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Abstract

A real square matrix is said to be essentially non-negative if all of its off-diagonal entries are

non-negative. It has recently been shown that the exponential of an essentially non-negative

matrix is determined entrywise to high relative accuracy by its entries up to a condition number

intrinsic to the exponential function (Numer. Math., 110 (2008), pp. 393-403). Thus the smaller

entries of the exponential may be computed to the same relative accuracy as the bigger entries.

This paper develops algorithms to compute exponentials of essentially non-negative matrices

entrywise to high relative accuracy.

Keywords: matrix exponential; essentially non-negative matrix; high relative ac-

curacy algorithms.
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1 Introduction

Matrix exponential is an important theoretical and numerical tool in sciences and engineering.

Efficient and accurate computations of matrix exponentials have been studied extensively. A wide

range of different numerical methods have been developed; see [1, 3, 7, 16, 19, 20, 21, 23, 26]. The

state of the arts is surveyed in the classical paper [18] by Moler and Van Loan with a recent update

in [19]. The scaling and squaring method coupled with the Padé approximation as well as the Schur

decomposition method are in general considered to be most competitive overall; see [17, 19]. As they

are at best normwise backward stable [19], the computed matrix exponentials have relative errors
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that are bounded in norm and dependent on a condition number for normwise perturbations. This

condition number is well bounded for normal matrices and generator matrices of Markov chains,

but in general, it may grow very quickly as the norm of the matrix increases [17, 22, 24]. Moreover,

even for problems where this condition number is well bounded, the entrywise relative accuracy

is not guaranteed by these two methods; namely smaller entries of the exponential matrix may

be computed with lower relative accuracy. It turns out to be quite common for exponentials of

matrices (and many other functions of matrices) to have some very small entries relative to others.

For example, the entries of the exponential of a banded matrix decay exponentially away from the

main diagonal [5]. More generally, the entries of the exponential of a sparse matrix can have very

large variations in their order of magnitude [4].

This paper considers the computation of exponentials of essentially non-negative matrices. A

matrix A = [aij] ∈ Rn×n is said to be essentially non-negative [25, Sec. 8.2] if all of its off-diagonal

entries are non-negative, i.e., aij ≥ 0 for i �= j. We note that essentially non-negative matrices form

a natural class of matrices in the study of matrix exponentials because a matrix A is essentially

non-negative if and only if exp(tA) is non-negative for all t ≥ 0 [25, Sec. 8.2]. Related to this, for

a linear dynamical systems

x′(t) = Ax(t), x(0) = x0, (1)

the matrix A is essentially non-negative if and only if it has the property that x(0) ≥ 0 implies

x(t) ≥ 0. Clearly, many physical systems of (1) would have such a property and hence have an

essentially non-negative A.

For the exponential of an essentially non-negative matrix A, we have recently obtained an

entrywise perturbation analysis in [28] showing that, if E is a small perturbation to A such that

|E| ≤ ε|A|, then we have

|exp(A+ E)− exp(A)| ≤ κexp(A)e
κexp(A)ε/(1−ε) ε

1− ε
exp(A), (2)

where κexp(A) := n − 1 + ρ(A − dI) + maxi |aii|, ρ(A − dI) is the spectral radius of A − dI, and

d = min aii. Here the absolute value and inequalities on matrices are entrywise. With the upper

bound (2) attainable, κexp(A) is a condition number for the entrywise perturbation; see [28]. Indeed,

it is intrinsic to the exponential function itself in the sense that it is present in the perturbation of

the exponential function of a real variable when n = 1 (see [28]).

The perturbation bound suggests that it is possible to compute all entries of the exponential

of an essentially non-negative matrix with a relative accuracy in the order of machine precision

up to a scaling by the condition number κexp(A). However, popular methods such as the Padé

approximation and the Schur decomposition method may not achieve this. We note that for a

given method to achieve entrywise relative accuracy, we first need to identify an approximation to
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exp(A) (such as a rational function Rp,q(A) in the Padé approximation) that has entrywise small

relative errors, and then we need to be able to compute that approximation (Rp,q(A) in the Padé

approximation) with entrywise relative accuracy. Both turn out to be challenging problems for the

existing methods. For example, in Padé approximations, computing the rational function Rp,q(A)

requires inverting a polynomial of A with both additions and subtractions of powers of A, which may

not be computed accurately in the entrywise sense. A more subtle difficulty concerns determining

the degrees of the Padé approximation p, q to ensure that Rp,q(A) has desired entrywise relative

accuracy; a problem exists even if we assume exact arithmetic or using higher precision arithmetic

for computing Rp,q(A). We have therefore studied other existing algorithms for exponentials [19]

and our investigations have led us to two algorithms, namely the Taylor series method and the

polynomial method. We shall show in this paper that some carefully implemented algorithms of

these two methods, when combined with a suitable shifting and a proper scaling and squaring, can

compute exponentials of essentially non-negative matrices entrywise with a relative accuracy in the

order of κexp(A)u where u is the machine roundoff unit.

The paper is organized as follows. In §2, we provide an error analysis for the shifting to show

that the subtraction involved in shifting does not cause significant errors in the exponential. In

§3 we briefly discuss various numerical issues in implementing the Taylor series method combined

with a shifting to achieve best entrywise relative accuracy possible. We note that the Taylor series

method combined with a shifting has been proposed before as a more accurate method in [6, 8, 13]

as well as in the applied probability community [14, 15] and our contributions here are a rigorous

truncation criterion and an entrywsie error analysis. The Taylor series method, however, may be

expensive as the number of terms required for the series truncation can not be bounded a priori.

For matrices whose eigenvalues are real (such as symmetric matrices or triangular matrices), we

also develop in §4 a more efficient algorithm based on the polynomial method [19] that collapses

the Taylor series using the characteristic polynomial of the matrix. Finally, in §5, we present some

numerical examples to demonstrate the entrywise relative accuracy of the new algorithms.

