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Abstract. A deflation by restriction scheme is developed for the inverse-free

preconditioned Krylov subspace method for computing a few extreme eigen-
values of the definite symmetric generalized eigenvalue problem Ax = λBx.

The convergence theory for the inverse-free preconditioned Krylov subspace

method is generalized to include this deflation scheme and numerical examples
are presented to demonstrate the convergence properties of the algorithm with

the deflation scheme.

1. Introduction. The definite symmetric generalized eigenvalue problem for (A,B)
is to find λ ∈ R and x ∈ Rn with x 6= 0 such that

Ax = λBx (1)

where A,B are n × n symmetric matrices and B is positive definite. The eigen-
value problem (1), also referred to as a pencil eigenvalue problem (A,B), arises in
many scientific and engineering applications, such as structural dynamics, quantum
mechanics, and machine learning. The matrices involved in these applications are
usually large and sparse and only a few of the eigenvalues are desired.

Iterative methods such as the Lanczos algorithm and the Arnoldi algorithm are
some of the most efficient numerical methods developed in the past few decades
for computing a few eigenvalues of a large scale eigenvalue problem, see [1, 11,
19]. Their speed of convergence depends on the spectral distribution of (1) and
they may suffer from slow convergence when the desired eigenvalues are not well
separated. Preconditioning techniques may be used to accelerate the convergence of
these iterative methods. One of the most effective techniques is the shift-and-invert
transformation. However, for truly large problems, it may be too expensive or even
infeasible to employ the shift-and-invert method as it requires the LU factorization
of a shifted matrix. To avoid the fill-in of zero entries of a sparse matrix caused by
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the LU factorization, one can consider incomplete factorizations that are used as
preconditioners for solving linear systems. Several methods have been proposed that
can effectively accelerate convergence of an eigenvalue algorithm without using the
(complete) LU factorization of the shift-and-invert. The Jacobi-Davidson method
[20, 4], the JDCG algorithm [16], the locally preconditioned conjugate gradient
method (LOBPCG) [6, 7], and the inverse-free preconditioned Krylov subspace
method [5, 14] are some of such methods, among many others (see [2, 3, 6, 7, 12,
13, 15, 21, 24] for example).

The inverse-free precondioned Krylov subspace method of [5] is a Krylov subspace
projection method that computes the smallest (or the largest) eigenvalues of (1).
The method is based on an inner-outer iteration that does not require the inversion
of B or any shifted matrix A − λB. Given an approximate eigenvector xk and its
Rayleigh quotient ρk, it approximates the smallest eigenvalue iteratively through
the Rayleigh-Ritz projection on the Krylov subspace

Km(Hk, xk) := span{xk, Hkxk, H
2
kxk, . . . ,H

m
k xk} (2)

where Hk := A − ρkB. It is proved in [5] that this method converges at least lin-
early with a rate determined by the spectral separation of the smallest eigenvalue
of Hk. This convergence theory leads to a preconditioning scheme that acceler-
ates the convergence through some equivalent congruent transformation based on
incomplete factorizations. This procedure, however, computes one eigenvalue (the
smallest) only. To compute additional eigenvalues, a deflation technique needs to be
used. Note that a block version developed in [18] can compute several eigenvalues
simultaneously, but it is efficient largely for severely clustered eigenvalues.

Deflation processes are standard methods used by iterative eigenvalue algorithms
to compute additional eigenvalues after some eigenvalues have converged. Two
widely used deflation techniques are the Wielandt deflation (or known as deflation
by subtraction) where the matrix is modified with a low rank perturbation to move
converged eigenvalue to a different part of spectrum, and deflation by restriction
where approximate eigenvectors and relevant subspaces are projected to the orthog-
onal complement of the converged eigenvectors, see [17, 19, 23]. Both of these de-
flation schemes can be used in the standard Lanczos and Arnoldi algorithms. There
are variations of these schemes that are suitable for some particular methods. For
example, the implicitly restarted Arnoldi algorithm [9, 10, 11] employs an elaborate
deflation scheme (locking and purging) that is similar to deflation by restriction.
The Jacobi-Davidson method [20, 22] incorporates a partial Schur decomposition
deflation.

For the inverse-free preconditioned Krylov subspace method [5, 14], a natural
deflation scheme is the Wielandt deflation where the method is implicitly applied
to a low rank modified problem. Specifically, assume that ` eigenpairs (λi, vi)(for
1 ≤ i ≤ `) of (A,B) have been found and let V` = [v1, ..., vl] with V T` BV` = I and
Λ` = diag(λ1, ..., λ`). If λ`+1 ≤ ... ≤ λn are the remaining eigenvalues, then λ`+1 is
the smallest eigenvalue of

(A`, B) := (A+ (BV`)Σ(BV`)
T , B) (3)

where Σ = diag{α − λi}(1 ≤ i ≤ `) with α any value chosen to be greater than
λ`+1. Therefore λ`+1 can be computed by applying the inverse-free preconditioned
Krylov subspace algorithm to (A`, B) and all the known convergence theory is
directly applicable. This deflation method is implemented in the MATLAB program
eigifp of [14].
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In some applications, the deflation (3) alters the structure of the problem which
may cause some difficulties in its implementations. Consider computing a few small-
est singular values of a matric C. In [8], the inverse-free Krylov subspace method
is implicitly applied to A = CTC to compute the singular values of C. To carry
out the Rayleigh-Ritz projection, it is proposed to apply the projection directly to
C rather than to A = CTC; namely, we compute the smallest singular values of
Y TmCZm, rather than the smallest eigenvalues of ZTmC

TCZm, where Zm and Ym are
orthogonal bases of the subspaces Km and CKm respectively. In this way, the sin-
gular values of C are approximated by the singular values of the projection matrix.
Avoiding squaring of the singular values allows tiny singular values to be computed
more accurately (see [8]). However, the deflation (3) changes the problem to the one
for CTC + V`ΣV

T
` , for which the Ritz values can not be formulated as the singular

values of some projection matrix. In this setting, therefore, it is more desirable to
work with the original problem without the low rank modification.

