Willmott et al.

RESEARCH

State inference of RNA secondary structures with
deep recurrent neural networks

Devin Willmott*, David Murrugarra and Qiang Ye

Abstract

https://github.com/dwillmott/Istm-rna.

Motivation: The problem of determining which nucleotides of an RNA sequence are paired or unpaired in the
secondary structure of an RNA can be studied by different machine learning techniques. Successful state
inference of RNA sequences can be used to get further insights into the RNA secondary structure. Typical
tools for this task, such as hidden Markov models, exhibit poor performance in RNA state inference, owing in
part to their inability to recognize nonlocal dependencies. Bidirectional long short-term memory (LSTM) neural
networks have emerged as a powerful tool that can model global nonlinear sequence dependency and have
achieved state-of-the-art performances on many different classification problems. This paper presents a method
for RNA state inference centered around deep bidirectional LSTM networks.

Results: Our method, based on deep recurrent neural networks, achieves highly accurate state inference
predictions and significantly outperforms the hidden Markov models on a set of RNA sequences that have a
broad range of MFE accuracies as well as nonuniform patterns of paired and unpaired regions.

Availability: Python implementation of method available on Github at:

Keywords: RNA; HMM; LSTM; RNN; binary classifier; secondary structure

1 Introduction

The secondary structure of an RNA sequence plays
an important role in determining its function [8,19],
but directly observing RNA secondary structure is
costly and difficult [3,7]. Therefore, researchers have
used computational tools to predict the secondary
structure of RNAs. One of the most popular meth-
ods is the Nearest Neighbor Thermodynamic Model
(NNTM) [30]. Alternatively, comparative sequence
analysis methods [11] use a set of homologous se-
quences to infer a secondary structure [2]. This method
remains the gold standard for secondary structure pre-
diction [26].

NNTM is based on thermodynamic optimization to
find the secondary structure with the minimum free
energy (MFE). There are several implementations of
NNTM; some of the popular ones include RNAStruc-
ture [22], GTfold [27], UNAfold [18]. However, NNTM
has been shown to be ill-conditioned [14,15]. That is,
for a given sequence, significantly different secondary

*Correspondence: devin.willmott@uky.edu

Department of Mathematics, University of Kentucky, Lexington, KY
40506-0027, USA

Full list of author information is available at the end of the article

structures might exhibit very similar energies. Addi-
tionally, the range of accuracies of the predictions of
NNTM shows significant variance [27].

More recently, high-throughput data that correlates
with the state of a nucleotide being paired or unpaired
has been developed. This data, called SHAPE [32] for
‘selective 2’-hydroxyl acylation analyzed by primer ex-
tension’, has been incorporated as auxiliary informa-
tion into the objective function of NNTM with the goal
of improving the accuracy of the predictions. This type
of predictions are referred to as SHAPE-directed RNA
secondary structure modeling [5,31]. The addition of
auxiliary information usually improves the accuracy
of the predictions of NNTM [5] but it has been shown
that the improvements are correlated with the MFE
accuracy [26]. The latter claim has been done by sta-
tistical modeling of SHAPE. The model in [26] gives
distributions for the values of SHAPE if the state of
the nucleotide (as paired or unpaired or helix-end) is
known. Thus the model in [26] can be used to gener-
ate SHAPE data in silico. A limitation of this model is
that it requires knowing the states of the nucleotides.

In this paper, we study the problem of determining
which nucleotides of an RNA sequence are paired or

https://github.com/dwillmott/lstm-rna
mailto:devin.willmott@uky.edu

Willmott et al.

unpaired in the secondary structure as state inference
using machine learning techniques. State inference is
a binary classification task on each nucleotide, which
we note is in contrast to full secondary structure in-
ference, which seeks to identify sets of base pairs. We
have developed a deep recurrent neural network that
can classify the states of the nucleotides of an RNA se-
quence. The machine is a binary classifier that predicts
if a given state is paired or unpaired in the secondary
structure. The motivations for developing such a clas-
sifier are twofold: 1. A good classifier can be used to
simulate auxiliary data using the statistical model of
SHAPE presented in [26]; and 2. This binary clas-
sifier is a first step in an effort to use deep learning
techniques to predict the actual base pairs in the sec-
ondary structure. We will explore this second goal in
a future work.