We remark that the need to compute all entries of the exponential of an essentially non-negative

matrix accurately is critical in some applications. An important problem where the exponentials

of essentially non-negative matrices arise is continuous-time Markov chains. In a continuous-time

Markov chain, the exponential of its generator matrix, which is essentially non-negative with zero

row sums, is the transition matrix whose entries are the transition probabilities between the states.

One is often interested in computing the transition matrix from the generator matrix. In this

context, small entries of the exponential, representing small probabilities, are often the ones of

interest and are required to be computed accurately.

A current application where entrywise relative accuracy is needed concerns the use of matrix

3



exponential for characterizations of networks [10, 11, 12]. Consider a network as represented by an

undirected graph and let A ∈ Rn×n be its adjacency matrix, which has (i, j) element equal to 1 if

nodes i and j are connected and 0 otherwise. Then A is symmetric and non-negative. The entries

of exp(A) can be used to characterize or measure various network properties [10, 11, 12], among

which is the betweenness of a node r as defined by

1

(n− 1)2 − (n− 1)

∑
i,j

i �=j,i �=r,j �=r

(exp(A)− exp(A− Er))ij
(exp(A))ij

(3)

where Er is zero except in row and column r, where it agrees with A. As the graph is usually very

sparse, some entries of exp(A) could be very tiny. With Er being a low rank perturbation, relative

accuracy of (exp(A))ij is needed in order to compute quantities like (3) with any accuracy; see

Example 3 in §5.

Notation. Throughout, inequalities and absolute values of matrices and vectors are entrywise.

Namely, for a matrix X = [xij ], we denote by |X| the matrix of entries |xij | and by X ≥ Y, where

Y = [yij] is of identical dimension as X, if xij ≥ yij for all i and j. Especially, X ≥ 0 means that

every entry of X is non-negative. We denote by ρ(B) the spectral radius of a square matrix B.

Given a real number γ, �γ� is the smallest integer no less than γ and �γ	 denotes the largest integer
no more than γ.

We use fl(z) to denote the computed result of the expression z. We also assume the following

standard model of floating point arithmetic

fl(a op b) = (a op b)(1 + δ), |δ| ≤ u,

where op = +,−, ∗ or / and u is the machine roundoff unit; see [9, p.12] for example. Throughout,

we assume that no underflow or overflow occurs in computations.

2 Shifting

To compute exp(A) accurately for an essentially non-negative matrix A = [aij ], we first shift the

matrix into a non-negative matrix Aα := A − αI with a proper α. Then we compute exp(Aα)

and obtain exp(A) via the relation exp(A) = eα exp(Aα). We now consider the effects of possible

subtractions and cancellations in forming Aα.

It turns out that subtractions and possible cancellations in forming Aα does not affect the

accuracy of computing exp(Aα), because by a perturbation theorem of [28], the absolute accuracy

on the diagonals of Aα is sufficient for determining entrywise relative accuracy of exp(Aα).
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Lemma 1 [28, Theorem 2] Let A be an n× n essentially non-negative matrix. Let E = [eij ] be a

perturbation to A satisfying

|eij | ≤ ε1aij, i �= j and |eii| ≤ ε2, 1 ≤ i ≤ n,

where 0 ≤ ε1 < 1 and ε2 ≥ 0. Letting Ad := A− dI, where

d = min aii, (4)

we have

|exp(A+ E)− exp(A)| ≤ c

(
ε2 + (n− 1 + ρ(Ad))

ε1
1 − ε1

)
exp(A), (5)

where c = exp
(
ε2 + (n− 1 + ρ(Ad)

ε1
1−ε1

)
.

From this, we derive the following error analysis associated with the shifting.

Lemma 2 Let A be an n× n essentially non-negative matrix and let Âα be the computed result of

Aα := A− αI. Then

| exp(Âα)− exp(Aα)| ≤
(
(2max |aii|+ 2|α|+ n− 1 + ρ(Ad))u+O(u2)

)
exp(Aα), (6)

where u is the machine precision.

Proof Denote B = Âα = [bij ]. Then, for i �= j, we have bij = fl(aij) = aij+eijaij where |eij | ≤ u.

For i = j, we have

bii = fl(fl(aii)− fl(α)) = (aii(1 + δi,1)− α(1 + δi,2))(1 + δi,3) = aii − α+ eii

where |δi,�| ≤ u (for 1 ≤ � ≤ 3) and hence |eii| ≤ 2(|aii|+|α|)u+O(u2) ≤ 2(max |aii|+|α|)u+O(u2).

Then, (6) follows from Lemma 1 with ε1 = u, ε2 = 2(max |aii|+ |α|)u.

Provided that α is of order κexp(A) (see (2) ), Lemma 2 shows that the entrywise relative error

caused from the errors in computing A − αI is of order κexp(A)u and is thus comparable to the

rounding errors already made in rounding A to fl(A).

3 Taylor Series Method

Let Ad := A − dI with d = min aii. Then Ad ≥ 0. We can compute exp(A) through computing

exp(Ad) using the Taylor series as

eA = edeAd = ed
∞∑
k=0

Ak
d

k!
. (7)
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As Ad is non-negative, the computation of the Taylor series involves no subtractions and can

therefore have entrywise high relative accuracy, modules possible accumulations of small errors in

the summation. This approach has been suggested as a more stable way for computing eA in the

context of the transient matrix computations in the continuous Markov chain in [14, 15] and more

generally in [6, 13]. Here, we rigourously examine various numerical issues arising in this process

and provides an entrywise error analysis. Specifically, we need to consider effects of rounding

errors in forming Ad as well as to determine the truncation of the Taylor series to ensure entrywise

accuracy.