The deflation by restriction is a method that ensures convergence to the desired
eigenpairs through projecting all approximate eigenvectors (or subspaces of candi-
date eigenvectors) to the B-orthogonal complement of V` := span{v1, · · · , v`}. This
certainly ensures the resulting approximate eigenvectors are the ones desired, but
the process alters the underlying algorithm which may change its convergence prop-
erties. For the inverse-free Krylov subspace method, we can apply Rayleigh-Ritz
projections directly on (A,B) but replace the Krylov subspace Km(A−ρkB, xk) by
the projected subspace

Km((I − V`V T` B)(A− ρkB), (I − V`V T` B)xk) (4)

This enforces that all approximate eigenvectors obtained are in the B-orthogonal
complement of V` but the resulting algorithm is no longer equivalent to the original
one and there is no guarantee on the convergence of the new process. Note that the
spectral projection I − V`V T` B does not generally diagonalize the matrix A− ρkB
(for B 6= I) and hence the projected subspace (4) is not equivalent to the one
produced by A− ρkB and a projected initial vector (I − V`V T` B)xk. Nevertheless,
this deflation strategy is implemented in [8] for the singular value problem and it is
reported numerically that it has a convergence characteristics similar to the original
process.

In this paper, we will show that the original convergence theory in [5] can be
generalized to the algorithm modified with the deflation by restriction scheme based
on (4). We will show that the algorithm with deflation by restriction still converges
globally and under some conditions converge locally at least linearly. However,
the rate of convergence is now determined by the eigenvalues of (I −BV`V T` )(A−
ρkB)(I − V`V T` B) as illustrated in Section 3. Numerical experiments will be given
to demonstrate our theoretical results.

The paper is organized as follows. We briefly review the inverse-free precondi-
tioned Krylov subspace method in Section 2. In Section 3 we introduce the new
deflation strategy and prove some global and local convergence results that are sim-
ilar to the ones in [5]. We will present some numerical examples in Section 4 to
illustrate the convergence properties. We conclude the paper with some remarks in
Section 5. Throughout the paper, we use ‖ · ‖ to denote 2-norm.

2. Inverse-free Preconditioned Krylov Subspace Method. Given a vector
x, the Rayleigh quotient ρ(x) = (xTAx)/(xTBx) is the best approximation to an ei-
genvalue in the sense that α = ρ(x) minimizes the 2-norm of the residual Ax−αBx.
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Since r = (Ax−ρ(x)Bx)/xTBx is the gradient of ρ(x), the well-known steepest de-
scent method aims to minimize the Rayleigh quotient over span{x, r}. Noticing that
it can be viewed as a Rayleigh-Ritz orthogonal projection method on the Krylov
subspace K1(A − ρ(x)B, x) = span{x, (A − ρ(x)B)x}, the inverse-free Krylov sub-
space method improves this by considering the Rayleigh-Ritz orthogonal projection
on a larger Krylov subspace Km(A − ρ(x)B, x) = span{x, (A − ρ(x)B)x, . . . , (A −
ρ(x)B)mx}. Namely, assume that xk is the approximate eigenvector at step k in an
iterative procedure of finding the smallest eigenvalue of the pair (A,B), [5] obtains
a new approximation through the Rayleigh-Ritz orthogonal projection on

Km(A− ρkB, xk) = span{xk, (A− ρkB)xk, . . . , (A− ρkB)mxk}

where

ρk = ρ(xk) =
xTkAxk
xTkBxk

(5)

and m is a parameter to be chosen. Suppose Zm is a matrix whose columns are
basis vectors of Km(A− ρkB, xk). Let Am = ZTm(A− ρkB)Zm and Bm = ZTmBZm.
The smallest eigenvalue µ1 of (Am, Bm) and a corresponding eigenvector h can be
obtained by any state-of-the-art eigensolver. Then the new approximation xk+1 is

xk+1 = Zmh (6)

and, correspondingly, the Rayleigh quotient

ρk+1 = ρk + µ1 (7)

is a new approximate eigenvalue. The choices of Zm are not unique and it can be
constructed by either the Lanczos method or the Arnoldi method with the B-inner
product; see [5] for a more detailed discussion. Throughout this paper, we will
only consider the case when the columns of Zm are B-orthonormal, i.e. ZTmBZm =
I. Then the basic procedure of inverse-free Krylov subspace method is given in
Algorithm 2.1.

Algorithm 2.1 Inverse-free Krylov subspace method for (A,B)

1: Input: m ≥ 1 and an initial approximate eigenvector x0 with ‖x0‖ = 1;
2: ρ0 = ρ(x0);
3: for k = 0, 1, 2, . . . until convergence do
4: Construct a B-orthonormal basis Zm = [z0, z1, . . . , zm] for Km(A−ρkB, xk);
5: Form Am = ZTm(A− ρkB)Zm;
6: Find the smallest eigenpair (µ1, h) of Am;
7: ρk+1 = ρk + µ1 and xk+1 = Zmh.
8: end for

The following theorem states that Algorithm 2.1 always converges to an eigenpair
of (A,B).