A hidden Markov model (HMM) is a classical tool
for the problem of state inference on a sequence. We
can train an HMM using a set of RNA sequences
with known secondary structure using maximum like-
lihood estimation. Once trained, we can use an HMM
along with one of several prediction algorithms, such
as the Viterbi algorithm [6], for classifying new RNA
sequences’ nucleotides.

The theoretical framework behind HMMs hinges on
the Markov property, the assumption that state distri-
bution is determined only by the state of the position
immediately before it. It is only through this assump-
tion that HMM inference algorithms become tractable.
However, state inference for RNA is a fundamentally
nonlocal problem: base pairs can form between nu-
cleotides that are hundreds of positions away in the
sequence. It would thus be desirable to use a method
that can take into account information from much ear-
lier or later in the sequence in making a prediction.

Since the advent of deep learning a decade ago, neu-
ral networks have become some of the most powerful
tools available for classification problems in a variety of
contexts [9,12,16]. Recurrent neural networks (RNNs)
are designed specifically to deal with sequential data.
The problem of learning long-term dependencies with
RNNs has been studied in considerable depth by the
machine learning community [9], and there exist a
number of variants that have exhibited such capabil-
ities. In this paper, we consider the most popular of
these variants, called the Long Short-Term Memory
(LSTM) architecture [13], which affixes a memory cell
to each neuron that can remember inputs from previ-
ous timesteps and alter the output of the neuron.

We present an LSTM based method for RNA state
inference. We compare performance of our method
with that of a number of HMM variants. We find that
our LSTM based method consistently achieves a state

Page 2 of 8

classification accuracy that reliably beats HMMs on
average by 10%-15%. Our results also indicate some
interesting connections between the performance of
LSTMs and the distribution of the lengths of paired re-
gions of RNA sequences. Such insights may be helpful
in future design of neural networks for related classifi-
cation problems for RNA sequences.

2 Methods

2.1 LSTMs

Neural networks are compositions of parameterized
linear transformations and elementwise nonlinearity
functions. In the standard framework, network param-
eters are trained using a dataset of known input-output
pairs: the ubiquitous backpropagation algorithm [23]
provides a gradient direction for the parameters with
respect to a defined loss function, and we optimize pa-
rameters with respect to this loss using gradient de-
scent.

This formulation require a fixed input and output
size; in contrast, recurrent neural networks (RNNs) op-
erate on sequences of variable length. Each sequence
element is considered as a distinct input, and the same
set of parameters is used as each sequence element is
introduced to the machine. At each step, the RNN
takes as input both the current sequence element and
the previous step’s output. The result is a sequence of
machine predictions of the same length as the input
sequence; we can compare these predictions to target
outputs and optimize parameters using an analogous
backpropagation algorithm for RNNs [20].

While RNNs theoretically possess the capacity to
modeling long-term dependencies in sequential data,
its implementation is difficult with learning algorithms
often not converging due to vanishing or exploding gra-
dients over a long duration [21]. The Long Short-Term
Memory (LSTM) architecture is widely considered to
be the most effective known solution to this problem,
and has been responsible for most of the currently held
records for benchmark sequential classification prob-
lems [17]. The key modification in an LSTM is the
addition of a memory cell to each neuron that is up-
dated each time data propagates forward through the
network. Additional parameters and gates allow the
machine to decide when to update or delete values in
memory, and how memory values interact with inputs
to produce the output. We train these additional pa-
rameters using the same backpropagation algorithm
for traditional RNNs and, once trained, they allow the
machine to remember events from many steps back
in the sequence, change the outputs accordingly, and
delete the memory that no longer aids in prediction.

For many sequences such as RNA sequences that
we are interested here, there may be causal depen-
dencies in both forward and backward time along the

Willmott et al.

sequences. Thus, a further modification of RNNs is to
reverse the direction of half of the neurons in a layer,
so that they receive input from the future timesteps in
the sequence. Neurons in the next layer thus receive in-
formation from both directions in time. Such a network
is referred to as bidirectional RNN, and is essential for
tasks such as ours where outputs have dependencies in
both the forward and backward directions [10,24].