Let Âd be the computed Ad. The rounding errors caused by forming Ad has been discussed in

Lemma 2; namely, we have

| exp(Âd)− exp(Ad)| ≤ (
(4max |aii|+ n− 1 + ρ(Ad))u+O(u2)

)
exp(Ad)

≤ (
4κexp(A)u+O(u2)

)
exp(Ad). (8)

We now turn to computing exp(Âd) accurately by the Taylor series. In this regard, we need to

determine when to truncate the series, that is, given a tolerance tol for entrywise relative errors, we

are to determine a positive integer m such that the error of approximating exp(Âd) by Tm(Âd) :=∑m−1
k=0

̂Ak
d

k! satisfies

| exp(Âd)− Tm(Âd)| ≤ tol · Tm(Âd). (9)

This can be done using the following theorem, which is proved for triangular nonnegative matrices

in [8, Theorem 2] but is easily extended to general nonnegative matrices. A similar normwise bound

is also obtained in [6, 13].

Theorem 1 Let m be such that ρ(Âd/(m+ 1)) < 1. Then

| exp(Âd)− Tm(Âd)| ≤ Âm
d

m!

(
I − Âd

m+ 1

)−1

. (10)

It follows that we can guarantee (9) by checking the criterion

Âm
d

m!

(
I − Âd

m+ 1

)−1

≤ tol · Tm(Âd). (11)

Since I − Âd/(m + 1) is an M-matrix, its inverse can be computed entrywise to high relative

accuracy by the GTH-like algorithm (Algorithm 1 of [2]). Then the upper bound (10) can be

computed entrywise accurately.

Checking the condition (11) requires solving the linear systems with n right hand sides. To

reduce this expensive operation, we should check the simpler condition
̂Am
d

m! ≤ tol ·Tm(Âd) first and
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only when this is satisfied, we should proceed to check (11), because
̂Am
d

m! ≤ ̂Am
d

m!

(
I − ̂Ad

m+1

)−1
. The

condition of Theorem 1 can be satisfied by the scaling and squaring that we discuss now.

The scaling and squaring method (see [19]) is a basic tool that is used in combination with many

existing methods for computing exponentials. If implemented carefully, it can even enhance the

accuracy of certain methods; see the recent work [16]. Here, it can also be used to reduce the norm

(or spectral radius) of the matrix so as to accelerate convergence of the Taylor series. Furthermore,

it may also have the potential benefit of avoiding undereflow/overflow.

Let ρ be a rough estimate of the spectral radius ρ(Âd), which can be obtained by a few iterations

of the power methods. In practice, using ρ = ‖Âd‖∞ should be sufficient in most cases. Let

p = �log2 ρ	 + 1. Then, we evaluate the exponential through the following scaling and repeated

squaring

exp(A) = ed exp(Ad) ≈ ed exp(Âd) =
(
ed/2

p
exp(Âd/2

p)
)2p ≈

(
ed/2

p
Tm(Âd/2

p)
)2p

. (12)

Note that the scaling ensures ρ(Âd/2
p) < 1 (or ‖Âd/2

p‖∞ < 1 if ρ = ‖Âd‖∞), which accelerates

convergence of the Taylor series.

We now discuss the forward entrywise relative errors of the exponential computed this way by

breaking down the errors and their propagations as follows. We omit a precise statement of error

bounds.

1. exp(Âd) approximates exp(Ad) with entrywise relative errors bounded by 4κexp(A)u+O(u2)

(see (8)).

2. Tm(Âd/2
p) is computed with entrywise relative error in the order of mnu. Note that the

entrywise relative error of multiplying m non-negative matrices is of order mnu+O(u2) and

the summation does not amplify the errors.

3. With (11), the entrywise relative errors of approximating exp(Âd/2
p) by Tm(Âd/2

p) is of

order u (assuming tol is set to u).

4. Multiplication by ed/2
p
introduces an entrywise error bounded by u.

5. Combining these errors, we have that the computed ed/2
p
Tm(Âd/2

p) approximates ed/2
p
exp(Âd/2

p)

with entrywise relative error of order mnu. The repeated squaring will amplify this error by

2p times, which results in entrywise relative error of approximating exp(Âd) in the order of

mn2pu. Consequently, the entrywise relative error of approximating exp(A) is in the order of

(mn2p + 4κexp(A))u ∼ mnκexp(A)u.
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From the above discussion, we conclude that the computed exponential has entrywise relative

errors in the order of mnκexp(A)u. We remark that it has been observed in [6, 13] that the Taylor

series method can produce entrywise high relative accuracy but only normwise error analysis was

carried out there. While there are some similarities in the normwise and entrywise analysis, some

substantial differences exist such as the need to truncate the series to have entrywsie small relative

errors (11) and the need to compute the quantities involved in the bound accurately.

We finally state a full algorithm for easy references.

Algorithm 1 Taylor Series Method

Input: an n× n essentially non-negative matrix A, tol (error tolerance), iter (max iteration)

Output: E

1. d = min aii; Ad = A− dI;

2. Compute ρ to be an estimate of ρ(Âd) or ‖Ad‖∞;

3. p = �log2(ρ)	 + 1; B = Ad/2
p

4. E = I +B; W = B;

5. For m = 2 : iter,

6. W = BW/m

7. E = E +W ;

8. If W ≤ tol · E,

9. compute
(
I − B

m+1

)−1
by Algorithm 1 of [2]

10. If (11) is true, BREAK, End

11. End

12. End

13. E = ed/2
p
E

14. For i = 1 : p, E = E2, End;

4 Polynomial Method

One disadvantage of the Taylor series method is that m required to satisfy (11) can not be bounded

in a priori. This is a distinct difficulty arising in achieving entrywise accuracy. For example, if A

is irreducible tridiagonal, the (n, 1) entry of Tm(A) is 0 for m ≤ n− 2. Then for Tm(A) to have any

relative accuracy in the (n, 1) entry, m should be at least n − 1 no matter how small the norm of

A is. The cost of checking condition (11) is another disadvantage of the Taylor series method. In

this section, we develop a method that computes exp(Aα/2
p), for some proper choice of α and p,
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with high entrywise relative accuracy. The method is based on the polynomial method [19], which

collapses the Taylor series to a polynomial of degree n − 1. In particular, this method applies to

symmetric matrices or any matrices whose eigenvalues are real (such as triangular matrices).