Theorem 2.1. ( [5, Proposition 3.1 and Theorems 3.2]) Let λ1 be the smallest
eigenvalue of (A,B) and (ρk, xk) be the eigenpair approximation of Algorithm 2.1
at step k. Then

1. λ1 ≤ ρk+1 ≤ ρk;
2. ρk converges to some eigenvalue λ̂ of (A,B) and ‖(A− λ̂B)xk‖ → 0.
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Theorem 2.1 shows that xk in Algorithm 2.1 always converges in direction to
an eigenvector of (A,B). Through a local analysis, we have that Algorithm 2.1
converges linearly under some conditions with a rate bounded below.

Theorem 2.2. ( [5, Theorems 3.4]) Let λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of
(A,B). Let (ρk+1, xk+1) be the approximate eigenpair obtained by Algorithm 2.1 at
step k+ 1 from (ρk, xk). Let σ1 < σ2 ≤ · · · ≤ σn be the eigenvalues of A− ρkB and
u1 be a unit eigenvector corresponding to σ1. Assume λ1 < ρk < λ2. Then

ρk+1 − λ1 ≤ (ρk − λ1)ε2m + 2(ρk − λ1)3/2εm

(
‖B‖
σ2

) 1
2

+O
(
(ρk − λ1)2

)
(8)

where
εm = min

p∈Pm,p(σ1)=1
max
i 6=1
|p(σi)|

and Pm denote the set of all polynomials of degree not greater than m.

Theorem 2.2 shows that ρk converges at least at the rate of ε2m which is bounded
in terms of σi as

εm ≤ 2

(
1−
√
φ

1 +
√
φ

)m
with φ =

σ2 − σ1
σn − σ1

.

It illustrates an interesting fact that the speed of convergence of ρk depends on
the distribution of eigenvalues of A − ρkB rather than those of (A,B). It leads
to some equivalent transformations of the problem, called preconditioning, that
changes the spectrum of A − ρkB to accelerate the convergence of Algorithm
2.1. In particular, suppose λ1 < ρk < λ2 and let A − ρkB = LkDkL

T
k be the

LDLT factorization with Dk = diag{−1, 1, . . . , 1}. Then the transformed pair

(Âk, B̂k) ≡ (L−1k AL−Tk , L−1k AL−Tk ) will have the same eigenvalues as (A,B) and the

convergence of Algorithm 2.1 will depend on the spectral gap of L−1k (A− ρkB)L−Tk
in which case εm = 0. Then, by Theorem 2.2, the preconditioned Algorithm con-
verges quadratically. However, this is an ideal situation since we assume a complete
LDLT factorization and Lk is computed for each iteration which is not practical.
In practice, we use an approximate LDLT factorization through an incomplete fac-
torization for example. This usually leads to a small εm and hence accelerates
convergence; see [5] for more discussions.

3. Analysis of Deflation Algorithms. Algorithm 2.1 computes the smallest ei-
genvalue of (A,B) only. When the smallest eigenvalue has been computed, we can
use a deflation procedure to compute additional eigenvalues. While both the defla-
tion by restriction method and the Wielandt deflation can be used in most other
iterative methods, the Wielandt deflation is the only one that can be directly used
for Algorithm 2.1. We first briefly describe this process as presented in [14].

Suppose that ` eigenpairs (λi, vi)(for 1 ≤ i ≤ `) of (A,B) have been found and let
V` = [v1, ..., vl] with V T` BV` = I and Λ` = diag{λ1, . . . , λ`}. Then AV` = BV`Λ`.
In the Wielandt deflation method, we apply Algorithm 2.1 to

(A`, B) := (A+ (BV`)Σ(BV`)
T , B) where Σ = diag{α− λi}

with α any value chosen to be greater than λ`+2. Since λ`+1 is the smallest eigenva-
lue of (A`, B), Algorithm 2.1 will converge to λ`+1 under the conditions of Theorem
2.2.

As discussed in the introduction, the Wielandt deflation changes the structure
of the problem and this may be undesirable in certain applications such as the
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singular value computations (see [8]). In such problems, it is of interest to consider
the deflation by restriction, namely, by projecting the subspaces involved to the B-
orthogonal complement of V` := span{v1, · · · , v`}. This can be done by simply using
(I − V`V T` B)Km(A − ρkB, xk), but this does not lead to a convergent algorithm.
A more appropriate approach is to apply the projection on the matrix or on every
step of the basis construction; namely we use Km((I − V`V

T
` B)(A − ρkB), (I −

V`V
T
` B)xk); This also changes subspaces and the existing convergence theory does

not apply. However, it has been observed numerically in [8] that such a deflation
scheme appears to work in practice.

In this section, we formulate a deflation by restriction method for the inverse-
free Krylov subspace method (Algorithm 2.1) and present a convergence theory
that generalizes the convergence results of Section 2. We first state the deflation by
restriction method in the following algorithm.

Algorithm 3.2 Inverse-free Krylov subspace method with deflation by restriction

1: Input: V` = [v1, · · · , v`] satisfying Avi = λiBvi (for 1 ≤ i ≤ l) and V T` BV` = I;
m and x0 with ‖x0‖ = 1 and V T` Bx0 = 0;

2: ρ0 = ρ(x0);
3: for k = 0, 1, 2, . . . until convergence do
4: Construct a basis {z1, z2, . . . , zm} for Km((I − V`V T` B)(A− ρkB), xk);
5: Am = ZTm(A− ρkB)Zm and Bm = ZTmBZm where Zm = [z1, z2, . . . , zm];
6: Find the smallest eigenvalue µ1 and a unit eigenvector v for (Am, Bm);
7: ρk+1 = ρk + µ1 and xk+1 = Zmv.
8: end for

The difference of this algorithm from the standard one (Algorithm 2.1) is the use
of the projected Krylov subspace Km(PV (A − ρkB), xk) where PV = I − V`V T` B.
We can easily show by induction that PV xk = xk for all k. Then

Km(PV (A− ρkB), xk) = Km(PV (A− ρkB)PV , xk).

