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Abstract

Motivation: Secondary structure inference is etc. The related problem of state inference can be used to gain
further insights into the RNA secondary structure. Typical tools for this task, such as hidden Markov models,
exhibit poor performance in RNA state inference, owing in part to their inability to recognize nonlocal
dependencies. Long short-term memory (LSTM) neural networks have emerged as powerful machine learning
tools that can model global nonlinear sequence dependency and have achieved state-of-the-art performances on
various sequential learning tasks. This work presents a method for RNA state inference centered around deep
bidirectional LSTM networks. This method achieves highly accurate state inference predictions and significantly
outperforms the hidden Markov models on a set of 16S rRNA sequences with a broad range of MFE accuracies.
We also show that LSTM state predictions exhibit similar global pairing patterns to native sequence states.

Keywords: secondary structure; RNA folding; neural networks; recurrent neural networks; LSTM; machine
learning

1 Introduction
The secondary structure of an RNA sequence plays
an important role in determining its function [9, 21],
but directly observing RNA secondary structure is
costly and difficult [3, 8]. Therefore, researchers have
used computational tools to predict the secondary
structure of RNAs. One of the most popular meth-
ods is the Nearest Neighbor Thermodynamic Model
(NNTM) [34]. Alternatively, comparative sequence
analysis methods [12] use a set of homologous se-
quences to infer a secondary structure [2]. This method
remains the gold standard for secondary structure pre-
diction [29].

NNTM is based on thermodynamic optimization to
find the secondary structure with the minimum free
energy (MFE). There are several implementations of
NNTM; some of the popular ones include RNAS-
tructure [24], GTfold [30], UNAfold [20], ViennaRNA
package [19]. However, NNTM has been shown to be
ill-conditioned [15,16,25]. That is, for a given sequence,
significantly different secondary structures might ex-
hibit very similar energies. Additionally, the range of
accuracies of the predictions of NNTM shows signifi-
cant variance [30].
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More recently, high-throughput data that correlates
with the state of a nucleotide being paired or unpaired
has been developed. This data, called SHAPE [36] for
‘selective 2’-hydroxyl acylation analyzed by primer ex-
tension’, has been incorporated as auxiliary informa-
tion into the objective function of NNTM with the goal
of improving the accuracy of the predictions. This type
of prediction is referred to as SHAPE-directed RNA
secondary structure modeling [5, 35]. The addition of
auxiliary information usually improves the accuracy
of the predictions of NNTM [5] but it has been shown
that the improvements are correlated with the MFE
accuracy [29]. The latter result has been obtained by
statistical modeling of SHAPE. The model in [29] gives
distributions for the values of SHAPE if the state of
the nucleotide (as paired or unpaired or helix-end) is
known. Thus the model in [29] can be used to gener-
ate SHAPE data in silico. A limitation of this model is
that it requires knowing the states of the nucleotides.

In this paper, we study the problem of determining
which nucleotides of an RNA sequence are paired or
unpaired in the secondary structure as state inference
using machine learning techniques. State inference is
a binary classification task on each nucleotide, which
we note is in contrast to full secondary structure in-
ference, which seeks to identify sets of base pairs. We
have developed a deep recurrent neural network that
can classify the states of the nucleotides of an RNA se-
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quence. The machine is a binary classifier that predicts
if a given state is paired or unpaired in the secondary
structure. The motivations for developing such a clas-
sifier are the following: first, a good classifier can be
used as a restraint on the secondary structure predic-
tion via NNTM; second, this classifier can also help in
predicting biomolecular structures such as for identi-
fying binding sites in RNA-RNA interactions [6, 31];
and finally, a good classifier can be used to simulate
auxiliary data using the statistical model of SHAPE
presented in [29].

There are several classical tools arising from stochas-
tic grammars that can be applied to the problem of
state inference on a sequence. Two such tools are hid-
den Markov models (HMMs) and stochastic context-
free grammars (SCFGs). We can train these models
with a set of RNA sequences with known secondary
structures using maximum likelihood estimation. Once
trained, HMMs and SCFGs can be used along with
various prediction algorithms, such as the Viterbi and
CYK algorithms, respectively [7], to classifying new
RNA sequences’ nucleotides.