We remark that symmetric essentially non-negative matrices arise often in applications. For

example, the generator matrix of a reversible Markov chain can be similarly transformed to a

symmetric one by a diagonal matrix. The adjacency matrix of an undirected graph is a symmetric

non-negative matrix.

The basic framework of the polynomial method can be described as follows. Let the character-

istic polynomial of A be

det(zI −A) = zn +
n−1∑
i=0

(−1)n−iγn−iz
i,

where γk (for 1 ≤ k ≤ n) can be expressed in terms of the eigenvalues of A, λi (1 ≤ i ≤ n), as

γk =
∑

1≤i1<i2<...<ik≤n

λi1λi2 . . . λik .

From the Cayley-Hamilton theorem, we have An = γ1A
n−1− γ2A

n−2+ γ3A
n−3− . . .+(−1)n−1γnI.

It follows that any power of Am, m ≥ n, can be expressed in terms of I,A, . . . , An−1 as

Am = βm,n−1A
n−1 − βm,n−2A

n−2 + βm,n−3A
n−3 − . . . + (−1)n−1βm,0I. (13)

Based on the coefficients γi’s of the characteristic polynomial, βm,k’s can be generated by:

βn,k = γn−k, 0 ≤ k ≤ n− 1;

and for m > n

βm,0 = γnβm−1,n−1, (14)

βm,k = γn−kβm−1,n−1 − βm−1,k−1, 1 ≤ k ≤ n− 1. (15)

Then exp(A) can be expressed as

exp(A) =

n−1∑
k=0

αk

k!
Ak, (16)

where

αk = 1 + (−1)n−k−1
∞∑

m=n

k!

m!
βm,k. (17)

We will show in this section how (16) will produce an entrywise accurate exp(A)). In §4.1, we
show that, if the eigenvalues of A are positive, then all the βm,k’s are positive. In §4.2, we give

a sufficient condition for αk’s to be positive. We also discuss in these two subsections accurate
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computations of βm,k and αk respectively. In §4.3, we discuss how to accurately compute the

characteristic polynomial. In §4.4, we describe how to shift A and apply the scaling and squaring

strategy on the shifted matrix to ensure that the conditions mentioned above are all met. We

summarize the process in an algorithm in §4.5.

4.1 Positivity and computation of βm,k

Suppose all the eigenvalues of A are positive, namely 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, we show in this

section that all the βm,k’s are positive and, if λ1
λn

is not too small, cancellations do not occur in its

computation (15).

For m ≥ n, define polynomial

pm(x) = βm,n−1x
n−1 − βm,n−2x

n−2 + βm,n−3x
n−3 − . . .+ (−1)n−1βm,0.

Then, pm(x) is the polynomial of degree n− 1 which agrees with xm at points λ1, . . . , λn; see (13).

Define

fm(x) := xm

and denote by fm[x1, x2, . . . , xk] the k-th divided difference of the function fm with respect to

x1, x2, . . . , xk. Specifically, let fm[x1] = xm1 . By Newton’s interpolatory divided-difference formula,

pm(x) can be written as

pm(x) = λm
1 +

n∑
k=2

fm[λ1, λ2, . . . , λk](x− λ1)(x− λ2) · · · (x− λk−1). (18)

The following result gives an explicit formula for the divided difference fm[x1, x2, . . . , xk].

Lemma 3 Define

Sl(x1, x2, . . . , xk) :=
∑

i1+i2+...+ik=l

xi11 x
i2
2 . . . xikk

with the convention

S0(x1, x2, . . . , xk) = 1.

Then for m ≥ k − 1,

fm[x1, x2, . . . , xk] = Sm−k+1(x1, x2, . . . , xk).

Proof We assume that xi �= xj for i �= j. By taking limits we can show that the result holds for

general xi’s.

We prove by induction on k. Obviously it holds for k = 1. Suppose that it holds for some k with

k ≤ m. Noting

Sm−k+1(x1, x2, . . . , xk) = Sm−k+1(x1, x2, . . . , xk+1)− xk+1Sm−k(x1, x2, . . . , xk+1)
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and

Sm−k+1(x2, x3, . . . , xk+1) = Sm−k+1(x1, x2, . . . , xk+1)− x1Sm−k(x1, x2, . . . , xk+1),

we have

fm[x1, x2, . . . , xk+1] =
fm[x1, x2, . . . , xk]− fm[x2, . . . , xk+1]

x1 − xk+1

=
Sm−k+1(x1, x2, . . . , xk)− Sm−k+1(x2, x3, . . . , xk+1)

x1 − xk+1

= Sm−k(x1, x2, . . . , xk+1).

We have proved for the case of k + 1.

For ease of exposing, we shall simply write Sk(λ1, . . . , λn) as Sk. By Lemma 3 and (18), we have

βm,n−1 = fm[λ1, λ2, . . . , λn] = Sm−n+1,

and then by (14)

βm,0 = γnβm−1,n−1 = γnSm−n.

The following lemma gives some monotonicity property of the coefficients of the polynomial that

interpolates xm. It will play a key role in the proof that all βm,k’s are positive.

Lemma 4 For m ≥ k − 1, let

qm(x) = δm,k−1x
k−1 − δm,k−2x

k−2 + δm,k−3x
k−2 − . . .+ (−1)k−1δm,0

and

q̂m(x) = δ̂m,k−1x
k−1 − δ̂m,k−2x

k−2 + δ̂m,k−3x
k−2 − . . .+ (−1)k−1δ̂m,0

be the polynomials of degree k − 1 that interpolate xm at 0 < x1 ≤ x2 ≤ . . . ≤ xk and at 0 < x̂1 ≤
x̂2 ≤ . . . ≤ x̂k respectively. If

x̂j ≥ xj , 1 ≤ j ≤ k

with strict inequality holds for at least one j, then

δ̂m,j > δm,j , 0 ≤ j ≤ k − 1.