Our proposed method is thus a 3-layer bidirectional
LSTM, with hidden layer sizes of 200 and 50. Our
LSTM network takes an RNA sequence as an input
and produces a sequence of the same length as an out-
put where each element of the output sequence is the
probability that the corresponding nucleotides belongs
to one of the three classes: Paired, Unpaired, and End-
of-Sequence (see the next paragraph for a description
of end-of-sequence labels). At each timestep, the first
hidden layer receives each nucleotide base in sequence,
as well as hidden state information from earlier and
later in the sequence. This information propagates for-
ward through the network, and the resulting output of
the last layer is the machine’s state prediction for the
nucleotide. We use RMSprop [29] as our training algo-
rithm. RMSprop is a variant of gradient descent that
keeps track of a decaying average of previous gradients
to incorporate momentum and gradient normalization.

We implement this method using Keras [4], a deep
learning APT written in Python, with Theano [28] as a
backend. Keras requires that LSTMs be processed in
batches of sequences of equal length. Since our dataset
contains a variety of sequence lengths, we append addi-
tional elements to smaller input and target output se-
quences to make all sequences have uniform size. These
additional elements were labeled with a distinct class,
which we call EOS (end-of-sequence). We found that
this additional class did not affect the results of our
binary classification: at the conclusion of training, our
LSTM was successful at distinguishing EOS elements
from actual paired/unpaired classes more than 99.99%
of the time on both training, validation, and test sets.

We make a number of additional modifications to
our machine’s architecture, all of which are standard
throughout the machine learning literature. We em-
ploy an L2-regularization term in the cost function and
use the dropout training method [25], both of which
are used to prevent the machine from overfitting its
parameters to the training set. We also use a decaying
learning rate, beginning at n = 0.003 and decaying by
3% at the conclusion of each epoch. This also helps to
prevent overfitting, and forces the machine to converge
to a single set of parameters by the time training has
ended.

Page 3 of 8

3 Method Comparison
3.1 HMMs
A hidden Markov model (HMM) is a traditionally pop-
ular method for modeling sequential data. However,
we are unaware of work using HMMs or other meth-
ods in the literature for RNA state inference. We used
our own implementation of HMM in Python and used
this to compare HMM performance on state inference
to that achieved by our LSTM based method. In our
implementation of HMM, we treat the chain of nu-
cleotides as the visible or input sequence, and the bi-
nary class of paired / unpaired as the state sequence.
To train HMM parameters, we use maximum likeli-
hood estimation on the same dataset we use to train
our LSTMs. Once our parameters are found, we per-
form state inference with the Viterbi algorithm [6].
As evidence that our method surpasses straightfor-
ward variants of HMM, we also train and test several
higher-order hidden Markov models [6]. An order k
HMM uses the same algorithms for training and infer-
ence as standard HMMs, but makes uses the previous
k states to make inferences; the standard HMM is thus
an order 1 HMM. We found that increasing the order
of the HMM to 2 resulted in a marked increase in per-
formance, though no orders approached our method’s
performance.

3.2 Datasets

To train our models, we used secondary structure
data from the Comparative RNA Web site, run by
the Gutell Lab at the University of Texas [1]. This
site hosts a collection of known RNA sequences and
secondary structures obtained using comparative se-
quence analysis. Compiling all of the available 16S
rRNA results in a set of 17032 sequences and a to-
tal of over 21 million nucleotides. We refer to this as
the CRW dataset.

We also focus attention on the set of sixteen se-
quences examined in detail in [26], which we present
as a test set for our method. These sequences exhibit
a broad range of MFE accuracies; focusing on this set
will allow us to find any relationships between MFE
accuracies and the results of our methods. We will ded-
icate a portion of our later discussion to the relation-
ships among state inference accuracy, MFE accuracy,
and various sequence characteristics.

To ensure that our models, and in particular our
LSTMs, do not simply memorize large portions of the
test sequences, we removed CRW sequences with sig-
nificant similarities to those in our validation set before
training. In this filtering process, we compared each
training set sequence against each test set sequence. If
the two sequences have a common block of nucleotides
of more than 10% of the length of the test sequence,

Willmott et al.

or if the two sequences can be aligned such that they
have common blocks accounting for more than 80% of
nucleotides of the shorter sequence, we remove it from
the training set. (See the github code for more details.)
This process leaves us with 13118 sequences and a to-
tal of approximately 16.5 million nucleotides. The set’s
mean and median sequence length is 1264 and 1431,
respectively.