Due to the cubic complexity of SCFGs with respect
to the length of the RNA sequence [7], this work will
focus on HMMs as a benchmark model. HMMs achieve
linear complexity through the Markov property, the as-
sumption that state distribution is determined only by
the state of the position immediately before it. This
linear complexity makes it an attractive option for
state inference on long RNA sequences, such as 16S
rRNA sequences. However, state inference for RNA
is a fundamentally nonlocal problem: base pairs can
form between nucleotides that are hundreds of posi-
tions away in the sequence. It would thus be desirable
to use a method that can take into account information
from much earlier or later in the sequence in making
a prediction.

Since the advent of deep learning a decade ago, neu-
ral networks have become some of the most power-
ful tools available for classification problems in a va-
riety of contexts [10, 13, 17]. Recurrent neural net-
works (RNNs) are designed specifically to deal with
sequential data. The problem of learning long-term de-
pendencies with RNNs has been studied in consider-
able depth by the machine learning community [10],
and there exist a number of variants that have exhib-
ited such capabilities. In this paper, we consider the
most popular of these variants, called the Long Short-
Term Memory (LSTM) architecture [14], which affixes
a memory cell to each neuron that can remember in-
puts from previous timesteps and alter the output of
the neuron.

We present an LSTM based method for RNA state
inference, and compare with a number of HMM vari-
ants on the same dataset. We find that our LSTM

based method consistently achieves a state classifica-
tion accuracy that reliably beats HMMs on a test set
of 16S rRNA sequences on average by 15%. Our re-
sults also indicate some interesting connections be-
tween the performance of LSTMs and the distribu-
tion of the lengths of paired regions of RNA sequences.
Such insights may be helpful in future design of neural
networks for related classification problems for RNA
sequences.

2 Methods
2.1 Neural Networks
A neural network is a function composed of a parametrized
affine transformation and an elementwise nonlinearity.
Network parameters are trained using a dataset of
known input-output pairs: we define a loss function
based on the difference between machine predictions
and target outputs, retrieve gradient directions for pa-
rameters with respect to this loss using the ubiquitous
backpropagation algorithm [26], and optimize param-
eters using first order methods, such as gradient de-
scent.

Recent advances in machine learning come primarily
from deep neural networks, which are stacks of multi-
ple neural networks: the output of one neural network
in the stack acts as the input for the next. Each of these
constituent neural networks is referred to as a layer of
the deep neural network; layers between the input and
output and called hidden layers. The hidden layers of
a deep neural network allow it to represent complex
nonlinear relationships among inputs.

Typically, deep neural networks require a fixed input
and output size. This is undesirable for our purposes,
as we are interested in performing state inference on
RNA sequences of various lengths. Two major variants
of neural networks that can handle variable input and
output sizes are recurrent neural networks and convo-
lutional neural networks, both of which we make use
of in our proposed method.

2.2 Recurrent Neural Networks & LSTMs
Recurrent neural networks (RNNs) work specifically
with sequential data by combining the learning meth-
ods of neural networks with the architecture of a
discrete-time dynamical system. Sequence elements
are fed to the machine one at a time, and machine pa-
rameters act on both the current step’s input and the
previous step’s output to produce the current step’s
output. These parameters act similarly to the input
and state matrices in a dynamical system, and are
trained with a variant of the backpropagation algo-
rithm for RNNs [22].

In RNA sequences, there exist causal dependencies
both forward and backward in time along the sequence.
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Figure 1 Diagram of a bidirectional RNN with two hidden
layers for state inference at three different timesteps. Here x
denotes the input, h1 the first layer hidden variable, h2 the
second layer hidden variable, and y the output, with
superscripts representing timesteps and arrows showing the
propagation of information through the network. Each hidden
layer combines information from the previous layer, earlier and
later timesteps, and an internal memory state to compute its
output.

