1. Find the slope of the tangent line to the function $f(x)=e^{x}$ at $x=0$.
(a) The tangent line must pass through the point $(0, f(0))=(0,0)$.
(b) To find the slope, we compute the slope of the line through $\left(h, e^{h}\right)$ and $\left(0, e^{0}\right)$. The slope is given by

$$
\frac{e^{h}-1}{h}
$$

for h near 0 .
Compute the value of the slope for few small values of h and make a guess as to what happens as h approaches 0 .

h	$\left(e^{h}-e^{0}\right) / h$
1	$1.7183 \ldots$
0.1	$1.052 \ldots$
-0.05	$-0.975 \ldots$
$? ?$	

As h approaches 0 , the slope is
(c) Now use the point and slope above to write the equation of the line. Remember that the line through $\left(x_{0}, y_{0}\right)$ with slope m has the equation

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

The equation of the line is $y=x+1$.
2. Find the instantaneous velocity of a particle whose position at time $t=2$ is $p(t)=$ $-5 t^{2}+20 t$. Assume that time is measured in seconds and the height p is measured in meters.
(a) We compute average velocities on intervals $[3,3+h]$ for h close to 0 .

Interval	$p(3)$	$p(3+h)$	average velocity
$[3,4]$	15	0	-15
$[3,3.1]$	15	13.95	-10.5
$[3,3+0.03]$	15	14.695	-10.15
$[3,3+? ?]$			
$[3,3+h]$			$-10-5 h$

(b) Letting the interval $[3,3+h]$ shrink to a point, the average velocity approaches -10 .
(c) The units for the velocity are m / s.