3.3 Model Selection

Both higher-order HMMs and LSTMs have hyperpa-
rameters that are best chosen using model validation
techniques. For HMMs, this is the order of the model;
for LSTMs, there are a variety of hyperparameters:
network size and depth, learning rate and learning rate
decay, L2-regularization coefficient, dropout rate, etc.
We used half of the CRW dataset as a validation set
to test models with different sets of hyperparameters.
The unusually large size of the validation set was cho-
sen due to the large degree of redundancy within the
training set: since the dataset was built using compar-
ative methods, there are many near-duplicate samples
within the training set, and training and validation er-
rors were nearly identical when we used a smaller pro-
portion. The remaining half was used as the training
set.

We note in section 5 that larger machines appear
to be biased toward outputting negative predictions.
Thus, during the validation process we looked for mod-
els that both minimized test set error and output false
positives and false negatives in roughly equal propor-
tion.

3.4 Metrics

Each machine outputs a predicted state sequence. In
assessing our models, we consider each nucleotide as
a separate classification problem, regarding paired el-
ements as positive and unpaired elements as negative.
We can thus categorize machine output as either true
positive (TP), true negative (TN), false positive (FP),
or false negative (FN). Our LSTM outputs a proba-
bility distribution for the state of each nucleotide, so
we take the maximum probability to be the predicted
state. EOS states (see Methods) are not considered in
our results, and EOS predictions on paired or unpaired
nucleotides are considered incorrect.

From these results, we generate three metrics that
we focus on in our analysis of the results. The first,
accuracy (Acc = %), is a simple measure
of the proportion of correct predictions. We also look
at positive predictive value (PPV = %) and sen-
sitivity (Sen = %), which measure the proportion
of true positives among positive predictions and true
positives among positive states, respectively.

Page 4 of 8

4 Results

Our results are based on using the CRW dataset to
train our LSTM, as well as a number of higher or-
der HMMSs for comparison. Results for HMM orders 1
through 5 are compared against our method in Table 1.
Though the table exhibits an upward trend in accuracy
as the order of the HMM increases, we found that accu-
racy plateaued and eventually decreased beyond order
5. The order 4 HMM exhibits the highest accuracy on
both validation and test sets; we will use this machine
when investigating the differences between HMM and
LSTM output in later sections.

The LSTM clearly outperforms HMMs of all orders
on the validation set. More importantly, this is the
case for our test set as well, where the LSTM out-
performs the best HMM in accuracy by nearly 15%.
This is also the case for PPV, but we note that the
gap between the sensitivity of LSTM and HMM out-
put is much smaller, suggesting that the LSTM is not
a straightforward improvement on HMM predictions.

Considering machine predictions on each sequence
gives some insight into these differences. Table 2
presents the testing results for each test set sequence
and we arrange the test set in ascending order of MFE
accuracy, as reported in [26]. We emphasize that MFE
accuracy and LSTM/HMM accuracy are not directly
comparable, as they refer to different problems (struc-
ture inference and state inference, respectively). How-
ever, presenting the sequences in this way expresses in
some sense the difficulty current thermodynamic meth-
ods have in understanding the secondary structure of
each sequence.

Neither machine’s accuracy exhibited a strong rela-
tionship with MFE accuracy. HMM accuracy remained
mostly the same for all sequences, regardless of MFE
accuracy, while LSTM accuracy exhibited much more
variance. However, the LSTM generally had very good
performance on sequences with middling MFE accu-
racy, and poor performance on those with the highest
and lowest MFE accuracies. LSTM results also had
higher variance along every metric than HMMs, and

Table 1 A comparison of accuracy, PPV, and sensitivity of
output from our LSTM, compared with those of HMMs of
various orders. Training error and validation error remained very
similar throughout training. The composition of both sets
(validation and test) is described in Section 3.