A common modification of RNNs in this instance is to
reverse the direction of half of the neurons in a layer,
so that they receive input from the next timesteps in
the sequence. The next hidden layer of the network
thus receives information from both directions in time.
Such a network is referred to as bidirectional RNN, and
they are known to significantly outperform RNNs on
tasks such as ours where outputs have dependencies in
both the forward and backward directions [11,27]. The
network shown in Figure 1 is a deep bidirectional RNN
with two hidden layers, where each of these layers uses
hidden states from previous and future timesteps to
compute the current timestep’s output.

While RNNs theoretically possess the capacity to
modeling long-term dependencies in sequential data,
its implementation is difficult with learning algorithms
often not converging due to vanishing or exploding gra-
dients over a long duration [23]. The Long Short-Term
Memory (LSTM) architecture is a variant of RNN that
is widely considered to be the most effective known so-
lution to this problem; it is responsible for most of the
currently held records for benchmark sequential clas-
sification problems [18]. The key modification in an
LSTM is the addition of a memory cell to each neu-
ron that is updated each time data propagates forward
through the network. Additional parameters and gates
allow the machine to decide when to update or delete
values in memory, and how memory values interact
with inputs to produce the output. Once trained, these
parameters allow an LSTM to remember events from
many steps away in the sequence, change the outputs
accordingly, and delete the memory that no longer aids

in prediction. Bidirectional LSTMs will form the foun-
dation of our network.

2.3 Convolutional Neural Networks
Just as RNNs learn the parameters of a dynamical
system, convolutional neural networks (CNNs) learn
small kernels that are convolved with input data to
produce an output of the same dimensionality. Most
often, CNNs find use in two-dimensional problems such
as image classification and segmentation, where they
act similarly to image processing filters [10], but they
can be used in any problems with a defined spatial
structure. Since we are dealing with sequential data,
our machine will use one-dimensional convolutions.

In many applications, convolutional layers in a deep
neural network are followed by pooling layers that re-
duce the size of the layer’s output. We omit this step
in our machine to preserve sequence length while the
data passes through the network, as we will interpret
our machine’s output as a sequence of nucleotide state
predictions.

Convolutional layers are inherently unable to learn
long-term dependencies, as they act only on small re-
gions of input and, unlike RNNS, do not use outputs
at other timesteps. However, they are computationally
cheap and invariant to translation. We add convolu-
tional layers as the first and last layers of our machine;
these layers are able to detect local features and allow
the LSTMs to focus on learning long-term dependen-
cies. We can compare the role of convolutional layers in
our machine to the parameters in energy minimization
methods for secondary structure prediction. In that
framework, each potential secondary structure is as-
signed a probability based on the presence of various
local features of the RNA sequence. In our machine,
optimizing convolutional layer parameters will identify
those local features that are relevant to state inference
in our method.

2.4 State Inference with Convolutional LSTMs
We tested a variety of deep networks composed of re-
current and convolutional layers, and found a four-
layer network to be the optimal balance of representa-
tional capacity and training speed. Our network first
applies a one-dimensional convolution to the input
RNA sequence. The output of this convolution is fed
in to two layers of bidirectional LSTMs; information
flows through these layers as detailed in Section 2.2
and Figure 1. It then finishes with another convolu-
tional layer, which combines information in small re-
gions in the bidirectional LSTM output. The output of
this final convolutional layer is a sequence of the same
length as the input, where each sequence element is
the machine’s state prediction for its corresponding
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nucleotide, represented as a probability that the nu-
cleotide is paired or unpaired.

The output dimension of each of the machine’s four
layers at each timestep are 100, 400, 100, and 2, respec-
tively. Both convolutions have a size of 30 nucleotides,
and a stride of 1. These specifications give the ma-
chine a total of 595,552 trained parameters. We use
RMSprop [33] with a learning rate of η = 0.0001 as
our training algorithm. RMSprop is a variant of gra-
dient descent that keeps track of a decaying average
of previous gradients to incorporate momentum and
gradient normalization throughout training.

