The mixed problem in two-dimensional Lipschitz domains.

Russell Brown
Department of Mathematics
University of Kentucky

Luca Capogna
Loredana Lanzani
Department of Mathematics
University of Arkansas

19 March 2005
Southeastern Sectional Meeting of the American
Mathematical Society
Meeting #1004
Special Session on Partial Differential Equations and Applications
The mixed problem.

We consider domains $\Omega = \{(x_1, x_2) : x_2 > \phi(x_1)\}$ where ϕ satisfies $\|\phi'\|_\infty < \infty$ and, for convenience, $\phi(0) = 0$. We write $\partial \Omega = D \cup N$ with $D = \partial \Omega \cap \{x_1 > 0\}$ and $N = \partial \Omega \cap \{x_1 \leq 0\}$. We consider the following classical boundary value problem,

$$
\begin{cases}
\Delta u = 0 & \text{in } \Omega \\
u = f_D & \text{on } D \\
\frac{\partial u}{\partial \nu} = f_N & \text{on } N \\
(\nabla u)^* \in L^p(\omega \, d\sigma)
\end{cases}
$$

We will generally require data f_N from $L^p(N, \omega \, d\sigma)$ and ask that df_D/ds lie in $L^p(D, \omega \, d\sigma)$. The weights ω will be of the form $|x|^\epsilon$.

If $p = 1$, we must replace the L^p-spaces by Hardy spaces.
The non-tangential maximal function

Our estimate for ∇u uses the non-tangential maximal function, $(\nabla u)^*$. For $x \in \Omega$, we define $\Gamma(x) = \{y : A|y_1 - x_1| < (y_2 - x_2)\}$ for some A, $\|\phi\|_\infty < A < \infty$. Then for a function u on Ω, we define the non-tangential maximal function by

$$u^*(x) = \sup_{y \in \Gamma(x)} |u(y)|.$$

This function allows us to use the dominated convergence theorem to show that the values of u on surfaces parallel to the boundary converge as we approach the boundary.
An example

If we let \(u(r, \theta) = r^{1/2} \cos(\theta/2) \), then

\[
\begin{cases}
\Delta u = 0 & \text{in } \{(x_1, x_2) : x_2 > 0\} \\
u(x_1, 0) = 0, & x_1 < 0 \\
\frac{\partial u}{\partial \nu}(x_1, 0) = 0, & x_1 > 0
\end{cases}
\]

but we do not have \(\nabla u(x_1, 0) \in L^2_{\text{loc}}(\mathbb{R}) \).

Thus, we cannot solve the mixed problem in \(L^2 \) with respect to arc-length for smooth domains. (We focus on the local behavior of \(u \) and ignore the behavior at infinity.)
Some results

1. Azzam and Kreyszig (1982) found solutions in $C^{2+\alpha}(\bar{\Omega})$ provided Ω is piecewise smooth and N and D meet at sufficiently small angles.

2. Savaré (1997) shows that in a smooth domain, the solution lies in the Besov space $B^{3/2,2}_{\infty}(\Omega)$. (The estimate $\nabla u \in L^2(\partial\Omega)$ is equivalent to $u \in B^{3/2,2}_2$.)

3. RB (1994) studied Lipschitz domains where N and D meet at an angle strictly less than π and established existence of solutions for $L^2(\partial\Omega)$ with respect to surface measure.

The main theorem

Theorem 1 Let \(\| \phi' \|_{\infty} < 1 \). There exists a value \(p_0 = p(\| \phi' \|_{\infty}) > 1 \) so that if \(1 < p < p_0 \), then the mixed problem with data \(f_N \in L^p(N) \) and \(df_D/ds \in L^p(D) \) has a unique solution which satisfies

\[
(\nabla u)^* \in L^p(\partial \Omega, d\sigma).
\]
Weighted L^2 estimates from the Rellich-(Payne-Weinberger-Pohozaev-....) identity

As we observed above, the mixed problem is not solvable in L^2 for a half-space. However, we can study the problem in weighted L^2 spaces where the weight is of the form $|x|^\epsilon$. The basic estimate will be obtained from the following extension of the Rellich identity which we learned from Luis Escauriaza.

Lemma 1 (Rellich Identity) Let $\epsilon > -1$ and $\alpha(z) = az^\epsilon \equiv (\text{Re}(az^\epsilon), \text{Im}(az^\epsilon))$ for some $a \in \mathbb{C}$. Here, $z = x_1 + ix_2 \equiv (x_1, x_2)$. If u is harmonic in Ω and $(\nabla u)^* \in L^2(\sigma_\epsilon)$, then we have

$$
\int_{\partial \Omega} |\nabla u|^{2\alpha} \cdot \nu - 2\alpha \cdot \nabla u \frac{\partial u}{\partial \nu} \, d\sigma = 0.
$$

To establish this lemma, we observe that $\text{div}(|\nabla u|^{2\alpha} - 2\nabla u \cdot \alpha \nabla u) = 0$ and use the divergence theorem.
Use of the Rellich identity