Order 1 HMM 0.623 0.632 0.851 0.612 0.645
Order 2 HMM 0.662 0.671 0.826 0.651 0.683
Order 3 HMM 0.675 0.694 0.796 0.672 0.712
Order 4 HMM 0.686 0.714 0.773 0.684 0.731
Order 5 HMM 0.684 0.711 0.775 0.683 0.732

LSTM 0971 0971 0981 0.820 0.863

0.772
0.758
0.752
0.744
0.748
0.828

Willmott et al.

Page 5 of 8

Table 2 Table of accuracy, PPV, and sensitivity for our model vs. an order 4 HMM. Sequences are arranged in order of MFE
accuracy as reported in [26], which is listed in the last column for reference.

Name LSTM Acc HMM Acc | LSTM PPV HMM PPV | LSTM Sen HMM Sen | MFE Accuracy
cuniculi 0.627 0.663 0.702 0.694 0.648 0.773 0.171
vnecatrix 0.600 0.600 0.678 0.690 0.598 0.573 0.181
celegans 0.554 0.597 0.566 0.631 0.624 0.549 0.203
nidulansM 0.601 0.584 0.670 0.683 0.621 0.535 0.272

tabacumC 0.923 0.701 0.937 0.731 0.933 0.786 0.310
cryptomonas 0.942 0.676 0.947 0.730 0.957 0.729 0.339
musM 0.568 0.603 0.595 0.655 0.565 0.520 0.375
gallisepticum 0.872 0.641 0.919 0.715 0.862 0.669 0.385

syne 0.950 0.700 0.958 0.739 0.958 0.772 0.388

ecoli 0.936 0.699 0.969 0.742 0.924 0.774 0.411
subtilis 0.974 0.699 0.978 0.733 0.979 0.788 0.512

desulfuricans 0.952 0.712 0.963 0.740 0.957 0.802 0.533
reinhardtiiC 0.911 0.687 0.934 0.725 0.916 0.761 0.537
maritima 0.943 0.753 0.959 0.762 0.946 0.863 0.562

tenax 0.748 0.782 0.831 0.786 0.744 0.891 0.618
volcanii 0.696 0.735 0.790 0.767 0.683 0.814 0.752
average 0.800 0.677 0.837 0.720 0.807 0.725 0.409

total 0.820 0.672 0.863 0.713 0.828 0.745 N/A

could be grouped into two clusters depending on accu-
racy: accuracy on each sequence was either above 0.85
or below 0.75.

Among those with poor performance, we note that
there are four sequences (V. necatrix, C. elegans, M.
nidulans, M. musculus) for which LSTM sensitivity is
higher than HMM sensitivity, while the HMM’s sen-
sitivity is markedly better on the remaining three (E.
cuniculi, T tenax, V. volcanii). This distinction can
help us to better understand the difference between
errors in LSTM and HMM predictions.

5 Discussion
Our metrics in Table 2 give us an idea of the proportion
of correct machine predictions on each nucleotide’s
state, but they do not indicate whether HMM or
LSTM predictions produce state sequences that pre-
serve global properties, such as patterns of paired and
unpaired states. In particular, we want the number
and sizes of paired and unpaired regions of the state
sequence prediction to match those in the original. A
paired region in the state roughly corresponds to one
half of a helix in the secondary structure, so it is vital
that machines are able to emulate this property of the
sequence, particularly if we wish to use the inferred
state to generate experimental data, such as SHAPE.
We found evidence that the LSTM was more capa-
ble than the HMM of capturing this global structure,
even in cases where HMM accuracy was higher than
LSTM accuracy. We consider the distribution of paired
regions in state sequences; Figure 1 shows boxplots

of these distributions for native states and compares
them to HMM and LSTM state predictions for our
16 test set sequences. A visual inspection of this fig-
ure shows that HMMs routinely produce paired re-
gions that are significantly larger than those in the
actual states. Indeed, when considering median paired
region size of states, the HMM prediction is further
from the actual state than the LSTM in all but one
test set sequence (M. musculus), where all of the me-
dians (native, HMM, and LSTM) are equal. We also
note, however, that for sequences where the LSTM
performs poorly, LSTM predictions tend to produce
regions that are somewhat smaller than those in the
actual state; this is readily seen in boxplots for C. el-
egans, E. nidulans, and E. cuniculi.

