1. Follow the steps below to find the tangent line to the function $f(x)=1 / x$ at $x=2$.
(a) The first step is compute the slope of the line that passes through the points $(x, f(x))$ and $(2, f(2))$.

$$
\frac{f(x)-f(2)}{x-2}
$$

Write out this expression for $f(x)=1 / x$.

$$
\frac{f(x)-f(2)}{x-2}=\frac{1}{x-2}\left(\frac{1}{x}-\frac{1}{2}\right) .
$$

(b) The slope of the tangent line is

$$
\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}
$$

Can we apply the rule for the limit of a quotient to find this limit?
Not unless we have simplified. As written the limit of the denominator, $\lim _{x \rightarrow 2}(x-$ 2) $=0$.

Can we use direct substitution to find the limit?
No. The expression $\frac{f(x)-f(2)}{x-2}$ is undefined at $x=2$.
If these rules do not apply, does the mean the limit does not exist?
No. As we will see below, we can simplify and obtain a limit that is easy to evaluate.
(c) Simplify the expression

$$
\frac{f(x)-f(2)}{x-2}
$$

$$
\begin{aligned}
\frac{f(x)-f(2)}{x-2} & =\frac{1}{(x-2)}\left(\frac{1}{x}-\frac{1}{2}\right) \\
& =\frac{1}{(x-2)}\left(\frac{2}{2 x}-\frac{x}{2 x}\right) \\
& =\frac{1}{(x-2)} \frac{2-x}{2 x} \\
& =\frac{-1}{2 x}
\end{aligned}
$$

(d) Find the slope of the tangent line.

Using our answer from the previous part,

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} & =\lim _{x \rightarrow 2} \frac{-1}{2 x} \\
& =\frac{-1}{4}
\end{aligned}
$$

After simplifying the function $-1 /(2 x)$ is continuous at $x=2$ and we can use substitution or the rule for the limit of a quotient to evaluate the limit.
(e) Find the equation of the tangent line to the graph of $y=1 / x$ at $x=2$.

From the above the tangent line has slope $-1 / 4$ and it must pass through the point $(2, f(2))$. Thus the equation of the line is

$$
\left(y-\frac{1}{2}\right)=\frac{-1}{4}(x-2) .
$$

This simplifies to

$$
y=\frac{-1}{4} x+1 .
$$

We may check by graphing.