We implement this model using Keras [4], a deep
learning API written in Python, with Theano [32] as a
backend. Keras requires that LSTMs be processed in
batches of sequences of equal length. Since our datasets
contain a variety of sequence lengths, we append addi-
tional elements to smaller input and target output se-
quences to make all sequences have uniform size. These
additional elements are not labeled with a target out-
put class, and thus predictions on these elements do
not affect the loss function, and are ignored when in-
terpreting the results.

We make a number of additional modifications to
our machine’s architecture, all of which are standard
throughout the machine learning literature. We em-
ploy an L1-regularization term in the loss function and
use the dropout training method [28], both of which
are used to prevent the machine from overfitting its
parameters to the training set.

3 Method Comparison
3.1 HMMs
A hidden Markov model (HMM) is a traditionally pop-
ular method for modeling sequential data. However, we
are unaware of work using HMMs in the literature for
RNA state inference. We used our own implementa-
tion of HMM in Python, where we treat the chain of
nucleotides as the visible or input sequence, and the
binary class of paired/unpaired as the state sequence.
We use maximum likelihood estimation on a dataset of
known input and state sequences to train our parame-
ters, and then perform state inference with the Viterbi
algorithm [7]. This is a backtracking algorithm that
finds the maximum likelihood state sequence given an
input sequence. We trained the HMM and our LSTM-
based method on the same datasets, and we compare
their performance using their state predictions.

As evidence that our method surpasses straightfor-
ward variants of HMM, we also train and test several
higher-order hidden Markov models [7]. An order k
HMM uses the same algorithms for training and infer-
ence as standard HMMs, but makes uses the previous
k states to make inferences; the standard HMM is thus

an order 1 HMM. We found that increasing the order
of the HMM to 2 resulted in a marked increase in per-
formance, though no orders approached our method’s
performance.

3.2 Datasets
To train and validate our models, we used secondary
structure data from the Comparative RNA Web site,
run by the Gutell Lab at the University of Texas [1].
This site hosts a collection of known RNA sequences
and secondary structures obtained using comparative
sequence analysis. Compiling all of the available 16S
rRNA sequences from this database results in a set
of 17032 sequences and a total of over 21 million nu-
cleotides. We refer to this as the CRW dataset.

We also focus attention on the set of sixteen se-
quences examined in detail in [29], which we present
as a test set for our method. These sequences exhibit
a broad range of MFE accuracies; focusing on this set
will allow us to detect relationships between MFE ac-
curacies and the results of our methods. We will ded-
icate a portion of our later discussion to the relation-
ships among state inference accuracy, MFE accuracy,
and various sequence characteristics.

To ensure that our models, and in particular our
LSTMs, do not simply memorize large portions of
the test sequences, we removed CRW sequences with
significant similarities to those in our test set before
training. In this filtering process, we compared each
CRW set sequence against each test set sequence. If
the two sequences have a common block of nucleotides
of more than 10% of the length of the test sequence,
or if the two sequences can be aligned such that they
have common blocks accounting for more than 75% of
nucleotides of the shorter sequence, we remove it from
the training set. (See the github code for more details.)
This process leaves us with 13118 sequences and a to-
tal of approximately 16.5 million nucleotides. The set’s
mean and median sequence length is 1264 and 1431,
respectively.

3.3 Model Selection
Both higher-order HMMs and LSTMs have hyper-
parameters that are best chosen using model valida-
tion techniques. For HMMs, this is the order of the
model; for LSTMs, there are a variety of hyperpa-
rameters: network size and depth, learning rate, L1-
regularization coefficient, dropout rate, etc. We used
half of the CRW dataset as a validation set to test
models with different sets of hyperparameters. The un-
usually large size of the validation set was chosen due
to the large degree of redundancy within the train-
ing set: since the dataset was built using compara-
tive methods, there are many near-duplicate samples



Willmott et al. Page 5 of 9

within the training set, and training and validation er-
rors were nearly identical when we used a smaller pro-
portion. The remaining half was used as the training
set.

We note in section 5 that larger machines appear
to be biased toward outputting negative predictions.
Thus, during the validation process we looked for mod-
els that both minimized test set error and output false
positives and false negatives in roughly equal propor-
tion.

