However, for data with a small percentage of outliers
and a modest intrinsic dimension d, the construction of k-random neighbors
provides an efficient way for linear models of data.

2.3. Performance

Finally in this section, we comment on the performance of Algorithm 1.
First, the success of our algorithm critically depends on the set of neigh-
borhoods constructed. Indeed, the assumption underlying our algorithm is
that the neighborhoods containing outliers constitute outlying ones in the
set of neighborhoods {X i}. This certainly holds if only a small percentage
of data points are outliers. This can still be true even when there is a large
percentage of outliers, as long as they are clustered together.

Another factor affecting the quality of the neighborhoods is its size k.
With larger k (i.e. more points in a neighborhood), the probability that a
neighborhood containing outliers increases. Thus, the intrinsic dimension of
the problem also affects the performance of our method through k. This
is even more pronounced for k-random neighborhoods, as the probability
that a neighborhood containing outliers is entirely determined by k and the
percentage of outliers in the data set (see also previous subsection), where for
the k-nearest neighborhood, it also depends on the distribution of outliers.

A less critical assumption we make is that each inlier is contained in
a neighborhood consisting entirely of inliers (inlying neighborhood). This
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implies that X \
(

⋃

X i∈M
X i

)

is the set of outliers. If this assumption is not

true, then some inlier points may be in X \
(

⋃

X i∈M
X i

)

and misclassified

as outliers. However, this can be remedied by checking for every point in

X \
(

⋃

X i∈M
X i

)

whether it approximately lies on the plane spanned by

its k-nearest inliers. We discuss the details in the next section.

3. Dimensionality Reduction

For the dimensionality reduction problem where a low-dimensional rep-
resentation of the data is desired, we can first apply the outlier detection
algorithm (Algorithm 1) to identify and remove the outliers. Then we can
apply one of the standard dimensionality reduction algorithms to the set of
inliers to obtain a low-dimensional parametrization of inliers. Indeed, we can
combine this with Algorithm 1 to utilize most of the computations there.
Consider, for example, the LTSA method [23] for nonlinear dimensionality
reduction. After outliers are detected by Algorithm 1, we can collect those
neighborhoods constructed in step 1 consisting entirely of inliers and use the
SVD computed in step 2 to construct their local coordinates. Then we can
obtain a global parametrization by aligning the local coordinates as discussed
in [23, 28].

For each of the outliers, we can also construct a parametrization through a
projection on a local neighborhood of inliers as follows. For each outlier xj , let
Xj = {xj1 , . . . , xjk} be the k-nearest point neighborhood of xj consisting of
inliers, i.e. xj1 , . . . , xjk are the nearest k inlier points to xj . Let τj1 , . . . , τjk ∈
R

d be the low-dimensional parameters constructed for them. We find the
projection of xj on the plane spanned by X j through solving the linear least
squares problem

min
v∈Rk

‖xj − [xj1 , . . . , xjk ]v‖2. (6)

Then the projected parameter for xj is τj = [τj1 , . . . , τjk ]v.
The recovered parametrization for the outlier is useful if the outlier arises

from a large noise. The projection may also identify an inlier that may be
mistakenly identified as an outlier, as discussed in Subsection 2.3. Specifi-
cally, if the residual value of (6) is small (i.e. in the order of the diameter
of the neighborhood and noise), then xj approximately lies on the plane
spanned by X j and should be considered an inlier. However, for all of our
tests in Section 4, all outliers are detected without this step.
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4. Numerical Examples

In this section, we present several examples to illustrate the performance
of our algorithm. All tests were performed in MATLAB. We first consider
an example of linearly structured random data, which is taken from [17].

Example 4.1. We generated three matrices A ∈ R
m×d, B ∈ R

(N−q)×d, and
C ∈ R

m×q, where each entry of the matrices is a pseudo random number with
standard normal distribution (N (0, 1)). Let L = ABT be the matrix whose
columns form the data set of interest. Assume L is contaminated with C and
let X = [L,C] be the data matrix given. The goal of this test is to identify
C as outliers. We use N = 600 and m = 400, and test our algorithm with
d (intrinsic dimension) ranging from 1 to 30 and q (the number of outliers)
from 1 to 300.