Proof Without loss of generality, we assume that xj = x̂j for 1 ≤ j ≤ k− 1 and xk < x̂k. For the

general case, we can prove the result step by step and at each step change one xj to x̂j.
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By Newton’s interpolatory divided-difference formula,

qm(x) = xm1 +

k∑
j=2

fm[x1, . . . , xj ](x− x1) · · · (x− xj−1)

and

q̂m(x) = xm1 +

k−1∑
j=2

fm[x1, . . . , xj](x− x1) · · · (x− xj−1) + fm[x1, . . . , xk−1, x̂k](x− x1) · · · (x− xk−1).

Then

q̂m(x)− qm(x) = δ(x− x1)(x− x2) · · · (x− xk−1),

where

δ = fm[x1, . . . , xk−1, x̂k]− fm[x1, . . . , xk−1, xk].

By Lemma 3,

δ = Sm−k+1(x1, . . . , xk−1, x̂k)− Sm−k+1(x1, . . . , xk−1, xk) > 0,

which implies

δ̂m,j − δm,j = δ
∑

1≤i1<i2<...<ik−1−j≤k−1

xi1xi2 · · · xik−1−j
> 0.

The proof is completed.

The following is the main result of this subsection.

Theorem 2 For m ≥ n+ 1 and 1 ≤ k ≤ n− 1, we have βm,k > 0 and

γn−kβm−1,n−1

βm−1,k−1
≥ 1 +

λ1

(n − 1)λn
. (19)

Proof Let

γ′k :=
∑

2≤i1<i2<···<ik≤n

λi1λi2 · · ·λik , 1 ≤ k ≤ n− 1

and let

p̃m−1(x) = β̃m−1,n−2x
n−2 − β̃m−1,n−3x

n−3 + β̃m−1,n−4x
n−4 − . . .+ (−1)n−2β̃m−1,0

be the polynomial of degree n − 2 that agrees with xm−1 at λ2, λ3, . . . , λn. By Newton’s divided-

difference formula, pm−1(x), the polynomial of degree n−1 that agrees with xm−1 at λ1, λ2, . . . , λn,

can be expressed as

pm−1(x) = p̃m−1(x) + βm−1,n−1(x− λ2)(x− λ3) · · · (x− λn),

12



which gives

βm−1,k = γ′n−k−1βm−1,n−1 − β̃m−1,k, 0 ≤ k ≤ n− 2. (20)

Note that pm(x) is the polynomial of degree n−1 that agrees with xm at λ1, λ2, . . . , λn, then f(x) =

xm − pm(x) has zeros λ1, λ2 . . . , λn, and thus f ′(x) = mxm−1 − p′m(x) has zeros λ̂1, λ̂2 . . . , λ̂n−1,

with λ̂j ∈ [λj , λj+1]. Then

1

m
p′m(x) =

n−1∑
k=1

(−1)n−k−1 k

m
βm,kx

k−1

is the polynomial of degree n − 2 that agrees with xm−1 at λ̂1, λ̂2 . . . , λ̂n−1. Comparing the inter-

polatory points of p′m(x)/m to those of p̃m−1(x) and using Lemma 4, we obtain

k

m
βm,k ≤ β̃m−1,k−1. (21)

From (20), we have

β̃m−1,k−1 = γ′n−kβm−1,n−1 − βm−1,k−1. (22)

Substituting βm,k = γn−kβm−1,n−1 − βm−1,k−1 and (22) into (21) and using the fact βm−1,n−1 =

Sm−n > 0, we obtain

γn−kβm−1,n−1 − βm−1,k−1 ≤ m

k
(γ′n−kβm−1,n−1 − βm−1,k−1).

From this, we can deduce that, if βm−1,k > 0 (for 0 ≤ k ≤ n− 1),

βm−1,k−1

γn−kβm−1,n−1
≤ k

m− k

(
m

k

γ′n−k

γn−k
− 1

)
≤ γ′n−k

γn−k
< 1, 1 ≤ k ≤ n− 1. (23)

It follows from this and an induction that βm,k > 0 for all m,k, where we note that βn,k > 0,

βm,0 = γnβm−1,n−1 and βm,k = γn−kβm−1,n−1 − βm−1,k−1 for k ≥ 1.

We now show that γk
γ′
k

≥ 1 + λ1
(n−1)λn

for 1 ≤ k ≤ n − 1. This clearly holds for k = 1. For

2 ≤ k ≤ n− 1, we have

γk = γ′k + λ1γk−1 ≥ γ′k + λ1γ
′
k−1.

Note that

(n− 1)λnγ
′
k−1 ≥ (λ2 + · · ·+ λn)γ

′
k−1 ≥ γ′k,

from which it follows that
γk
γ′k

≥ 1 +
λ1

(n− 1)λn
.

Now, combining this with (23), we obtain (19).

13



If λ1
λn

is not too small, the ratio in (19) is bounded away from 1 and hence βm,k = γn−kβm−1,n−1−
βm−1,k−1 > 0 is computed with no cancelation.

Remark. If the eigenvalues λi, 1 ≤ i ≤ n, are complex with positive real parts, then γk, 0 ≤
k ≤ n − 1, of the characteristic polynomial are positive. However, βm,k may not be positive. For

example, if A is a 3×3 matrix with characteristic polynomial (x−1)(x2−ax+b) with a > 0, b > 4a2,

then

β4,2 = (1− a)2 − 4b

and β4,2 < 0 for sufficiently large b. Therefore the algorithm developed in this section is for essen-

tially non-negative matrices with real eigenvalues.

4.2 Positivity and computation of αk

By (17), for those k such that n− k − 1 is even, αk is non-negative and is computed with addition

operations only. For those k such that n − k − 1 is odd, a subtraction is involved. However,

the following result shows that this subtraction does not lead to any cancelation and αk remains

positive if λn <
√
5−1
2 .

Theorem 3 Let 0 < λ1 ≤ · · · ≤ λn be the eigenvalues of A. If λn <
√
5−1
2 , then

∞∑
m=n

k!

m!
βm,k ≤ λ2

n

2(1− λn)
<

1

2
.