However, since the columns of V` are generally not eigenvectors of A− ρkB (when
B 6= I), PV (A − ρkB)PV does not lead to a deflated operator (i.e. a spectral
restriction of A−ρkB). Indeed, with PV a B-orthogonal projection, PV (A−ρkB)PV
is not even symmetric. However, the following lemma expresses the Krylov subspace
as one generated by a symmetric matrix, which is key in our analysis of Algorithm
3.2.

Lemma 3.1. Let V` = [v1, · · · , v`] be such that Avi = λiBvi (for 1 ≤ i ≤ l) and
V T` BV` = I. Let PV = I − V`V T` B. Then we have

(A− ρkB)PV = PTV (A− ρkB) (9)

and for any xk with PV xk = xk,

Km(PV (A− ρkB), xk) = PVKm(PTV (A− ρkB)PV , xk). (10)
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Proof. First we have AV` = BV`Λ, where Λ = diag{λ1, · · · , λ`}. Then V T` A =
ΛV T` B. It follows that

PTV (A− ρkB) = (A− ρkB)− (BV`V
T
` A− ρkBV`V T` B)

= (A− ρkB)− (BV`ΛV
T
` B − ρkBV`V T` B)

= (A− ρkB)− (AV`V
T
` B − ρkBV`V T` B)

= (A− ρkB)PV ,

which proves (9). From this and P 2
V = PV , we have

PTV (A− ρkB)PV = (A− ρkB)PV PV = (A− ρkB)PV .

Thus, it follows from PV xk = xk that for all i = 1, · · · ,m− 1,

(PV (A− ρkB))ixk = (PV (A− ρkB))iPV xk

= PV ((A− ρkB)PV )ixk

= PV (PTV (A− ρkB)PV )ixk.

Hence Km(PV (A− ρkB), xk) = PVKm(PTV (A− ρkB)PV , xk).

With the above characterization of the projection subspace used in Algorithm
3.2, the convergence properties described in Section 2 can be generalized following
similar lines of proofs in [5, Theorem 3.2] with careful analysis of some subtle effects
of the projection that are highly nontrivial. We first present a generalization of the
global convergence result (Theorem 2.1).

Theorem 3.2. Let V` = [v1, · · · , v`] be such that Avi = λiBvi (for 1 ≤ i ≤ l)
and V T` BV` = I. Let λ`+1 ≤ λ`+2 ≤ · · · ≤ λn together with λ1, · · · , λ` be the
eigenvalues of (A,B). Let (ρk, xk) be the eigenpair approximation obtained at step
k of Algorithm 3.2 with V`. Then

λ`+1 ≤ ρk+1 ≤ ρk.

Furthermore, ρk converges to some eigenvalue λ̂ ∈ {λ`+1, · · · , λn} of (A,B) and

‖(A− λ̂B)xk‖ → 0 (i.e., xk converges in direction to a corresponding eigenvector).

Proof. From Algorithm 3.2, we have

ρk+1 = ρk + min
w∈W,w 6=0

wT (A− ρkB)w

wTBw
= min
w∈W

wTAw

wTBw

where W = Km(PV (A − ρkB), xk) and PV = I − V`V T` B. Since xk ∈ W, we have
ρk+1 ≤ ρk. On the other hand, it follows from Lemma 3.1 thatW = PVKm(PTV (A−
ρkB)PV , xk) ⊂ R(PV ) (the range space of PV ). Then

ρk+1 ≥ min
V T` Bw=0,w 6=0

wTAw

wTBw
= λ`+1.

It follows that ρk is convergent. Since {xk} is bounded, there is a convergent
subsequence {xnk}. Let

lim ρk = λ̂, and limxnk = x̂.

Write r̂ = (A− λ̂B)x̂. Then it follows from xTk (A− ρkB)xk = 0 that

x̂T r̂ = x̂T (A− λ̂B)x̂ = 0.
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Suppose now r̂ 6= 0. Using Lemma 3.1 and the fact that PV x̂ = x̂ which follows
from PV xk = xk, we obtain

PTV r̂ = PTV (A− λ̂B)x̂ = (A− λ̂B)PV x̂ = (A− λ̂B)x̂ = r̂. (11)

We now show that x̂ and PV r̂ are linearly independent. If they are linearly depen-
dent, we have PV r̂ = γx̂ for some scaler γ. Then by (11), r̂TPV P

T
V r̂ = r̂TPV r̂ =

γr̂T x̂ = 0. Thus PTV r̂ = 0 or by (11) again, r̂ = 0, which is a contradiction. There-
fore, x̂ and PV r̂ are linearly independent. We next consider the projection of (A,B)
onto span{x̂, PV r̂} by defining

Â = [x̂, PV r̂]
TA[x̂, PV r̂] and B̂ = [x̂, PV r̂]

TB[x̂, PV r̂].

Clearly, B̂ > 0. Furthermore,

Â− λ̂B̂ =

(
0 r̂TPV r̂

r̂TPTV r̂ r̂TPTV (A− λ̂B)PV r̂

)
is indefinite because, by (11), r̂TPV r̂ = (PTV r̂)

T r̂ = r̂T r̂ 6= 0. Thus the smallest

eigenvalue of (Â, B̂), denoted by λ̃, is less than λ̂, i.e.