For this problem, we use Algorithm 2 to first determine an intrinsic di-
mension d and then apply Algorithm 1 with k = d+5 to detect outliers. For
each fixed d and q, we generate 5 test matrices and we present the rate of
success out of the 5 tests in Figure 4.1(a) where it is plotted against (q, d) in
the gray scale with white denoting the 100% success rate and black denoting
the 0% success rate. A test is successful when both the intrinsic dimension
d is correctly determined by Algorithm 2 and the outliers are correctly iden-
tified by Algorithm 1. We see that our algorithms have 100% success rate
for q < 300 (up to half of sample points) when d ≤ 5. The success rate is
still 100% for q < 200 when d ≤ 10. As d further increases, we note that the
size of neighborhoods (k = d + 5) increases, which increases the probability
that a local neighborhood contains an outlier. Eventually, the algorithms
break down when d > 15. We have also implemented the algorithms with k-
random neighborhoods discussed in Section 2.2. In that case, we have 100%
success rate for d ≤ 5 and q ≤ 25 but the results deteriorate quickly as d
increases (the full results not plotted). This is attributed to the fact that,
with larger d, more than half of k-random neighborhoods contain outliers;
see Subsection 2.3 for some discussions on the performance.

We have compared our method with the robust PCA in [12, 17] which is
based on minimizing the nuclear norm of the data matrix subject to a sparse
perturbation. We have tested the version presented in [17] using column
block-wise sparse perturbations to detect outlier columns and we present the
corresponding result in Figure 4.1(b). This method requires choosing the La-
grange multiplier λ and we have found λ = 0.4 works best for this problem.
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(a) Algorithm 2.1
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(b) Robust PCA

Figure 4.1: Example 4.1: Success rate out of 5 trials (white - 100%; black - 0%)

With this choice, the performance of the robust PCA is less dependent on
the intrinsic dimension and can deal with problems with larger d. However,
as might be expected, it is more computationally intensive. As an indicator,
we compare the CPU time required by Algorithm 1 with k-nearest neigh-
borhoods, Algorithm 1 with k-random neighborhoods, and the robust PCA
algorithm of [17] in Figure 4.2. We fix d = 5, m = 400, q = 20, and in-
crease the number of data points N from 500 to 2000. In Figure 4.2 (a), we
plot the CPU time required by each method against N . It is clear that the
computational time required by the robust PCA is significantly more than
others and increase dramatically as N increases. The k-random neighbor-
hoods method is most computationally efficient, as might be expected, but
more importantly, its cost scales nearly linearly with N . We also test the
algorithms with fixed d = 5, N = 1000, and q = 20 but varying m (the
dimension of data points) from 200 to 800. We plot the CPU time used by
each method in Figure 4.2 (b). A similar performance is observed although
the k-random neighborhoods method does not offer much advantage over the
k-nearest neighborhoods method.

From this synthetic data, we see that our methods work well within the
constraints with respect to the size of neighborhoods and the density of out-
liers as discussed in Subsection 2.3. It compares favorably with the nuclear
norm minimization based robust PCA for problems with small or modest
intrinsic dimension d. The robust PCA developed specifically for linear prob-
lems, on the other hand, appears capable of handling data of very high in-
trinsic dimension. However, our algorithm is computationally more efficient
and scale well with the problem size. In addition, our algorithm is applicable
to nonlinearly modeled data.