In particular, αk > 0 for 0 ≤ k ≤ n− 1.

Proof We have, for 1 ≤ k ≤ n,

γk =
∑

1≤i1<i2<...<ik≤n

λi1λi2 . . . λik ≤ n!

k!(n − k)!
λk
n.

Furthermore, it follows from (15) and Theorem 2 that, for m > n,

βm,k ≤ γn−kβm−1,n−1 and βm−1,n−1 ≤ γ1βm−2,n−1.

Repeatedly using the second inequality above and noting βn,n−1 = γ1, we have

βm,k ≤ γn−kγ
m−n
1 , 0 ≤ k ≤ n− 1.

Hence, for k such that 0 ≤ k ≤ n− 1 and n− k − 1 is odd, we have

∞∑
m=n

k!

m!
βm,k ≤ k!

∞∑
m=n

γn−kγ
m−n
1

m!
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≤ k!
∞∑

m=n

n!nm−n

k!(n− k)!m!
λm−k
n

≤ k!

∞∑
m=n

1

k!(n− k)!
λm−k
n

≤ 1

(n− k)!

∞∑
m=n

λm−k
n

=
1

(n− k)!

λn−k
n

1− λn

≤ λ2
n

2(1− λn)
<

1

2
,

where we note that n− k − 1 is at least 1. Then αk is positive and the theorem is proved.

It follows from the theorem that the computation of αk involves no cancelation. We now discuss

how to truncate the series in αk. If we truncate the series at m = m0, αk is approximated by

αk,m0 := 1 + (−1)n−k−1
m0∑
m=n

k!

m!
βm,k.

Then, we can bound the error as

errm0 := |αk − αk,m0 |

=
∞∑

m=m0+1

k!

m!
βm,k

≤
∞∑

m=m0+1

k!

m!
γn−kγ

m−n
1

=
k!

(m0 + 1)!
γn−kγ

m0+1−n
1

∞∑
m=m0+1

γm−m0−1
1

m(m− 1) · · · (m0 + 2)

≤ k!γn−kγ
m0+1−n
1

(m0 + 1)!

∞∑
m=m0+1

(nλn)
m−m0−1

m(m− 1) · · · (m0 + 2)

≤ 1

1− λn

k!γn−kγ
m0+1−n
1

(m0 + 1)!

We therefore determine the truncation term m0 by

k!γn−kγ
m0+1−n
1

(m0 + 1)!
≤ tol · (1− λn)αk,m0 , 0 ≤ k ≤ n− 1

such that

|αk,m0 − αk| ≤ (tol +O(tol2)) · αk.
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4.3 Characteristic Polynomial

The computations of βm,k’s begins with γi, 1 ≤ i ≤ n, the coefficients of the characteristic polyno-

mial

det(zI −A) = zn +
n−1∑
i=0

(−1)n−iγn−iz
i.

Let

Qk(z) = (z − λ1)(z − λ2) · · · (z − λk) = zk − σ
(k)
1 zk−1 + σ

(k)
2 zk−2 − · · · + (−1)kσ

(k)
k .

The coefficients of Qk+1(z) can be obtained from those of Qk(z) via the relation

σ
(k+1)
j = σ

(k)
j + λk+1σ

(k)
j−1, 1 ≤ j ≤ k + 1

with the convention that σ
(k)
0 = 1 and σ

(k)
k+1 = 0. This results in the following recurrence algorithm

for γi, 1 ≤ i ≤ n.

Algorithm 2 Compute the Coefficients of Characteristic Polynomial

Input: λ1, λ2, · · · , λn

Initialize: γ1 = λ1, set γ0 = 1

for i = 2 : n,

γi = λiγi−1

for j = 1 : i− 1,

γi−j = γi−j + λiγi−j−1

end

end

Thus γ′ks can be obtained in O(n2) operations. Noting that if λi ≥ 0 (for all i), no substraction is

involved in the above process. Consequently, all γi are computed accurately.

4.4 Accurate Implementation

When applying the polynomial method to compute exp(A) via (16), the entrywise relative accuracy

is guaranteed if A is non-negative, and αk’s are non-negative and accurately computed. We show in

this subsection how to achieve this for symmetric or triangular essentially non-negative matrices by

combining the polynomial method with the shifting as well as the scaling and squaring techniques.

We first choose an α and shift A to Aα = A − αI. Then we scale Aα to Aα/2
p and compute

exp(Aα/2
p) by the polynomial method. Finally square exp(Aα/2

p) repeatedly p times and obtain
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exp(A) via exp(A) = eα exp(Aα). The key of this method is the choice of α and p, which should

ensure that exp(Aα/2
p) as computed via the polynomial method satisfies the conditions as discussed

in previous subsections as well as that the entrywise relative error caused by forming Aα and

magnified in the squaring process is of order κexp(A)u.

Let λ
(d)
1 ≤ λ

(d)
2 ≤ · · · ≤ λ

(d)
n be the eigenvalues of the non-negative matrix Ad = A − dI,

where d = mini aii. Note that λ
(d)
n = ρ(Ad) is the Perron eigenvalue of Ad. If A is triangular, then

λ
(d)
k , 1 ≤ k ≤ n, are explicitly known. If A is symmetric, we compute the eigenvalues by the QR

algorithm in roughly 4n3

3 flop operations with absolute error in the order of u‖Ad‖2, i.e., uρ(Ad)

as ρ(Ad) = ‖Ad‖2. To make Aα non-negative, α is no greater than d. We write α = d − cρ(Ad)

with c ≥ 0 to be determined. Denote by λ
(α)
1 ≤ λ

(α)
2 ≤ · · · ≤ λ

(α)
n the eigenvalues of Aα. Then,

λ
(α)
k = λ

(d)
k + cρ(Ad), 1 ≤ k ≤ n, and λ

(α)
1 /2p ≤ λ

(α)
2 /2p ≤ · · · ≤ λ

(α)
n /2p are the eigenvalues

of Aα/2
p. To make βmk’s positive and computed with high relative accuracy when applying the

polynomial method to Aα/2
p, we need

0 < λ
(α)
1 /2p ≤ λ

(α)
2 /2p ≤ · · · ≤ λ(α)

n /2p

and λ
(α)
n /λ

(α)
1 is well bounded. We choose c = 2. Then all the eigenvalues of Aα are in the interval

[ρ(Ad), 3ρ(Ad)] and can be computed with relative error in the order of O(u). To make αk’s non-

negative and computed with high relative accuracy, (λ
(α)
n /2p)2/2(1 − λ

(α)
n /2p) is less than and

bounded away from 1 by Theorem 3. We then choose p as the largest non-negative integer such

that
3ρ(Ad)

2p
<

√
5− 1

2

and by Theorem 3,

(λ
(α)
n /2p)2

2(1− λ
(α)
n /2p)

<
1

2
.