3.4 Metrics
Each machine outputs a predicted state sequence.
In assessing our models, we consider each nucleotide
as a separate binary classification problem, regarding
paired elements as positive and unpaired elements as
negative. We can thus categorize each element of the
machine output as either true positive (TP), true neg-
ative (TN), false positive (FP), or false negative (FN).
Our LSTM outputs a probability distribution for the
state of each nucleotide, so we take the maximum prob-
ability to be the predicted state.

From these results, we generate three metrics that
we focus on in our analysis of the results. The first,
accuracy (Acc = TP+TN

TP+TN+FP+FN ), is a simple measure
of the proportion of correct predictions. We also look
at positive predictive value (PPV = TP

TP+FP ) and sen-

sitivity (Sen = TP
TP+FN ), which measure the proportion

of true positives among positive predictions and true
positives among positive states, respectively.

4 Results

Table 1 Accuracy of LSTM vs. HMM on validation and test sets

Validation Set Test Set
Machine Acc PPV Sen Acc PPV Sen

Order 1 HMM 0.623 0.632 0.852 0.612 0.646 0.767
Order 2 HMM 0.662 0.671 0.826 0.651 0.686 0.759
Order 3 HMM 0.674 0.693 0.794 0.672 0.713 0.750
Order 4 HMM 0.685 0.714 0.771 0.684 0.729 0.742
Order 5 HMM 0.684 0.711 0.776 0.683 0.730 0.742

LSTM 0.954 0.950 0.972 0.839 0.858 0.873

Results for HMM orders 1 through 5 are compared
against our method in Table 1. Though the table ex-
hibits an upward trend in accuracy as the order of
the HMM increases, we found that accuracy plateaued
and eventually decreased beyond order 5. The order 4
HMM exhibits the highest accuracy on both validation
and test sets; we will use this model when investigat-
ing the differences between HMM and LSTM output
in detail.

The LSTM clearly outperforms HMMs of all orders
on the validation set. More importantly, this is the

case for our test set as well, where the LSTM out-
performs the best HMM in accuracy by more than 15
percentage points. This is also the case for PPV, but
we note that the gap between the sensitivity of LSTM
and HMM output is much smaller, suggesting that the
LSTM is not a straightforward improvement on HMM
predictions.

Considering machine predictions on each sequence
gives some insight into these differences. Table 2
presents metrics on the order 4 HMM and LSTM state
predictions of each test set sequence, where the LSTM
outperforms the HMM on all but one test set sequence
(C. elegans). Sequences are arranged in Table 2 in as-
cending order of MFE accuracy as reported in [29].
MFE accuracy and LSTM/HMM accuracy are not di-
rectly comparable, as they refer to different problems
(structure inference and state inference, respectively),
but presenting the sequences in this way expresses in
some sense the difficulty current thermodynamic meth-
ods have in understanding the secondary structure of
each sequence.

Neither machine’s state inference accuracy exhibited
a strong relationship with MFE accuracy. HMM ac-
curacy remained mostly the same for all sequences,
regardless of MFE accuracy, while LSTM accuracy
exhibited much more variance. The LSTM generally
had very good performance on sequences with mid-
dling MFE accuracies, and relatively poor performance
on those with the highest and lowest MFE accura-
cies. LSTM results also had higher variance along ev-
ery metric than HMM results, and test set sequences
can be grouped into two clusters depending on LSTM
state predictions: accuracy was above 0.9 for nine se-
quences, and near or below 0.8 for the remaining seven
sequences.

Among those in the latter cluster, we note that there
are four sequences (V. necatrix, C. elegans, M. nidu-
lans, M. musculus) for which LSTM sensitivity is much
higher than HMM sensitivity, while this gap is much
smaller for the remaining three (E. cuniculi, T. tenax,
V. volcanii). This distinction can help us to better un-
derstand the difference between errors in LSTM and
HMM predictions.