We next consider noisy image data sets that can be modeled as 2-d nonlin-
ear manifolds. We shall apply our algorithm to first detect outliers and then
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Figure 4.2: a) Computation time vs. N (number of data points); b) Computation
time vs. m (dimension of data points). △-line - Algorithm 1 with k-nearest
neighbors; ∗-line - Algorithm 1 with k-random neighbors; ◦-line - robust PCA
algorithm.

use LTSA [23] to find a low-dimensional parametrization. Our goal is to iden-
tify those images with large noise and find low dimensional parametrization
for the data set. We compare our method with the robust nonlinear dimen-
sionality reduction algorithm of [25], which uses a density-based approach
to identify outliers and then apply a so-called linear EIV (error-in-variables)
model together with a fusion step to the LLE method to derive a global
estimate of noise-free coordinates.

Example 4.2. Consider a data set consisting of N = 2000 face images gen-
erated using the 3D face model in [29]. The 64 × 64 images are taken from
the same face with varying pan and tilt angles for the observer. Figure 4.3(a)
plots for each of the 2000 images its pan angle in the x-axis (from −30 to 30
degrees) and its tilt angle in the y-axis (from −10 to 10 degrees). We artifi-
cially introduce noise to each image by adding a random number in standard
normal distribution to each pixel value. For 100 images, we also add salt-
and-pepper noise (either 0 or 255) to 40% of the image pixels, resulting much
distorted images. We show some selected images from each group in Figure
4.4, where the first row contains 10 noise-free images, the second row contains
10 images with small Gaussian noise, and the third row contains 10 images
with large salt-and-pepper noise which come from the 10 clean images in the
first row. In Figure 4.3(a), the coordinates of the 100 images perturbed by
salt-and-pepper noise are labeled by red circles.
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Figure 4.3: Example 4.2: (a) - original parameters; (b) - parameters recovered by
LTSA; (c) - parameters recovered for inliers using Algorithm 1 and LTSA; (d) -
parameters recovered for both inliers and outliers. Blue dot: 2-d parameters of
images; Red circle: parameters for images with Salt-and-pepper noise (outliers);
Green ∗: parameters for images with the original coordinates on the x-axis or the
y-axis.

We are interested in identifying those with salt-and-pepper noise (as in
the third row of Figure 4.4), considered outliers in this setting, and also re-
covering a 2-dimensional parametrization for these face images. We apply
Algorithm 1 with k = 10 and d = 2 (known in this case) to detect outliers
and then apply LTSA [23] to the inliers to find a parametrization. (The use
of slightly larger k is to ensure sufficient overlaps among local neighborhoods
that is required for LTSA [28].) Our algorithm exactly detects all the im-
ages with salt-and-pepper noise and the recovered parametrization for the
remaining images are shown in Figure 4.3(c). To further visualize how Fig-
ure 4.3(c) correctly recovers the original parametrization Figure 4.3(a), we
plot those points in the x-axis or the y-axis in 4.3(a) with a green ∗ and
also plot in 4.3(c) the recovered coordinates for the corresponding images
with a green ∗, demonstrating the affine transformation property of the re-
constructed parametrization [28]. For the 100 outliers, we also construct an
approximate parametrization as discussed in Sec. 3, which is shown with
red circles in Figure 4.3(d). The parametrization constructed for the 100
images with salt-and-pepper noise is not expected to be accurate, but it is
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Figure 4.4: Example 4.2: First row - 10 typical original images; Second row - 10
typical images with the Gaussian noise N (0, 1); Third row - images from row one
perturbed by salt-and-pepper noise.

still within a small range of the original parametrization.
As a comparison, we also implement the LTSA algorithm using 10-nearest

neighborhoods and d = 2 to find a 2-dimensional parametrization for these
face images. The result is shown in Figure 4.3(b), where some coordinates
with salt-and-pepper noise are out of range and not plotted. Without detect-
ing outliers first, it is clear that the large outlier noise significantly distorts
the results of LTSA.

We have also carried out a comparison with the robust nonlinear di-
mensionality reduction method of [25] and we have implemented it using
10-nearest neighborhoods and d = 2 to find a 2-dimensional parametrization
for the face images. The robust nonlinear dimensionality reduction method
identifies all 100 outliers but it also misidentifies 11 inliers as outliers. The
identified outliers are shown in Figure 4.5(a) (in black +). In Figure 4.5(b),
we plot the outliers identified by the robust nonlinear dimensionality reduc-
tion method [25] (in black +) and the outliers (in red circles), showing the
11 inliers misidentified as outliers by the former.