Note that if ρ(Ad) is small, then p = 0. We point out that we can also use a smaller α to increase

the eigenvalues which can prevent possible underflows in computing γk’s due to small eigenvalues.

4.5 Complete Algorithm

We summarize the discussion of this section in the following algorithm for computing exponential

of a symmetric, or triangular essentially non-negative matrix.

Algorithm 3 Polynomial Method for exp(A)

Input: an n× n symmetric or triangular essentially non-negative matrix A, tol (error tolerance);

Output: E
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1. d = min aii; Ad = A− dI;

2 Compute the eigenvalues λ
(d)
1 < λ

(d)
2 < · · · < λ

(d)
n of Ad and let ρ = λ

(d)
n

3. p = max(0,
⌈
log2(6ρ/(

√
5− 1))

⌉
); B = (Ad + 2ρI)/2p

4. Compute (λ
(d)
k + 2ρ)/2p, 1 ≤ k ≤ n, the eigenvalues of B, and let τ = (λ

(d)
n + 2ρ)/2p

5. Compute γ1, γ2, · · · , γn for B by Algorithm 2;

6. For k = 0 : n− 1, βk = γn−k; End

7. For k = 0 : n− 1, αk = 1 + (−1)n−k−1 k!
n!βk; End

8. m = n;

9. While
k!γn−kγ

m+1−n
1

(m+1)! ≥ (1− τ)tol · αk for any 0 ≤ k ≤ n− 1,

10 m = m+ 1 and t = βn−1;

11 For k = n− 1 : 1, βk = γn−kt− βk−1; End

12. β0 = γnt;

13. For k = 0 : n− 1, αk = αk + (−1)n−k−1 k!
m!βk; End

14. End

15. E =
∑n−1

k=0 αkB
k/k!

16. E = e(d+ρ)/2pe−τE;

17. For i = 1 : p, E = E2, End.

Remarks. (a) The process is very similar to the Taylor series method except that we compute

αk and fix the degree of the polynomial at n− 1. Since the coefficients αk are computed accurately

as discussed, an error analysis for this algorithm will be similar to that for the Taylor method.

In particular, the entrywise relative errors will be in the order of n2κexp(A)u. (b) With a slight

modificantion, this algorithm applies to any essentially non-negative matrices which are diagonal-

izable and whose eigenvalues are real, since the eigenvalues can be computed by the QR algorithm

with absolute error O(u), modulus a scaling by the condition numbers for the eigenvalues. (c)

The computational complexity of this algorithm is O(n3) when applied to sparse matrices with

O(n) nonzero entries, which is comparable to other methods for computing matrix exponentials,

e.g., the Padé approximation. (d) If A is dense, the main cost of the polynomial methods is the

matrix-matrix multiplications. However it can be significantly reduced by a strategy used in [16].

For simplicity of exposing, suppose that n = ml with m ≤ l. Then exp(A) can be written as

exp(A) = (α0I + α1A+ · · ·+ αm−1A
m−1) +Am(αmI + αm+1A+ · · ·+ α2m−1A

m−1)

+ · · ·+Am(l−1)(αm(l−1)I + αm(l−1)+1A+ · · ·+ αm(l−1)+m−1A
m−1) (24)
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Then, it totally costs m + l − 2 matrix multiplications: m − 1 matrix multiplications in forming

A2, A3, . . . , Am and l − 1 matrix multiplications of applying the Horner’s algorithm to (24).

5 Numerical Examples

In this section, we present three numerical examples of computing exponentials of essentially non-

negative matrices to demonstrate the entrywise high relative accuracy achieved by the two new

algorithms. We compare them with expm of MATLAB.

Example 1: We first test the algorithms on symmetric tridiagonal matrices. Consider the n × n

tridiagonal matrix −Tn whose diagonal elements are −2 and the off-diagonal elements are 1 (i.e. Tn

is the discretization of 1-dimensional Laplacian operator). The matrix has the known eigenvalue

decomposition Tn = ZΛZT with Z =
[√

2
n+1 sin

jkπ
n+1

]n
j,k=1

and Λ = diag{2
(
1− cos jπ

n+1

)
}, see

[9, p.268]. We compute exp(−Tn) = Z exp(−Λ)ZT using MATLAB’s Symbolic Toolbox with 100-

digit arithmetic and consider the result E exact for comparisons. We then compute exp(Tn) by

the Taylor series method, the Polynomial method (Algorithm 2), and MATLAB’s expm and we

compare them with E. Denote the three computed results by E1, E2 and E3 respectively, and the

largest entrywise relative error by err1, err2 and err3.

In Figure 1, we plot the entries of E for n = 50 as a mesh surface in (a) and, for each of the

three methods tested (Taylor, Polynomial, and expm resp.), we plot abs(E− Ei)./E (i.e. the matrix

of the entrywise relative errors of the computed result Ei) in logarithmic scale in (b), (c) and (d)

respectively.

We see that the entries of exp(Tn) decays by several order of magnitude away from the main

diagonal and correspondingly the accuracy of expm deteriorates as entries become very small. The

Taylor series method and the Polynomial method are however unaffected by the scaling of the

entries and maintain the entrywise relative error in the order of the machine precision.

