- 1. Find the slope of the tangent line to the function $f(x) = e^x$ at x = 0.
 - (a) The tangent line must pass through the point (0, f(0)) = (0, 0).
 - (b) To find the slope, we compute the slope of the line through (h, e^h) and $(0, e^0)$. The slope is given by

$$\frac{e^h - 1}{h}$$

for h near 0.

Compute the value of the slope for few small values of h and make a guess as to what happens as h approaches 0.

h	$(e^{h} - e^{0})/h$
1	1.7183
0.1	$1.052\ldots$
-0.05	-0.975
??	

As h approaches 0, the slope is _____

(c) Now use the point and slope above to write the equation of the line. Remember that the line through (x_0, y_0) with slope *m* has the equation

$$y - y_0 = m(x - x_0).$$

The equation of the line is y = x + 1.

- 2. Find the instantaneous velocity of a particle whose position at time t = 2 is $p(t) = -5t^2 + 20t$. Assume that time is measured in seconds and the height p is measured in meters.
 - (a) We compute average velocities on intervals [3, 3+h] for h close to 0.

Interval	p(3)	p(3+h)	average velocity
[3, 4]	15	0	-15
[3, 3.1]	15	13.95	-10.5
[3, 3 + 0.03]	15	14.695	-10.15
[3, 3+??]			
[3, 3+h]			-10 - 5h

- (b) Letting the interval [3, 3 + h] shrink to a point, the average velocity approaches -10.
- (c) The units for the velocity are m/s.