The robust nonlinear dimensionality reduction method [25] also applies
a linear EIV model with fusion to the entire data set to recover a noise-free
global parametrization. Figure 4.5(c) presents the result for this data set,
with those corresponding to outliers marked in red circles. For comparison
with our approach, we also consider first removing the outliers detected and
then applying the linear EIV model with fusion to the remaining data set
and we present the result in Figure 4.5(d). For this data set of images with
salt-and-pepper noise, it is clear that our method outperforms the robust
nonlinear dimensionality reduction method [25] in both outlier identification
and parametrization recovery.
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Figure 4.5: Example 4.2 (robust nonlinear dimensionality reduction method): (a)
- original parameters and those identified as outliers; (b) - outliers identified vs.
true outliers; (c) - parameters recovered using the linear EIV model with fusion
for all images; (d) - parameters recovered using the linear EIV model with fusion
with outliers removed. Blue dot: 2-d parameters of images; Red circle: parameters
for images with Salt-and-pepper noise (outliers); Black +: parameters for outliers
identified.

Example 4.3. Consider the same clean data set as in Example 4.2. We also
artificially introduce Gaussian noise to each image by adding a random num-
ber in standard normal distribution to each pixel value but for 100 images,
we also add large Gaussian noise (N (0, σ)) to each pixel, where σ = 20 for
our test. Our goal is to identify the 100 images with relatively large noise and
then find the low-dimensional parametrization for all images. The original
camera angles of these images are shown in Figure 4.6(a). The camera angles
of images perturbed by the large Gaussian noise are labeled by red circles.
We also show some selected images from each group in Figure 4.7.

Again, we apply Algorithm 1 with k = 10 and d = 2 to detect outliers and
then apply LTSA [23] to the inliers to find a parametrization. Our algorithm
correctly detects all the images with large Gaussian noise as outliers and
correctly recovers the parametrization of the images with small Gaussian
noise, which is shown in Figure 4.6(c). In Figure 4.6(a) and (c), the original
points on the x-axis or the y-axis and the corresponding points respectively
are plotted in green to demonstrate the recovered coordinates being an affine
transformation of the original ones. Figure 4.6(d) includes the coordinates
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Figure 4.6: Example 4.3: (a) - original parameters; (b) - parameters recovered by
LTSA; (c) - parameters recovered for inliers using Algorithm 1 and LTSA; (d) -
parameters recovered for both inliers and outliers. Blue dot: 2-d parameters of
images; Red circle: parameters for images with Salt-and-pepper noise (outliers);
Green ∗: parameters for images with the original coordinates on the x-axis or the
y-axis.

recovered for the images with large Gaussian noise and are labeled with red
circles.

For comparison, we first implement the LTSA algorithm also using 10-
nearest neighborhoods and d = 2. The result is shown in Figure 4.6(b),
where some coordinates for large Gaussian noise are out of range and not
plotted. Again, the large Gaussian noise significantly distorts the results of
LTSA, even though the noise in these images is far less visible.

We also apply the robust nonlinear dimensionality reduction method in
[25] to this dataset using 10-nearest neighborhoods and d = 2 to find 2-
dimensional parametrization for the face images. Again, the robust nonlin-
ear dimensionality reduction method identifies all 100 outliers but it also
misidentifies 11 inliers as outliers. The identified outliers are shown in Fig-
ure 4.8(a) (in black +) as well as in Figure 4.8(b) where the coordinates of
the outliers are plotted in red circles. The recovered parametrization using
robust nonlinear dimensionality reduction method [25] in linear EIV model
with fusion is shown in Figure 4.8(c) and the corresponding result obtained
by removing the identified outliers first is shown in Figure 4.8(d). Again,
our method outperforms robust nonlinear dimensionality reduction method
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Figure 4.7: Example 4.3: First row - 10 typical original images; Second row - 10
typical images with the Gaussian noise N (0, 1); Third row - images from row one
with the Gaussian noise N (0, 20).

in [25] in both outlier identification and parametrization recovery for this
data set of images with large Gaussian noise.