5 Discussion
5.1 Paired Regions & Global Structure
Our metrics in Table 2 give us an idea of the proportion
of correct machine predictions on each nucleotide’s
state, but they do not indicate whether HMM or
LSTM predictions produce state sequences that pre-
serve global properties, such as patterns of paired and
unpaired states. In particular, we want the number
and sizes of paired and unpaired regions of the state
sequence prediction to match those in the original. A
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Table 2 Detailed results of LSTM vs. HMM on the test set

Name LSTM Acc HMM Acc LSTM PPV HMM PPV LSTM Sen HMM Sen
E. cuniculi 0.680 0.661 0.713 0.693 0.774 0.773
Vairimorpha necatrix 0.661 0.600 0.721 0.689 0.683 0.576
C. elegans 0.558 0.584 0.570 0.613 0.624 0.552
Emericella nidulans 0.657 0.584 0.692 0.681 0.741 0.539
Nicotiana tabacum 0.913 0.705 0.917 0.734 0.938 0.787
Cryptomonas.sp 0.926 0.676 0.935 0.730 0.941 0.728
M. musculus 0.608 0.603 0.626 0.655 0.637 0.520
Mycoplasma gallisepticum 0.919 0.639 0.933 0.713 0.932 0.668
Synechococcus.sp 0.938 0.700 0.943 0.740 0.953 0.769
E. coli 0.924 0.699 0.937 0.742 0.938 0.774
Bacillus subtilis 0.973 0.698 0.979 0.731 0.976 0.788
Desulfovibrio desulfuricans 0.926 0.712 0.940 0.741 0.938 0.803
Chlamydomonas reinhardtii 0.906 0.687 0.915 0.725 0.928 0.761
Thermotoga maritima 0.931 0.752 0.944 0.760 0.943 0.864
Thermoproteus tenax 0.818 0.782 0.845 0.785 0.866 0.894
H. volcanii 0.782 0.739 0.809 0.769 0.841 0.820
Average 0.820 0.676 0.839 0.719 0.853 0.726
Total 0.839 0.684 0.858 0.729 0.873 0.742

Figure 2 Boxplots of the distribution of sizes of paired regions in the native state sequence, HMM predicted state sequence, and
LSTM predicted state sequence (denoted N, H, and L, respectively) for each test set sequence. The red line indicates the median
region size, the box contains 25th-75th percentiles, and the whiskers contain 5th-95th percentiles. Sequences are ordered from lowest
to highest LSTM prediction accuracy. Several large paired regions in HMM predictions beyond the y-axis limit of 35 are not shown.

paired region in the state roughly corresponds to one

half of a helix in the secondary structure, so it is vital

that machines are able to emulate this property of the
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sequence, particularly if we wish to use the inferred
state to generate experimental data, such as SHAPE.

We found evidence that the LSTM was more capable
than the HMM of capturing this global structure, even
when HMM accuracy was higher than LSTM accuracy.
We consider the distribution of paired regions in state
sequences; Figure 2 shows boxplots of these distribu-
tions for native states and compares them to HMM and
LSTM state predictions for our 16 test set sequences.
A visual inspection of this figure shows that HMMs
routinely produce paired regions that are significantly
larger than those in the actual states. Indeed, when
considering median paired region size of each state,
the LSTM prediction is more accurate than the HMM
prediction in all but one test set sequence (M. muscu-
lus). We also note, however, that for sequences where
the LSTM performs poorly, LSTM predictions tend to
produce regions that are somewhat smaller than those
in the actual state; this is readily seen in boxplots for
M. musculus, E. nidulans, and E. cuniculi.

We can also consider the total number of paired re-
gions in the state as another global feature of RNA
state. The LSTM performs better in this case as well,
producing predictions that, on average, had 6 more
paired regions than the native state. However, HMM
predictions vastly underestimated this number; these
predictions had an average of 57 fewer regions than
the native state.

We note that this discrepancy is to be expected in the
context of nonlocal interactions. Paired region size is
exactly the sort of nonlocal feature that HMMs cannot
predict: at a given time, the HMM does not know how
long it has been outputting positive predictions, and
is thus limited in its capacity to detect large paired
regions.