λ̃ < λ̂. (12)

Furthermore, let rk = (A− ρkB)xk,

Âk = [xk, PV rk]TA[xk, PV rk] and B̂k = [xk, PV rk]TB[xk, PV rk].

Let λ̃k+1 be the smallest eigenvalue of (Âk, B̂k). Clearly, as nk →∞, Ânk → Â and

B̂nk → B̂. Hence by the continuity property of the eigenvalue, we have

λ̃nk+1 → λ̃.

On the other hand, ρk+1 is the smallest eigenvalue of the projection of (A,B) on
Km = span{xk, PV (A− ρkB)xk, · · · , (PV (A− ρkB))mxk}, which implies

ρk+1 ≤ λ̃k+1.

Finally, combining the above together, we have obtained

λ̃ = lim λ̃nk+1 ≥ lim ρnk+1 = λ̂

which is a contradiction to (12). Therefore, r̂ = (A − λ̂B)x̂ = 0, i.e. λ̂ is an

eigenvalue and ‖(A− λ̂B)xnk‖ → 0.

Now, to show ‖(A− λ̂B)xk‖ → 0, suppose there is a subsequence mk such that

‖(A− λ̂B)xmk‖ ≥ α > 0. From the subsequence mk, there is a subsequence nk for

which xnk is convergent. Hence by virtue of the above proof, ‖(A− λ̂B)xnk‖ → 0,

which is a contradiction. Therefore ‖(A− λ̂B)xk‖ → 0, i.e. xk approaches in direc-

tion an eigenvector corresponding to λ̂. Since xk is B-orthogonal to {v1, · · · , v`},
we have λ̂ ∈ {λ`+1, · · · , λn}. This completes the proof.

Next we present a lemma and then our main result concerning local linear con-
vergence of ρk that generalizes Theorem 2.2.

Lemma 3.3. Let V` = [v1, · · · , v`] be such that Avi = λiBvi (for 1 ≤ i ≤ `) and
V T` BV` = I and let PV = I − V`V

T
` B and V` = span{v1, · · · , v`}. Let λ`+1 <

λ`+2 ≤ · · · ≤ λn together with λ1, · · · , λ` be the eigenvalues of (A,B). Let (ρk, xk)
be the eigenpair approximation obtained at step k of Algorithm 3.2 with V` and
assume that λ`+1 ≤ ρk < λ`+2. Let PTV (A − ρkB)PV = WSWT be the eigenvalue
decomposition of PTV (A − ρkB)PV where S = diag{0, 0, · · · , 0, s`+1, · · · , sn} with
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s`+1 ≤ s`+2 ≤ · · · ≤ sn, and W = [w1, · · · , w`, w`+1, · · · , wn] with wi ∈ V` (for
i = 1, · · · , `), and wi ⊥ V` (for i = ` + 1, · · · , n). Then we have s`+1 ≤ 0 < s`+2,
PV w`+1 6= 0 and

|s`+1|
wT`+1P

T
V BPV w`+1

≤ ρk − λ`+1. (13)

Furthermore, ρk → λ`+1 and

s`+1

wT`+1P
T
V BPV w`+1

= (λ`+1 − ρk) +O((λ`+1 − ρk)2). (14)

Proof. First, by Theorem 3.2 and the assumption λ`+1 ≤ ρk < λ`+2, we have the
convergence of ρk to λ`+1.

Let Ṽ = [v`+1, v`+2, · · · , vn] be such that Avi = λiBvi (for ` + 1 ≤ i ≤ n) and

Ṽ TBṼ = I. Let V = [V`, Ṽ ] and PV V = [PV V`, PV Ṽ ] = [0, Ṽ ] and hence

V TPTV (A− ρkB)PV V =

(
0 0

0 Ṽ T (A− ρkB)Ṽ

)
=

(
0 0

0 Λ̃− ρkI

)
where Ṽ T (A− ρkB)Ṽ = Ṽ TBṼ (Λ̃− ρkI) = Λ̃− ρkI and Λ̃ = diag{λ`+1, · · · , λn}.
By Sylvester’s law of inertia and λ`+1 − ρk ≤ 0 < λ`+2 − ρk, PTV (A− ρkB)PV has
exactly n−`−1 negative, ` zero, and 1 nonpositive eigenvalues, i.e., s`+1 ≤ 0 < s`+2.

Let w̃`+1 = PV w`+1 and suppose w̃`+1 = 0. Then w`+1 = V`V
T
` Bw`+1 ∈ V`.

This implies w`+1 = 0 as w`+1 ⊥ V`. This is a contradiction. Therefore, w̃`+1 6= 0.
Furthermore, w̃`+1 ⊥B V`, i.e. V T` Bw̃`+1 = 0. Then

λ`+1 = min
V T` Bw=0,w 6=0

wTAw

wTBw

≤
w̃T`+1Aw̃`+1

w̃T`+1Bw̃`+1

= ρk +
w̃T`+1(A− ρkB)w̃`+1

w̃T`+1Bw̃`+1

= ρk +
wT`+1P

T
V (A− ρkB)PV w`+1

w̃T`+1Bw̃`+1

= ρk +
s`+1

wTl+1P
T
V BPV wl+1

.

where we have used PTV (A − ρkB)PV w`+1 = s`+1w`+1 in the last equation. This
proves (13).

