
1 Lecture 29: l’Hôpital’s rule

1.1 Outline

• The problem and what we know.

• Statement of L’Hopital’s rule

• Examples

• Limits at infinity, growth of the exponential function

• The indeterminate form 0 · ∞.

• e

1.2 What we know.

We have discussed limits before and used the idea of a limit to continuity for functions
and the derivative. We can use this information to evaluate a number of limits.

The limits

lim
x→π

cos(x)/(1 + x2) = −1/2 and lim
x→0

ex

1 + x
= 1

are limits that can evaluated by the direct substitution rule.
Today, we consider limits that cannot be evaluated by direct substitution. As an

example consider,

lim
x→a

f(x)

g(x)
.

If limx→a f(x) = limx→a g(x) = 0, then we know that the limit often exists, but cannot
evaluate the limit using the rule for the limit of a quotient. Such a limit is called
the indeterminate form 0/0. We obtain the indeterminate form ∞/∞ when we have
limx→a f(x) = limx→a g(x) =∞.

Exercise. Write out the definition of the indeterminate forms

0 · ∞, 00, ∞−∞.

We know one way to evaluate certain limits of the form 0/0. If we can recognize the
limit as a difference quotient, then we can evaluate the limit using our differentiation
rules.

We begin with some examples,

Example.

lim
x→0

sin(x)

x− π
and lim

x→0

ln(1 + x)

x
.



Solution. For the first limit we let f(x) = sin(x) and recognize that (f(x)−f(π))/(x−
π) = sin(x)/(x−π). Thus, limx→π sin(x)/(x−π) = f ′(π) = −1. For the second limit,
we recognize that the limit is the derivative at 0 of the function g(x) = ln(1 +x). We
know g′(x) = 1/(1 + x) and then we have

lim
x→0

ln(1 + x)x = g′(0) = 1.

It is surprising that the limit exists since the numerator and denominator each ap-
proach 0.

Today’s topic, L’Hôpital’s rule, provides a way to evaluate these limits as well
as more complicated limits. We will also use this rule to obtain some important
information about the behavior of ex as as x tends to infinity. However, it is impor-
tant to remember what we have learned about limits. There are some limits where
L’Hôpital’s rule does not apply and we shall see we need to compute derivatives in
order to use l’Hôpital’s rule. Computing derivatives requires that we understand lim-
its. Thus we need to be able take limits independently of l’Hôpital’s rule if we are to
claim that we understand calculus.

1.3 l’Hôpital’s rule

There are many variations of l’Hôpital’s rule depending on whether we are taking
a limit at a finite value or at infinity and whether the numerator and denominator
approach 0 or ∞. We begin with a simple version.

Theorem 1 Suppose that f and g are functions which are differentiable in an open
interval containing a and f(a) = g(a) = 0 and assume that limx→a f

′(x)/g′(x) exists.
Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Note that as part of the hypothesis that the limit of f ′/g′ exists, we have that
there is small interval (b, c) which contains a and so that g′(x) 6= 0 for x in the interval
(b, c), except possibly at a. We need this in order for f ′/g′ to be defined.

We will not prove this theorem. Note that this theorem lets us evaluate indeter-
minate forms of the form 0/0.

Example. Evaluate the limits

lim
x→1

ln(x)

x− 1
, lim

x→0

sin(x)

x+ 1
lim
x→0

1− cos(5x)

x2
.



Solution. We see that ln(1) = 1− 1 = 0 and thus the first limit is the indeterminate
form 0/0. Using l’Hôpital’s rule, we obtain that

lim
x→1

ln(x)

x− 1
= lim

x→1

1/x

1
= 1.

The second limit may be evaluated by direct substitution since 1/x is continuous at
1.

This limit is not an indeterminate form. The function sin(x)/(1 + x) is continous
at 0 and the limit may be evaluated by substitution,

lim
x→0

sin(x)

1 + x
= 0.

Note that if we try to apply l’Hôpital without checking the hypotheses, we obtain the
wrong answer.

The last limit requires some persistence. If x = 0, then 1−cos(5x) = 0 and x2 = 0.
If we apply l’Hôpital’s rule once, we obtain the limit of 5 sin(5x)/2x which is again
the indeterminate form 0/0. Applying l’Hôpital one more time gives the answer,

lim
x→0

1− cos(2x)

x2
= lim

x→0

5 sin(5x)

2x
= lim

x→0

25 cos(5x)

2
= 25/2.

Or note that we obtain a familiar trig limit after one use of l’Hôpital.

Example. Find the value A so that we may use l’Hopital’s rule and give the value
of the limit

lim
x→2

ex
2−2x − A
x2 − 4

.