The LSTM was more capable of predicting the to-
tal number of regions in a state. Both machines pro-
duced predictions with fewer paired regions than the
actual states, but LSTM predictions underestimated
the number of paired regions in test set sequences, on
average, by 19.7 (st dev 8.6) as compared to the HMM,
which was off by 55.7 on average (st dev 11.8).

We note that this discrepancy is to be expected in the
context of nonlocal interactions. Paired region size is
exactly the sort of nonlocal feature that HMMs cannot
predict: at a given time, the HMM does not know how
long it has been outputting positive predictions, and
is thus limited in its capacity to detect large paired
regions.

Considering the non-locality of paired regions can
also help to explain the poor performance of the LSTM

Willmott et al.

Page 6 of 8

35

30

25

20

15

10

35

30

25

20

15

10

T T 35 — T — 35 — T —35 — T 35 — T 35 — T 35 — T 35 — T T
* + b
130 30 30 - 130 30 |- 130 + {30 1
+
25 * 25 25 L 25 ! T ofast - {25t ! {25t -
20 20 20 b 20F + : 20 - 120t } T {20t 1
+ + \ T H +
i + + . vt o, ' + ' + ' vt
15 + 15 T 15+ + + + 415 15+ \ + 415+ + 415 T T A
+ + | + = - - T |
+ - + - | [- + [l [- - | |
- +] +] + - ' + ' + ' - \] | h
i T , , I ¥ ; ¥ ! \ I
- \ T 410+ - T 410 T q10+ | + 410k 1 + 410+ 410+ 410+ [
| \ | | \ | \ | T + | |
| |
np E i L B R R R LR
- l @ - @ “ “ - “ a - - a 1 . 'y - e @ - “ “ - L
n n | ol n | gl . il Y . il Y . t ol . t | ol . | gl . n
N H L N H L N H L N H L N H L N H L N H L N H L
C. elegans M. musculus V. necatrix E. nidulans E. cuniculi H. volcanii T. tenax M. gallisepticum
T T —35 — T —35 — T —35 — T ™35 — T 135 — T ™35 — T ™35 — T T
i
130 130 B0 430 30 - 430 1 + 1301 1
* T +
25 . 25 25 - 25 : 25 | {25+ {25+ N B
| ' T
T — - —
| 20 LT o T ot Tt po b+ ol P4 b T ot T
+ : N + : + + | by + T + + : + : + + : + + | +
R I 1 Lo st .15 _ st L 15t Lo st ! 1
- | - | b | - | - | - | - | - -
! | ! | | | ! ; I 1 | ! ‘ | | | I I
: I 410 : 1 HL0F I 410+ : 1 H10F 1 {10+ : 110 1410 1A
Q E ’ Q E ’ Q E i Q Q H 1° E E il Q Q 1l E B 1l E Q |
. . P P I N - ! . : 1 . . !
. 0 0 0 0 —l 0 - —l 0 ~— 0 =
N H L N H L N H L N H L N H L N H L N H L N H L
C. reinhardtii N. tabacum E. coli Cryptomonas.sp H.maritima Synechococcus.sp D. desulfuricans B. subtilis

Figure 1 Boxplots of the distribution of sizes of paired
LSTM predicted state sequence (denoted N, H, and L,
region size, the box contains 25th-75th percentiles, and the whiskers contain 5th-95th percentiles. Sequences are ordered from lowest
to highest LSTM prediction accuracy. Several large paired regions in HMM predictions beyond the y-axis limit of 35 are not shown.

regions in the native state sequence, HMM predicted state sequence, and
respectively) for each test set sequence. The red line indicates the median

Willmott et al.

on certain test set sequences. Successful LSTM predic-
tions are often accompanied by a particular distribu-
tion of paired regions: one of length 17, one of length
13, and several more of length 12 and 11. In contrast,
inspection of the native states in Figure 2 shows that
the other sequences either have paired regions of length
larger than 20 (E. cuniculi, V. necatrix, M. nidulans,
tenax, and V. volcanii) or very few paired regions of
length larger than 10 (C. elegans and M. musculus).