Finally, to prove the asymptotic expansion, let s(t) be the smallest eigenvalue of
PTV (A− tB)PV . Then s(ρk) = s`+1. It is easy to check that s(λ`+1) = 0. Using the
analytic perturbation theory, we obtain s′(ρk) = −w̃T`+1Bw̃`+1 and hence

s(t) = s(ρk) + s′(ρk)(t− ρk) +O((t− ρk)2)

= s`+1 − w̃T`+1Bw̃`+1(t− ρk) +O((t− ρk)2)

Choosing t = λ`+1, we have

0 = s(λ`+1) = s`+1 − w̃T`+1Bw̃`+1(λ`+1 − ρk) +O((λ`+1 − ρk)2)

from which the expansion follows.
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Theorem 3.4. Let V` = [v1, · · · , v`] be such that Avi = λiBvi (for 1 ≤ i ≤ l) and
V T` BV` = I and write PV = I − V`V T` B and V` = span{v1, · · · , v`}. Let λ`+1 <
λ`+2 ≤ · · · ≤ λn together with λ1, · · · , λ` be the eigenvalues of (A,B). Let (ρk, xk)
be the eigenpair approximation obtained at step k of Algorithm 2.1 with V` and
assume that λ`+1 ≤ ρk < λ`+2. Let PTV (A − ρkB)PV = WSWT be the eigenvalue
decomposition of PTV (A − ρkB)PV where S = diag{0, 0, · · · , 0, s`+1, · · · , sn} with
s`+1 ≤ s`+2 ≤ · · · ≤ sn, and W = [w1, · · · , w`, w`+1, · · · , wn] with wi ∈ V` (for
i = 1, · · · , `), and wi ⊥ V` (for i = `+ 1, · · · , n). Then ρk converges to λ`+1 and

ρk+1 − λ`+1 ≤ (ρk − λ`+1)ε2m + 2(ρk − λ`+1)3/2εm

(
‖B‖
s`+2

)1/2

+ δk, (15)

where

0 ≤ δk := ρk − λ`+1 +
s`+1

wT`+1P
T
V BPV w`+1

= O((ρk − λ`+1)2)

and

εm = min
p∈Pm,

p(s`+1)=1

max
i≥1
|p(s`+i)|

with Pm denoting the set of all polynomials of degree not greater than m.

Proof. First, it follows from Lemma 3.3 that ρk converges to λ`+1, s`+1 ≤ 0 < s`+2

and PV w`+1 6= 0.

Let H̃k := PTV (A−ρkB)PV . From Lemma 3.1, Km(PV (A−ρkB), xk) = PVKm(H̃k, xk) =

{PV p(H̃k)xk, p ∈ Pm}. At step k of the algorithm, we have

ρk+1 = min
u∈Km(PV (A−ρkB),xk),

u 6=0

uTAu

uTBu

= ρk + min
u∈Km(PV (A−ρkB),xk),

u6=0

uT (A− ρkB)u

uTBu

= ρk + min
p∈Pm,

PV p(H̃k)xk 6=0

xTk p(H̃k)PTV (A− ρkB)PV p(H̃k)xk

xTk p(H̃k)PTV BPV p(H̃k)xk

= ρk + min
p∈Pm,

PV p(H̃k)xk 6=0

xTk p(H̃k)H̃kp(H̃k)xk

xTk p(H̃k)(PTV BPV )p(H̃k)xk

Let q be the minimizing polynomial in εm with q(s`+1) = 1 and maxi≥l+2 |q(si)| =
εm < 1. Let

Ŝ = diag[s`+1, · · · , sn] and Ŵ = [w`+1, · · · , wn].

Then W = [V`T, Ŵ ] for some T ∈ R`×n. Since xTk H̃kxk = xTk (A − ρkB)xk = 0

and xTk H̃kxk = xTkWSWTxk =
∑n
i=`+1 si(w

T
i xk)2 with si > 0 for i ≥ ` + 2, we

have wT`+1xk 6= 0. Hence PV q(H̃k)xk = PVWq(S)WTxk = [0, PV Ŵ ]q(S)WTxk 6= 0

where we note that V T` Ŵ = 0 and hence PV Ŵ has full column rank. Let B1 =
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ŴTPTV BPV Ŵ and y = ŴTxk. Then

ρk+1 ≤ ρk +
xTk q(H̃k)H̃kq(H̃k)xk

xTk q(H̃k)(PTV BPV )q(H̃k)xk

= ρk +
xTkWq(S)Sq(S)WTxk

xTkWq(S)WTPTV BPVWq(S)WTxk

= ρk +
xTk Ŵ q2(Ŝ)ŜŴTxk

xTk Ŵ q(Ŝ)ŴTPTV BPV Ŵ q(Ŝ)ŴTxk

= ρk +
yT q2(Ŝ)Ŝy

yT q(Ŝ)B1q(Ŝ)y
. (16)

where we have used

Wq(S)Sq(S)WT = Ŵ q2(Ŝ)ŜŴT

and

PVWq(S)WT = [0, PV Ŵ ]q(S)WT = PV Ŵ q(Ŝ)ŴT .

Let y = [y1, y2, . . . , yn−`]
T , ŷ = [0, y2, . . . , yn−`]

T , and e1 = [1, 0, . . . , 0]T ∈ Rn−`.
Then,

yT q(Ŝ)B1q(Ŝ)y = (y1e1 + ŷ)T q(Ŝ)B1q(Ŝ)(y1e1 + ŷ)

= y21q(s`+1)2eT1 B1e1 + 2y1q(s`+1)eT1 B1q(Ŝ)ŷ + ŷT q(Ŝ)B1q(Ŝ)ŷ

= y21β
2
1 + 2y1β2 + β2

3 ,

where β1 ≥ 0, β2 and β3 ≥ 0 are defined such that

β2
1 = eT1 B1e1 = wT`+1P

T
V BPV w`+1,

β2
3 = ŷT q(Ŝ)B1q(Ŝ)ŷ

≤ max
l+1≤i≤n

q(si)
2‖B1‖‖ŷ‖2

= ε2m‖B‖‖ŷ‖2

and

|β2| = |eT1 B1q(Ŝ)ŵ| ≤ β1β3.