Finally, we report the performance of Algorithm 1 on a data set from real
applications that has no clear low dimensional geometric structure. Never-
theless, with a proper choice of parameters, our method detects the outliers
correctly.

Example 4.4. We use the data from the USPS handwritten digits data
set [30]. The experimental data set contains the first 140 samples of digit
”0” and the first 10 samples of digit ”4” in the USPS Handwritten digits
database. The first 30 digit ”0” and the 10 digit ”4” are shown in Figure
4.9. The objective of this focused experiment is to identify all the ”4” digits.
With 10 samples out of a dataset of 150, the digit ”4” can be considered
as outliers of this data set. An underlying assumption of the experiment
is that handwritten variations of the digit ”0” approximately lie in a low-
dimensional manifold, but one difficulty is that there is no clear intrinsic
dimensionality. However, a projection to a 2-dimensional manifold (d = 2)
has been commonly used in the literature (see [24]), which may also be a
good starting point for our choice. Indeed, with k = 12 and either d = 2 or
d = 3, Algorithm 1 successfully identifies the 10 samples of digit ”4” from
the digit ”0” as outliers in this experiment.

We note that, for a difficult problem like this one, the performance of our
method can vary with the choice of parameters. For example, with d = 2
and k = 10, all 10 samples of digits ”4” are identified but 4 samples of digits
”0” are also mislabeled as outliers. The 4 misidentified ”0” are shown in the
top row (panel (a)) of Figure 4.10. With d = 3 and k = 10, all 10 samples of
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Figure 4.8: Example 4.3 (robust nonlinear dimensionality reduction method): (a)
- original parameters and those identified as outliers; (b) - outliers identified vs.
true outliers; (c) - parameters recovered using the linear EIV model with fusion
for all images; (d) - parameters recovered using the linear EIV model with fusion
with outliers removed. Blue dot: 2-d parameters of images; Red circle: parameters
for images with Salt-and-pepper noise (outliers); Black +: parameters for outliers
identified.

digit ”4” are also identified but 2 samples of digits ”0” are also mislabeled
as outliers. The 2 misidentified ”0” are shown in the bottom row (panel (b))
of Figure 4.10.

For comparison, we have also applied the robust nonlinear dimensionality
reduction method [25] to this dataset with different dimensions (d = 2, 3) and
different numbers of neighborhoods (k = 10, 12). In all cases, only 4 samples
of digits ”4” are identified and one sample of digits ”0” is also mislabeled
as outliers. Thus, our method has the advantage that for some commonly
used parametric values, it is capable of successfully labeling all outlying sam-
ples, albeit it may misidentify some digits ”0”. We attribute this difficulty
of misidentifying additional outliers to the problem itself where, while the
digits ”4” can clearly be considered outliers, some handwritten digits ”0”
(e.g. those in the bottom row of Figure 4.10) may significantly deviate from
other samples of ”0” in the dataset that their proper classification may be
questionable.
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Figure 4.9: Example 4.4: first 30 digit ”0” and the 10 digit ”4”.

5. Conclusion

We have proposed a new and effective algorithm to detect outliers of
a data set that is modeled as lying on a low dimensional manifold. It is
applicable to both linear and nonlinear models of data. In particular, the
algorithms are computationally efficient and scales well with the problem size
in terms of the dimension of date points and the number of data points. Our
numerical tests demonstrate effectiveness of the algorithms.

One main feature of our approach is to indirectly characterize inliers or
outliers through the set of neighborhoods. Thus, the success of our algorithm
critically depends on the construction of neighborhoods. It will be our future
work to carry out a theoretical study on performance of the algorithm and
on characterization of inliers or outliers.
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