We can compare the distribution of the lengths of
paired regions in each of our test sequences to the dis-
tribution in the training set. We find that the training
set overwhelmingly contains sequences with paired re-
gion distributions similar to the test set sequences on
which the LSTM performs well. In particular, we note
that the training set has relatively few large paired
regions: there are 5 regions of length 18, 2 regions of
size 19, 4 regions of size 20, and none larger than 20.
Thus, during training the machine is penalized for out-
putting more than 20 contiguous positive predictions.
Consequently, from Figure 1 we can see that LSTM
predictions do not create sufficiently large regions for
a number of sequences, particularly those for which
LSTM accuracy is poor.

We further consider the KL divergence of the distri-
bution of the lengths of paired regions between the en-
tire training set and each test set sequence. This mea-
surement indicates how well the distribution of a test
sequence may be learned from the training dataset.
Figure 2 plots the LSTM accuracy and HMM accuracy
for each testing sequence against its KL divergence.
We can see that all of the sequences with poor LSTM

10°

e LSTM
4 HMM

KL Divergence of Paired Regions vs Training Set

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

Figure 2 Plot comparing each test set sequence’'s LSTM and
HMM accuracy vs its Kullback-Leibler divergence from
training set paired region distribution. KL divergence was
calculated as KL(P||Q), where P is the test sequence
distribution and @ is the training set distribution.

Page 7 of 8

performance diverge significantly in their distribution
of paired regions. This may account for the relatively
poor performance of LSTM predictions, as the plot in-
dicates these sequences are outliers with respect to the
training set. In contrast, HMM results do not appear
to have much correlation with the KL divergence.

6 Conclusions & Future Work

We have presented a method for RNA state inference
that uses long short-term memory networks to detect
long-range interactions among nucleotides. Our results
show an improvement of 10-15% in classification accu-
racy over HMM, a standard state inference tool, on
a set of sequences that were distinct from our train-
ing data. We also present evidence that our method is
better able to produce state sequence predictions that
more closely resemble actual RNA states by investi-
gating the distribution of paired regions in the output.

We emphasize that these results are presented pri-
marily as a proof of concept. The efficacy of machine
learning methods are necessarily limited by the dataset
used to train the machine. In our case, we found that
discrepancies between sizes of paired regions in the
training and test sets accounted for much of the er-
ror in our test set. We conjecture that a training set
with more diversity in its outputs will generalize better
to RNA sequences with other pairing structures.

Our work is the first of which we are aware of that
uses neural networks for RNA state inference. The re-
sults demonstrate that neural networks are capable of
capturing nonlocal interactions of RNA sequences. An
extension of this neural network based approach could
be a promising method for the more general problem
of secondary structure inference.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions

DW, DM, and QY conceived the study. DW designed code and performed
the numerical experiments and theoretical analysis. All authors helped in
the writing of the manuscript. All authors approved the final version of the
manuscript.

Acknowledgements
We would like to thank John Hirdt, who had initially participated in this
project, for many valuable discussions and suggestions.

Funding
Research of Qiang Ye was supported in part by NSF under Grants
DMS-1317424, DMS-1318633 and DMS-1620082.

References

1. Jamie J Cannone, Sankar Subramanian, Murray N Schnare, James R
Collett, Lisa M D'Souza, Yushi Du, Brian Feng, Nan Lin, Lakshmi V
Madabusi, Kirsten M Miiller, et al. The comparative rna web (crw)
site: an online database of comparative sequence and structure
information for ribosomal, intron, and other rnas. BMC bioinformatics,
3(1):2, 2002.

Willmott et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Jamie J. Cannone, Sankar Subramanian, Murray N. Schnare, James R.

Collett, Lisa M. D'Souza, Yushi Du, Brian Feng, Nan Lin, Lakshmi V.
Madabusi, Kirsten M. Miiller, Nupur Pande, Zhidi Shang, Nan Yu, and
Robin R. Gutell. The comparative rna web (crw) site: an online
database of comparative sequence and structure information for
ribosomal, intron, and other rnas. BMC Bioinformatics, 3(1):2, 2002.

. Jonathan L Chen, Stanislav Bellaousov, and Douglas H Turner. Rna

secondary structure determination by nmr. Methods Mol Biol,
1490:177-86, 2016.

Francois Chollet et al. Keras, 2015.