Since yT Ŝy = xTk Ŵ ŜŴTxk = xTk H̃kxk = 0, we have
∑n−`
i=1 s`+iy

2
i = 0. Then

|s`+1|y21 =

n−∑̀
i=2

s`+iy
2
i ≥ s`+2‖ŷ‖2, (17)

and hence

β3 ≤ εm‖B‖1/2
(
|s`+1|
s`+2

)1/2

|y1|. (18)

On the other hand, we also have

yT q2(Ŝ)Ŝy =

n−∑̀
i=1

s`+iq
2(s`+i)y

2
i ≤

n−∑̀
i=1

s`+iy
2
i = yT Ŝy = 0

and

0 ≤ ŷT q2(Ŝ)Ŝŷ =

n−∑̀
i=2

s`+iq
2(s`+i)y

2
i ≤ ε2m

n−∑̀
i=2

s`+iy
2
i = ε2m|s`+1|y21 , (19)
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where we have used that q(s`+1) = 1, |q(s`+i)| ≤ εm < 1 for i > 1 and (17). Thus

yT q2(Ŝ)Ŝy

yT q(Ŝ)B1q(Ŝ)y
≤ y21s`+1 + ŷT q(Ŝ)2Ŝŷ

y21β
2
1 + 2|y1|β1β3 + β2

3

=
s`+1

β2
1

− s`+1

β2
1

2|y1|β1β3 + β2
3

y21β
2
1 + 2|y1|β1β3 + β2

3

+
ŷT q(Ŝ)2Ŝŷ

y21β
2
1 + 2|y1|β1β3 + β2

3

≤ s`+1

β2
1

− s`+1

β2
1

2|y1|β1β3
y21β

2
1

+
ŷT q(Ŝ)2Ŝŷ

y21β
2
1

≤ s`+1

β2
1

+ 2

(
|s`+1|
β2
1

)3/2

εm

(
‖B‖
s`+2

)1/2

+
|s`+1|
β2
1

ε2m, (20)

where we have used (18) and (19). Finally, combining (16), (20), and Lemma 3.3,
we have

0 ≤ ρk+1 − λ`+1 ≤ ρk − λ`+1 +
s`+1

β2
1

+ 2(ρk − λ`+1)3/2εm

(
‖B‖
s`+2

)1/2

+ (ρk − λ`+1)ε2m

≤ δk + 2(ρk − λ`+1)3/2εm

(
‖B‖
s`+2

)1/2

+ (ρk − λ`+1)ε2m,

where δk = ρk − λ`+1 + s`+1

β2
1

= O((ρk − λ`+1)2) by Lemma 3.3. The proof is

complete.

Remark 1. εm in the theorem can be bounded by the Chebyshev polynomials as

εm ≤
1

Tm

(
1+ψ
1−ψ

) , where ψ =
sl+2 − sl+1

sn − sl+1
(21)

and Tm is the Chebyshev polynomial of degree m. This bound can be further
simplified to

εm ≤ 2

(
1 +
√
ψ

1−
√
ψ

)m
(22)

to show the dependence on the spectral separation ψ. Thus, the speed of conver-
gence of the deflation algorithm depends on the spectral gap of the smallest nonzero
eigenvalue of PTV (A − ρkB)PV , rather than that of A − ρkB in the original algo-
rithm. In particular, this may have a different convergence characteristic from the
Wielandt deflation (3).

We also note that for small m, the bound (21) may be significantly stronger than
(22), but when m is sufficiently large, (22) is almost as good as (21). It is also easy
to see that, asymptotically, we can use the eigenvalues of PTV (A− λ`+1B)PV in the
place of s`+1 ≤ s`+2 ≤ · · · ≤ sn without changing the first order term of the bound;
see [5] for more discussions.

As in [5], a congruence transformation can be used in Algorithm 3.2 to reduce εm
to 0 so as to accelerate convergence. Consider the ideal situation that we compute
the LDLT -decomposition of PTV (A−ρkB)PV = LkDkL

T
k with Dk being a diagonal

matrix of 0 and ±1. Then the congruence transformation

(Âk, B̂k) := (L−1k AL−Tk , L−1k BL−Tk )
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does not change the spectrum of (A,B). Applying Algorithm 3.2 to the transformed
problem, we use

V̂` := LkV`

to construct the projection PV̂ := I − B̂V̂`V̂ T` , as Âkv̂i = λiB̂kv̂i(1 ≤ i ≤ `) and

V̂ T` B̂kV̂` = I. Then, by Theorem 3.4, the convergence rate is determined by the

eigenvalues of PT
V̂

(Â− ρkB̂)PV̂ . It is easy to see that

PT
V̂

(Â− ρkB̂)PV̂ = L−1k PTV (A− ρkB)PV L
−T
k = Dk. (23)

Then at the convergence stage with λl+1 < ρk < λl+2, we have s1 = · · · = sl = 0
and sl+1 = −1, sl+2 = . . . = sn = 1, which implies, for m ≥ 1, εm = 0, and hence
by Theorem 3.4,

ρk − λl+1 ≤ δk = O((ρk − λl+1)2).

