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Why study mathematical induction? For many students, mathematical induction is
an unfamiliar topic. Nonetheless, this is an important topic and useful in the study
of calculus. The study of calculus of calculus involves many new ideas. To study
derivatives, we have to look at the slope between pairs of points that are arbitrarily
close together. To define the integral, we have to subdivide an interval into n
sub-intervals for infinitely many values of n. To fully understand these operations,
we have to see why infinitely many statements are true. Mathematical induction is
one way to see that infinitely many statements are true.

In mathematics, we engage in deductive reasoning. We make assumptions and
deduce conclusions from these assumptions. The induction step in a proof by
mathematical induction provides practice in this type of reasoning.

Finally, mathematical induction provides a framework which allows us to
understand why many important results in calculus, such as the rule for the
derivative of a power, are true.

Summation notation. First, we explain use of
∑

for summation or repeated
addition. The notation

n∑
k=1

f(k)

means to evaluate the function f(k) at k = 1, 2, . . . , n and add up the results. In
other words:

n∑
k=1

f(k) = f(1) + f(2) + . . . + f(n).

For example:
4∑

k=1

k2 = 1 + 4 + 9 + 16,

n∑
k=1

(2k − 1) = 1 + 3 + 5 + . . . + 2n − 1,

and
2n∑

k=3

1 = 2n − 2.

The principle of mathematical induction is used to establish the truth of a sequence
of statements or formula which depend on a natural number, n = 1, 2, . . .. We will
use Pk to stand for a statement which depends on k. For example, Pk might stand
for the statement “The number 2k − 1 is odd.” These statements are true for
k = 1, 2, . . .
The principle of mathematical induction is:



Principle of mathematical induction. Suppose that Pn is a sequence of statements
depending on a natural number n = 1, 2, . . .. If we show that:

• P1 is true

• For each natural number N : If PN is true, then PN+1 is true.

Then, we may conclude that all the statements Pn are true for n = 1, 2, . . ..

To see why this principle makes sense, suppose that we know P1 is true, then the
second step allows us to conclude P2 is true. Now that we know P2 is true, the
second step allows us to conclude P3 is true. If we repeat this n − 1 times, we
conclude that Pn is true.
This principle is useful because it allows us to prove an infinite number of
statements are true in just two easy steps! We usually call the first step the base
case and the second step is called the induction step.
Below are several examples to illustrate how to use this principle. The statement
PN that we assume to hold is called the induction hypothesis. The key point in the
induction step is to show how to use the induction hypothesis, PN , to deduce PN+1.

Example 1. Show that for n = 1, 2, 3, . . ., the number n2 − n is even.
Solution. Base case. This is easy. If n = 1, then n2 − n = 12 − 1 = 0 and 0 is even.
Induction step. We suppose that N2 − N is even and we want to use this
assumption to show that (N + 1)2 − (N + 1) is even. We write
(N + 1)2 − (N + 1) = N2 + 2N + 1−N − 1 = N2 −N + 2N . Now 2N is even when
N is a whole number and N2 − N is even by our induction hypothesis. As the sum
of two even numbers is again even, we conclude that (N + 1)2 − (N + 1) is even.

Example 2. Show that for n = 1, 2, . . ., we have

n∑
j=1

2j = n(n + 1).

Solution Base case. If n = 1, then n(n + 1) = 1 · 2 = 2. Also,

1∑
j=1

2j = 2.

Thus both sides are equal if n = 1.
Induction step. Now suppose that the formula

∑N
j=1 2j = N(N + 1) is true and

consider the sum
N+1∑
j=1

2j =
N∑

j=1

2j + 2(N + 1).

On the right-hand side, we have written the last term in the sum separately.



We use our induction hypothesis that
∑N

j=1 2j = N(N + 1) to conclude that

N+1∑
j=1

2j = N(N + 1) + 2(N + 1).

Simplifying this last expression gives

N(N + 1) + 2(N + 1) = N2 + N + 2N + 2 = N2 + 3N + 2 = (N + 2)(N + 1).

Since (N + 2)(N + 1) = (N + 1 + 1)(N + 1), we have shown that the formula

N+1∑
j=1

2j = (N + 1 + 1)(N + 1)

is true. This completes the induction step and thus the proof by induction.

Example 3. All horses are the same color.
Solution. We will show by induction that any set of N horses consists of horses of
the same color.
The base case is easy. If we have a set with one horse, then all horses in the set are
the same color.
We assume as our induction hypothesis that any set of N horses consists of horses
of the same color. We take a set of N + 1 horses, and put one of the horses in the
barn for a moment. By our induction hypothesis, the remaining N horses are all of
the same color. Now, we put a different horse in the barn. Again, the remaining N
horses are all the same color. It follows that the set of N + 1 horses are all the same
color.

Written assignment 1. Work the following three problems related to mathematical
induction and hand in your solutions. You will have time some time in recitation to
begin working on these problems. Write up your solutions neatly, carefully and in
complete sentences.

1. (a) For n = 1, 2, 3, 4, compute
n∑

k=1

(2k − 1).

Make a guess for the value of this sum for n = 1, 2, . . ..

(b) Use mathematical induction to prove that your guess is correct.

2. Use the principle of mathematical induction to prove that

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
.



3. Let a be a fixed number and h a variable. For n = 1, 2, 3, . . ., show that there
is polynomial qn so that

(a + h)n = an + nan−1h + h2qn(h).

Of course, qn(h) will also depend on a. Hint: For n = 1, the polynomial q1 is
particularly simple. We have q1(h) = 0. For the induction step, write
(a + h)N+1 = (a + h)(a + h)N .

Additional problems. Below are some additional exercises for you to consider. You
will not be able to solve all of these problems at this time. These problems will not
be collected.

1. Find the flaw in the proof that all horses are the same color.

2. Let f1(x) = x − 2 and then define fn for n = 1, 2, . . . by fn+1(x) = f1(fn(x)).
(It is the principle of mathematical induction which tells us that these two
statements suffice to define fn for all n = 1, 2, 3, . . ..) Use mathematical
induction to prove that

fn(x) = x − 2n.

3. Show that if r 6= 1, we have

n∑
k=0

rk =
1 − rn+1

1 − r
.

4. Let Pn be the statement: n2 − n is an odd integer.

(a) Show that if Pn is true, then Pn+1 is true.

(b) Is P1 true?

(c) Is Pn true for any n?

5. Let f(x) = sin(2x). Prove that for n = 1, 2, . . .,

d2n

dx2n
f(x) = (−4)2n sin(2x).

6. Let f(x) = xex. Compute f ′, f ′′, and f ′′′. Guess a formula for the nth
derivative,

dn

dxn
f(x).

Prove that your guess is right.



7. Prove that
d

dx
xn = nxn−1, n = 1, 2 . . ..

Hint: For the base case n = 1, use the definition of the derivative. For the
induction step write xn+1 = x · xn and use the product rule.

8. Prove that
d

dx

1

xn
=

−n

xn+1
, n = 1, 2 . . ..

9. Prove that
dn

dxn
xn = n!, n = 0, 1, . . .

10. (a) Find a simple formula for

n∑
k=1

((k + 1)2 − k2) = 22 − 1 + (32 − 22) + . . . + n2 − (n− 1)2 + (n + 1)2 −n2.

(b) Using your answer to part a), find a simple expression for

n∑
k=1

(2k − 1).

To do this you should simplify each summand on the left.

11. Use mathematical induction to prove that

n∑
j=1

j3 =

[
n(n + 1)

2

]2

.
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