Katherine E Deigan, Tian W Li, David H Mathews, and Kevin M
Weeks. Accurate shape-directed rna structure determination. Proc
Natl Acad Sci U S A, 106(1):97-102, Jan 2009.

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison.
Biological Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, 1998.

Boris Fiirtig, Christian Richter, Jens Wohnert, and Harald Schwalbe.
Nmr spectroscopy of rna. ChemBioChem, 4(10):936-962, 2003.

Paul P Gardner and Robert Giegerich. A comprehensive comparison of
comparative rna structure prediction approaches. BMC Bioinformatics,
5:140, Sep 2004.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

Alex Graves and Jiirgen Schmidhuber. Framewise phoneme
classification with bidirectional Istm and other neural network
architectures. Neural Networks, 18(5):602—-610, 2005.

Robin R Gutell, Jung C Lee, and Jamie J Cannone. The accuracy of
ribosomal rna comparative structure models. Curr Opin Struct Biol,
12(3):301-10, Jun 2002.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast
learning algorithm for deep belief nets. Neural computation,
18(7):1527-1554, 2006.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735-1780, November 1997.

D M Layton and R Bundschuh. A statistical analysis of rna folding
algorithms through thermodynamic parameter perturbation. Nucleic
Acids Res, 33(2):519-24, 2005.

SY Le, J H Chen, and J V Maizel, Jr. Prediction of alternative rna
secondary structures based on fluctuating thermodynamic parameters.
Nucleic Acids Res, 21(9):2173-8, May 1993.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436—444, 2015.

Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical
review of recurrent neural networks for sequence learning. arXiv
preprint arXiv:1506.00019, 2015.

Nicholas R Markham and Michael Zuker. Unafold: software for nucleic
acid folding and hybridization. Methods Mol Biol, 453:3-31, 2008.
David H Mathews and Douglas H Turner. Prediction of rna secondary
structure by free energy minimization. Curr Opin Struct Biol,
16(3):270-8, Jun 2006.

Michael C Mozer. A focused back-propagation algorithm for temporal
pattern recognition. Complex systems, 3(4):349-381, 1989.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks. ICML (3), 28:1310-1318, 2013.
Jessica S Reuter and David H Mathews. Rnastructure: software for rna
secondary structure prediction and analysis. BMC Bioinformatics,
11:129, 2010.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. Cognitive
modeling, 5(3):1.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. |EEE Transactions on Signal Processing, 45(11):2673-2681,
1997.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, llya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15(1):1929-1958, 2014.

Zsuzsanna Siikdsd, M Shel Swenson, Jgrgen Kjems, and Christine E
Heitsch. Evaluating the accuracy of shape-directed rna secondary
structure predictions. Nucleic Acids Res, 41(5):2807-16, Mar 2013.

M Shel Swenson, Joshua Anderson, Andrew Ash, Prashant Gaurav,

28.

29.

30.

31.

32.

Page 8 of 8

Zsuzsanna Sukosd, David A Bader, Stephen C Harvey, and Christine E
Heitsch. Gtfold: Enabling parallel rna secondary structure prediction on
multi-core desktops. BMC Res Notes, 5(1):341, Jul 2012.

Theano Development Team. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints,
abs/1605.02688, May 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2), 2012.
Douglas H Turner and David H Mathews. Nndb: the nearest neighbor
parameter database for predicting stability of nucleic acid secondary
structure. Nucleic Acids Res, 38(Database issue):D280-2, Jan 2010.
Stefan Washietl, lvo L Hofacker, Peter F Stadler, and Manolis Kellis.
Rna folding with soft constraints: reconciliation of probing data and
thermodynamic secondary structure prediction. Nucleic Acids Res,
40(10):4261-72, May 2012.

Kevin A Wilkinson, Robert J Gorelick, Suzy M Vasa, Nicolas Guex,
Alan Rein, David H Mathews, Morgan C Giddings, and Kevin M
Weeks. High-throughput shape analysis reveals structures in hiv-1
genomic rna strongly conserved across distinct biological states. PLoS
Biol, 6(4):e96, Apr 2008.

	Abstract
	Introduction
	Methods
	LSTMs

	Method Comparison
	HMMs
	Datasets
	Model Selection
	Metrics

	Results
	Discussion
	Conclusions & Future Work