The above is an ideal situation that requires computing the LDLT -decomposition.
In practice, we can use an incomplete LDLT -decomposition of PTV (A − µB)PV =
LkDkL

T
k with a shift µ ≈ ρk (or λ`+1), which would reduce εm and hence accelerate

convergence.

4. Numerical Examples. In this section, we present two numerical examples to
demonstrate the convergence properties of the deflation by restriction for the inverse
free Krylov subspace method. All computations were carried out using MATLAB
version 8.0.0.783 from MathWorks on a PC with an Intel quad-core i7-2670QM @
2.20GHz and 12 GB of RAM running Ubuntu Linux 12.04. The machine epsilon is
u ≈ 2.2 · 10−16.

Our implementation is based on the MATLAB program eigifp of [14]. In par-
ticular, the basis of the projected Krylov subspace is constructed using the Arnoldi
method. In both examples, we compute the three smallest eigenvalues and use the
deflation algorithm in computing the second and the third smallest eigenvalues.
The initial vectors are generated by randn(n,3) and we fix the number of inner
iterations as m = 20. Note that m can be set to be chosen adaptively in eigifp,
but here we consider a fixed m for the demonstration of the convergence bound by
εm. The stopping criterion is set as ‖rk‖ ≤ 10−8, where rk = (Axk − ρkBxk)/‖xk‖.

Example 1. Consider the Laplace eigenvalue problem with the Dirichlet bound-
ary condition on an L-shaped domain. A definite symmetric generalized eigenvalue
problem Ax = λBx is obtained by a finite element discretization on a mesh with
20,569 interior nodes using PDE toolbox of MATLAB. Three iterations of deflation
algorithms are carried out to compute the three smallest eigenvalues and we plot
the convergence history of the residuals ‖rk‖ against the number of iterations for
the three eigenvalues λi(1 ≤ i ≤ 3) together in Figure 1. To illustrate Theorem 3.4,
we also plot in Figure 2 the convergence rate (ρk+1 − λi)/(ρk − λi) and compare
it with the upper bound (21) of ε2m. For the purpose of simplicity, the bound (21)
is computed from the eigenvalues of the projected matrix PTV (A − λiB)PV . The
top straight lines are the upper bounds of ε2m and the bottom three lines are the
corresponding actual error ratios (ρk+1 − λi)/(ρk − λi).

We observe that the deflation algorithm converges indeed linearly and (21) pro-
vides a good bound on the rate of convergence. We note that λ1 takes more it-
erations overall than the other two eigenvalues. This is due to the use of initial
random vector for λ1, but to compute λ2 and λ3 in the eigifp implementation,
initial approximate eigenvectors are computed from the projection used to compute
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Figure 1. Convergence History of Residuals for three eigenvalues
λ1, λ2, λ3

λ1. As a result, λ2 and λ3 have smaller initial errors, but their overall convergence
rates are still comparable as suggested by their bounds. Finally, we list all the
converged eigenvalues, the number of iterations used to reduce the residuals below
the threshold, and their final residuals in Table 1.

Table 1. 3 smallest eigenvalues of Laplacian eigenvalue problem on
L-shaped domain

λl Number of Iterations Residual ‖rk‖
23.3876 42 5.50e-09

37.9873 36 4.76e-09

47.4515 30 9.98e-09

Example 2. In this example, we consider the deflation algorithm when used
with preconditioning. A and B are the same finite element matrices as in Example
1. For preconditioning, we use a constant L as obtained by the threshold incomplete
LDLT factorization of A−µiB with the drop tolerance 10−2, where the shift µi is an
approximation of the desired eigenvalue λi. We use µ1 = 0 for λ1 and µi = λi−1 for
i > 1. Then, the convergence rate is given by εm as determined by the eigenvalues
of L−1PTV (A− λiB)PV L

−T as in (21).
As in Example 1, three iterations of deflation algorithms with preconditioning are

carried out to compute the three smallest eigenvalues. We plot the convergence his-
tory of the residuals ‖rk‖ in Figure 3 and the convergence rate (ρk+1−λi)/(ρk−λi)
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Figure 2. Top: bound ε2m; Bottom: error ratio (ρk+1 − λi)/(ρk − λi).

as well as its upper bound (21) in Figure 4. We also list all the converged eigen-
values, the number of iterations used to reduce the residuals below the threshold,
and their final residuals in Table 2.

Table 2. 3 smallest eigenvalues of Laplacian eigenvalue problem on
L-shaped domain

λl Number of Iterations Residual ‖rk‖
23.3876 18 1.54e-09

37.9873 14 1.73e-09

47.4515 12 7.63e-09

We observe that the deflation algorithm with preconditioning converges linearly
and (21) provides a very good bound on the rate of convergence. In particular,
with the preconditioning, the convergence bounds are significantly improved and
correspondingly, the actual convergence rates are also improved demonstrating the
effects of preconditioning.

5. Conclusion Remarks. We have incorporated the deflation by restriction method
into the inverse-free preconditioned Krylov subspace method to find several eigen-
values of the generalized symmetric definite eigenvalue problem. We extend the
convergence analysis in [5] to justify the deflation scheme. Numerical examples
confirm the convergence properties as revealed by the new theory. This deflation
scheme allows implementation of the inverse-free preconditioned Krylov subspace
method without using perturbations to the original problems as in the Wielandt
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Figure 3. Convergence History of Residuals for three eigenvalues
λ1, λ2, λ3

deflation. This may be important in applications such as the singular value com-
putation where the structure of the problems needs to be preserved.
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