Considering the non-locality of paired regions can
also help to explain the poor performance of the LSTM
on certain test set sequences. High LSTM accuracy
is often accompanied by a particular distribution of
paired regions: one of length 17, one of length 13, and
several more of length 12 and 11. In contrast, inspec-
tion of the native states in Figure 2 shows that the
other sequences either have paired regions of length
larger than 20 (E. cuniculi, V. necatrix, M. nidulans,
tenax, and V. volcanii) or very few paired regions of
length larger than 10 (C. elegans and M. musculus).

We can compare the distribution of the lengths of
paired regions in each of our test sequences to the dis-
tribution in the training set. We find that the training
set overwhelmingly contains sequences with paired re-
gion distributions similar to the test set sequences on
which the LSTM performs well. In particular, we note
that the training set has relatively few large paired
regions: there are 5 regions of length 18, 2 regions of

size 19, 4 regions of size 20, and none larger than 20.
Thus, during training the machine is penalized for out-
putting more than 20 contiguous positive predictions.
Consequently, from Figure 2 we can see that LSTM
predictions do not create sufficiently large regions for
a number of sequences, particularly those for which
LSTM accuracy is poor.

We further consider the KL divergence of the distri-
bution of the paired region lengths between the entire
training set and each test set sequence. This measure-
ment indicates how well the distribution of a test se-
quence may be learned from the training dataset. Fig-
ure 3 plots the LSTM accuracy and HMM accuracy
for each test set sequence against its KL divergence.
We can see that all of the sequences with poor LSTM
performance diverge significantly in their distribution
of paired regions. This may account for the relatively
poor performance of LSTM predictions, as the plot in-
dicates these sequences are outliers with respect to the
training set. In contrast, HMM results do not appear
to have much correlation with the KL divergence.

Figure 3 Plot comparing each test set sequence’s LSTM and
HMM accuracy vs its Kullback-Leibler divergence from
training set paired region distribution. KL divergence was
calculated as KL(P‖Q), where P is the test sequence
distribution and Q is the training set distribution.

5.2 5S and 23S rRNA
Our training and test sets focus only on 16S rRNA.
This is due to the unusually large amount of cor-
rectly identified structure available in this case; as
noted in [5], 16S rRNA is the most comprehensive
data set of correctly predicted RNA secondary struc-
ture available. There is limited data available for other
sequence types, such as 5S and 23S rRNA. This is
insufficient for training neural networks, which often
require many thousands of training examples to gen-
eralize to new samples. We tested both the HMM and
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LSTM machines on 5S and 23S rRNA datasets after
being trained on 16S sequences, and found that the
LSTM was able to make only slight improvements on
HMM predictions on these sets. This indicates that 5S
and 23S sequences are sufficiently different from 16S
sequences to require their own examples for training.

6 Conclusions & Future Work
We have presented a method for RNA state inference
that uses long short-term memory networks to detect
long-range interactions among nucleotides. Our results
show an improvement of 15 percentage points in classi-
fication accuracy over an HMM, a standard state infer-
ence tool, on a set of sequences that were distinct from
our training data. We also present evidence that our
method is better able to produce state sequence pre-
dictions that more closely resemble actual RNA states
by investigating the distribution of paired regions in
the output.

We emphasize that these results are presented pri-
marily as a proof of concept. The efficacy of machine
learning methods are necessarily limited by the dataset
used to train the machine. In our case, we found that
discrepancies between sizes of paired regions in the
training and test sets accounted for much of the error
in our test set, and found that training only on 16S
data was insufficient for achieving high accuracy on
5S and 23S rRNA sequences. Effectively incorporat-
ing RNA sequences with diverse sequence types and
structures is a possible future direction for this work.

Our work is the first of which we are aware of that
uses neural networks for RNA state inference. The re-
sults demonstrate that neural networks are capable of
capturing nonlocal interactions of RNA sequences. An
extension of this neural network based approach could
be a promising method for the more general problem
of secondary structure inference.
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