To make use of this Lemma, we will need to find a vector field \(\alpha = (\text{Re} az^\epsilon, \text{Im} az^\epsilon) \) so that

\[
\begin{align*}
\alpha \cdot \nu & \geq c|z|^\epsilon, \quad \text{on } N \\
\alpha \cdot \nu & \leq -c|z|^\epsilon, \quad \text{on } D.
\end{align*}
\]

Then if we rearrange the terms, we will obtain

\[
\int_D \left| \frac{du}{ds} \right|^2 d\sigma_\epsilon + \int_N \left| \frac{\partial u}{\partial \nu} \right|^2 d\sigma_\epsilon \approx \int_N \left| \frac{du}{ds} \right|^2 d\sigma_\epsilon + \int_D \left| \frac{\partial u}{\partial \nu} \right|^2 d\sigma_\epsilon
\]

This is the main estimate we need for existence.
Trigonometry

Lemma 2 Let $\beta = \arctan \|\phi'\|_{\infty} > 0$. Assume $\beta < \pi/4$. Then, for $2\beta/(\pi - 2\beta) < \epsilon < 1$ there exist $\beta_0 = \beta_0(\epsilon, M)$, $\beta < \beta_0 < (\pi - 2\beta)/2$, and a complex number $a = e^{i\lambda}$ such that the vector field $\alpha(x) = (\text{Re}(az^\epsilon), \text{Im}(az^\epsilon))$ satisfies

$$-|x|^{\epsilon} \leq \alpha(x) \cdot \nu(x) < -|x|^{\epsilon} \sin(\beta_0 - \beta), \quad x \in N; \quad (1)$$

$$|x|^{\epsilon} \geq \alpha(x) \cdot \nu(x) > |x|^{\epsilon} \sin(\beta_0 - \beta), \quad x \in D. \quad (2)$$
The restriction $M < 1$

We continue to use $\alpha = (\text{Re} \, az^\epsilon, \text{Im} \, az^\epsilon)$.

Suppose Ω is a graph domain with Lipschitz constant of 1.

If $\alpha \cdot \nu > 0$ on N, we must have $\arg \alpha(x) \in (-3\pi/4, -\pi/4)$ for $\arg(x) \in (-\pi/4, \pi/4)$. Thus $\epsilon < 1$.

If $\alpha \cdot \nu < 0$ on D, we must have $\arg \alpha(x) > \pi/4$ when $\arg x = 3\pi/4$. Thus $\epsilon > 1$.
Hardy spaces

We recall the atomic definition of weighted Hardy spaces, $H^1(\sigma_{\epsilon'})$.

We say a is an atom for $H^1(\sigma_{\epsilon'})$ if (i) a is supported in an interval on $\partial \Omega$, I, (ii) $\int_I a \, d\sigma = 0$ and (iii) $\|a\|_{\infty} \leq \sigma_{\epsilon'}(I)^{-1}$.

An element of the Hardy space is given by $\sum \lambda_j a_j$ where the coefficients satisfy $\sum |\lambda_j| < \infty$. If A is a subset of $\partial \Omega$, we define the Hardy space $H^1(A, \sigma_{\epsilon'})$ as the restrictions of A of elements of the Hardy space on $\partial \Omega$.
The behavior of the Green’s function and a related Hardy space estimate

We can define a Green’s function for the mixed problem and it is Hölder continuous as follows:

\[|M(x, y_1) - M(x, y_2)| \leq C \left(\frac{|y_1 - y_2|}{|x - y_1|} \right) ^\delta , \quad 2|y_1 - y_2| < |x - y_1|. \]

This estimate can be used to prove that if \(u \) is a solution of the mixed problem with Neumann data an atom and zero Dirichlet data then \(|\nabla u| \) decays like \(|x|^{-1-\delta} \) at infinity (at least in an average sense). This is the key estimate that we need to show that

\[(\nabla u)^* \in L^1(\sigma_{\epsilon'}).\]

We show that we can solve the mixed problem for data \(f_N \in H^1(N, \sigma_{\epsilon'}) \) and \(df_D/ds \in H^1(D, \sigma_{\epsilon'}) \) for \(-\epsilon_0 < \epsilon' \leq 0\).
Interpolation, an L^p-result

Stromberg and Torchinsky (1989) have established a theorem on interpolation for Hardy spaces which allows change of measure. Thus interpolation between $L^2(\sigma_\epsilon)$ with $\epsilon > 0$ and $L^2(\sigma_{\epsilon'})$ with $\epsilon' < 0$, we conclude that we may solve the mixed problem with data in (unweighted) $L^p(\sigma)$ for $1 < p < p_0$.
Two questions.

1. Is the restriction to \(M < 1 \) essential?

2. Can we establish existence for \(L^p \), with \(p \) near 1 in Lipschitz domains in higher dimensions?

Shen has a method for obtaining weighted estimates that does not rely on complex analysis.