We have also tested the programs for different values of n. In Table 1, we list the largest

entrywise relative error for n = 30, 35, 40, 45, 50. As n increases, the smallest entry of E decreases.

The entrywise relative error increases for expm while the other methods are unaffected.

Example 2: Consider the negative of the discretization of 2-dimensional Laplacian operator,

i.e. the matrix −Tm×n := −Tm ⊗ In − Im ⊗ Tn where ⊗ denote the Kronecker product; see

[9, p.268]. Then it is easy to check that exp(−Tm×n) = exp(−Tm) ⊗ exp(−Tn) We compute

exp(−Tm×n) through computing exp(−Tm) and exp(−Tn) using MATLAB’s Symbolic Toolbox

with 100-digit arithmetic and we consider the result E exact for comparisons. We then compute

exp(−Tm×n) by the Taylor series method, the Polynomial method, and MATLAB’s expm and

compare them with E. Again, denote the three computed results byE1, E2 and E3, and the maximal
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Figure 1: Example 1: (a) - E = exp(−Tn) (exact); (b) - abs(E− E1)./E (Taylor); (c) -

abs(E− E2)./E (Polynomial); (d) - abs(E− E3)./E (MATLAB’s expm)
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entrywise relative errors err1, err2 and err3, recpectively. In Table 2, we presents the results for

T25×25, T25×30, T25×35, T25×40, T30×30. Again, the Taylor series method and the polynomial method

produce solutions with high entrywise relative accuracy, while expm may not compute extremely

small entries with any relative accuracy.

Example 3: We consider a Watts-Strogatz model of ’small-world’ networks [27] as generated by

the function smallw.m in MATLAB toolbox CONTEST available at

http://www.maths.strath.ac.uk/research/groups/numerical-analysis/contest

The syntax smallw(n,k,p) returns a network of n nodes, beginning with a k-nearest ring (nodes

n 30 35 40 45 50

err1 1.2e-15 1.4e-15 1.4e-15 1.4e-15 1.4e-15

err2 1.6e-15 1.6e-15 1.5e-15 1.6e-15 1.6e-15

err3 8.9e-8 2.1e-4 6.9e-1 4.7e+3 2.6e+6

Table 1: Example 1: Maximal entrywise relative errors of E1 (Taylor), E2 (Polynomial), E3

(MATLAB’s expm)
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m× n 25× 25 25× 30 25× 35 25× 40 30× 30

err1 3.9e-15 4.1e-15 4.0e-15 3.8e-15 3.9e-15

err2 2.7e-14 2.7e-14 2.7e-14 2.6e-14 2.7e-14

err3 8.6e-5 2.0e-2 2.7 1.5e+2 2.7

Table 2: Example 2: Maximal entrywise relative errors of E1 (Taylor), E2 (Polynomial), E3

(MATLAB’s expm)

i and j is connected if only if |i − j| ≤ k or |n − |i − j|| ≤ k), and then with a fixed proba-

bility p each node being given an extra link—-a short cut—-connecting it to a node chosen uni-

formly at random across the network, see Figure 2. The following tested network is produced by

Figure 2: A small-world network of 16 nodes with k = 2 and four shortcuts

smallw(200,2,0.03). It is a 2-nearest ring network of 200 nodes, with four shortcuts connecting

the pairs of nodes (16,30), (74,85), (90,128) and (138,147). The resulting adjacency matrix A is a

five-diagonal symmetric matrix of order 200, with 14 extra off-diagonal nonzeros. Since we do not

have exp(A) exactly, we use the solution generated by the Taylor series method as the ’accurate’

solutions, based on which we measure the entrywise relative errors of the solutions produced by the

polynomial method and expm. The entries of exp(A) vary greatly in magnitudes, from 4.48e-51 to

9.15.

The relative error for each entry of exp(A) produced by the polynomial method is in the order

of 1.0e − 14; however, the relative errors for over 20% of the entries of exp(A) produced by expm

are bigger than 1. We also compare the algorithms in computing the betweenness according to

(3) for all the nodes, with exp(A) and exp(A − Er) computed by the Taylor series method, the

polynomial method and expm respectively. The betweenness lies in the interval [0.0139, 0.3721] for

this network. The relative errors of the betweenness computed by the polynomial method is less
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than 1.0e-13 for all nodes. However, the relative errors of the betweenness computed by expm are

over 0.01 for nearly 90% of the nodes and over 0.1 for 10% of the nodes.

We see that even for this fairly small size network, the entries of the exponential vary so

significantly that smaller entries as computed by expm have a poor or no relative accuracy. As

a result, certain measures of network properties can not be computed with any accuracy by the

traditional algorithms. The new algorithms developed in this paper do produce accurate results

and would be necessary for this type of problems.

6 Concluding Remarks

We have shown how the Taylor series method and the polynomial method can be carefully imple-

mented to compute the exponential of an essentially nonnegative matrix entrywise to high relative

accuracy. The resulting algorithms have entrywise forward relative errors comparable to what are

already made in rounding the matrix. Numerical examples demonstrate the entrywise relative

accuracy achieved by these algorithms.

When the matrices are sparse, the polynomial method has a computational complexity of O(n3)

which is comparable to traditional methods such as the Padé approximation. In general, however,

rational approximations such as the Padé approximation are more efficient than a polynomial

approximation method. However, as discussed in the introduction, there appear to be some unsur-

mountable difficulties associated with the rational approximations in terms of accurate inversion

as well as determining the degree of rational approximations to ensure entrywise relative accuracy,

which may be unbounded anyway. It appears that the potential extra computational complexity

associated with the Taylor method and the polynomial approximation methods may be a necessary

cost to achieve the high entrywise relative accuracy.

Acknowledgement: We would like to thank an anonymous referee for pointing out references

[6, 13].
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[10] E. Estrada and J. A. Rodŕiguez-Velázqez, Subgraph centrality in complex networks, Phys.

Rev. E, 71, article 056103, 2005.
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