1. Compute the derivative of

$$
f(x)=\left(x^{3}+2 x\right) e^{x} .
$$

Using the product rule

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{3}+2 x\right)^{\prime} e^{x}+\left(x^{3}+2 x\right)\left(e^{x}\right)^{\prime} \\
& =\left(3 x^{2}+2\right) e^{x}+\left(x^{3}+2 x\right) e^{x} \\
& =\left(x^{3}+3 x^{2}+2 x+2\right) e^{x} .
\end{aligned}
$$

2. Find the equation of the line tangent to the graph of the function

$$
f(x)=\frac{2-x}{1+x}
$$

at the point $(1, f(1))$.
(a) Compute the derivative $f^{\prime}(x)$ and compute $f^{\prime}(1)$.

From the quotient rule we have

$$
\begin{aligned}
f(x) & =\frac{(-1)(1+x)-(2-x) 1}{(1+x)^{2}} \\
& =\frac{-3}{(1+x)^{2}}
\end{aligned}
$$

Evaluating at $x=1$ gives that $f^{\prime}(1)=-3 / 4$.
(b) Write out the equation of the tangent line and check by graphing f and the tangent line.
The tangent line passes through the point $(1, f(1))=(1,1 / 2)$ and the equation is $y-\frac{1}{4}=-\frac{3}{4} \cdot(x-1)$. Simplifying gives the equation

$$
y=-\frac{3}{4} x+\frac{5}{4} .
$$