Solution. We have limx→2(x
2 − 4) = 0. Thus l’Hôpital’s rule will apply if the limit

of the numerator is also zero,

lim
x→2

ex
2−2x − A = 1− A = 0.

Thus we need A = 1 and our limit will be the indeterminate form 0/0.
Setting A = 1 and using l’Hôpital gives

lim
x→2

ex
2−2x − 1

x2 − 4
= lim

x→2

(2x− 2)ex
2−2x

2x
= 1/2.

The last limit may be evaluated by substitution since (2x−2)ex2−2x

2x
is continuous at

x = 2.



1.4 Variations

L’Hôpital’s rule continues to apply to limits at infinity, one sided limits, or in the case
when f and g approach ∞, rather than 0.

We state two of these variations carefully.

Theorem 2 If f and g are functions which are defined in an open interval (a, b)

which contains c with limx→c f(x) = g(x) =∞. If limx→c
f ′(x)
g′(x)

exists, then limx→c
f(x)
g(x)

exists and

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

If f and g are functions which are defined in an open interval (a,∞) and limx→∞ f(x) =

g(x) = 0. If limx→∞
f ′(x)
g′(x)

exists, then limx→∞
f(x)
g(x)

exists and

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

In the first part of this theorem, we say that we have the indeterminate form
∞/∞. The result for limits at infinity also holds if we have the indeterminate form
∞/∞. The results hold just as well if we replace ∞ by −∞.

Example. Find the limits

lim
x→∞

ln(x)

x3
, lim

x→∞

x3

ex
.

Solution. We have limx→∞ ln(x) = limx→∞ x
3 =∞. Thus we have the indeterminate

form ∞/∞. Applying l’Hôpital’s rule gives that

lim
x→∞

ln(x)

x3
= lim

x→∞

1/x

3x2
= lim

x→∞

1

3x3
= 0.

For the limit of x3/ex, we have the indeterminate form ∞/∞ and applying
l’Hôpital three times gives

lim
x→∞

x3

ex
= lim

x→∞

6

ex
= 0.

This last example can be extended. If we apply l’Hôpital’s rule n times we obtain
that

lim
x→∞

xn

ex
= lim

x→∞

nxn−1

ex
= . . . = lim

x→∞

n!

ex
= 0.

Note that for the first n− 1 differentiations we obtain the indeterminate form ∞/∞.
This gives the important fact that the exponential grows faster than any power of x.

Example. Which grows faster, x or ln(x)?



Solution. The question be answered by considering the limit

lim
x→∞

ln(x)

x
.

This is the indeterminate form ∞/∞. Applying L’Hôpital once gives

lim
x→∞

ln(x)

x
= lim

x→∞

1

x
= 0.

Finally, we consider examples where some algebra is needed to apply l’Hôpital’s
rule.

1.5 The indeterminate form 0 · ∞.

If we have a functions f and g where limx→a f(x) = 0 and limx→a g(x) =∞, then we
have the indeterminate form 0 ·∞. This can usually be written as the indeterminate
form 0/0 or ∞/∞ and then we may use l’Hôpital’s rule.

Example. Find the limit
lim
x→0+

x ln(x).

Solution. This limit is of the form

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

1/x

which is of the form ∞/∞. Using l’Hôpital’s rule gives the limit is of the form

lim
x→0+

ln(x)

1/x
= lim

x→∞

1/x

(−1/x2)
= −∞.

1.6 e

Example. If we invest one dollar at 100% interest, compounded continuously, how
much will we have after one year?



Solution. If we divide the year into n periods, each period we multiply our investment
by (1 + 1/n). At the end of the year, we have (1 + 1/n)n dollars. Continuous
compounding means we let the period become smaller and smaller and study the
behavior. In other words, we take a limit. We may replace the integer n by a real
variable x and consider the limit

lim
x→∞

(1 + 1/x)x.

To evaluate the limit we use that (1 + 1/x)x = ex ln(1+1/x). The exponent is an
indeterminate form of the form 0·∞. To evaluate the limit, we rewrite x·ln(1+1/x) =
ln(1 + 1/x)/(1/x). This gives the indeterminate form 0/0 and letting x→∞ gives

lim
x→∞

ln(1 + 1/x)

1/x
= lim

x→∞

1

1 + 1/x

−1

x2
1

(−1/x2)
= 1.

Thus
lim
x→∞

(1 + 1/x)x = lim
x→∞

ex ln(1+1/x) = elimx→∞ x ln(1+1/x) = e.

Thus we obtain e dollars at the end of the year.

March 29, 2015


