1 Lecture 8: The derivative as a function.

1.1 Outline

• Definition of the derivative as a function. definitions of differentiability.
• Differentiability implies continuity.
• Example: Finding a derivative.
• Example: Finding tangent lines.
• Examples: Points where a function is not differentiable.

1.2 The derivative

Definition. Given a function \(f \), we may define a new function \(f' \), which we call the derivative of \(f \) by

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h},
\]

provided the limit exists.

An equivalent definition that is sometimes useful is

\[
f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x}.
\]

A function is differentiable at \(x \), if \(f'(x) \) exists. Thus the domain of \(f' \) is the set of values \(x \) so that \(f \) is differentiable at \(x \).

A function is differentiable on an interval \(I \) if \(f \) is differentiable for each \(x \) in \(I \).

1.3 Differentiability and continuity.

Theorem 1 If \(f \) is differentiable at \(x \), then \(f \) is continuous at \(x \).

1.4 Examples

Example. Find the derivative of \(f(x) = \sqrt{x} \).

Example. Let \(f(x) = 1/x \). Find all values \(x \) where \(f'(x) = 4 \). Find all value \(x \) where \(f'(x) = -4 \).

Find all tangent lines to the graph of \(f \) which are parallel to the line \(y = -4x \).

Example. Let \(f(x) = \begin{cases} 1, & x > 0 \\ 0, & x \leq 0 \end{cases} \). Show that \(f \) is not differentiable at 0.
Example. Let $f(x) = |x|$. Where is f continuous? Where is f differentiable?

Example. Let $f(x) = \sqrt[3]{x}$. Give the domain. Show f is not differentiable at 0.

January 31, 2007