1 Lecture 39: The substitution rule.

- Recall the chain rule and restate as the substitution rule.
- u-substitution, bookkeeping for integrals.
- Definite integrals, changing limits.
- Symmetry-integrating even and odd functions.

1.1 The substitution rule.

Recall the chain rule: If $F^{\prime}=f$ and g is differentiable, then

$$
(F \circ g)^{\prime}(x)=F^{\prime}(g(x)) g^{\prime}(x) .
$$

We can restate this as:
The substitution rule. If F is an anti-derivative of f and g is a differentiable function, then $F \circ g(x)$ is an anti-derivative of $(f \circ g)(x) g^{\prime}(x)$. In other words,

$$
F \circ g(x)=\int f(g(x)) g^{\prime}(x) d x
$$

$1.2 u$-substitution

The Leibniz notation provides a convenient way to keep track of the substitution rule. We let

$$
\begin{equation*}
u=g(x), \quad d u=g^{\prime}(x) d x \tag{1}
\end{equation*}
$$

To evaluate the indefinite integral

$$
\int f(g(x)) g^{\prime}(x) d x
$$

set $u=g(x)$ and then $d u=g^{\prime}(x) d x$ making these substitutions gives

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u=F(u)=F(g(x))+C
$$

where F is an anti-derivative for f. In a definite integral, we need to also change the limits when $x=a$, then $u=g(a)$ and when $x=b, u=g(b)$. Thus, we have

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u .
$$

An example will illustrate how we use this procedure.
Example. Find

$$
\int 2 x \sin \left(x^{2}\right) d x
$$

Solution. Set $u=x^{2}$ and then $d u=2 x d x$. Making the substitutions as in (1) gives

$$
\int 2 x \sin \left(x^{2}\right) d x=\int \sin u d u=\cos u+C=\cos \left(x^{2}\right)+C .
$$

Exercise. Check our answer by differentiating.
Below is a slightly more interesting example. In this example, we do not find exactly the derivative of $u=g(x)$ hiding in the integral. However, we may multiply the equation $d u=g^{\prime}(x) d x$ by a constant and still use this method.

Example. Find

$$
\int \frac{1}{(1-2 x)^{2}} d x
$$

Solution. In this example, we only need to substitute by the linear function $u=$ $1-2 x$ and then $d u=(-2) d x$. In this case, we need to divide by -2 to obtain $\frac{-1}{2} d u=d x$. Then we obtain,

$$
\int \frac{1}{(1-2 x)^{2}} d x=\frac{-1}{2} \int \frac{1}{u^{2}} d u=\frac{1}{2} u^{-1}=\frac{1}{2} \frac{1}{1-2 x}+C .
$$

This works because if $u=g(x)$ and $v=c g(x)$, then we have $d v=c d u=c g^{\prime}(x) d x$ by the constant multiple rule for differentiation.

Example. Try the substitution $u=\sin (x)$ in the integral

$$
\int \sin (x) d x
$$

Solution. If $u=\sin (x)$, then $d u=\cos (x) d x$ or $d x=\frac{1}{\cos (x)} d u$. Thus we obtain

$$
\int \sin (x) d x=\int \frac{u}{\cos (x)} d u
$$

To evaluate this integral, we would need additional work to eliminate the x. Of course, this is not the right away to evaluate this integral since

$$
\int \sin (x) d x=-\cos (x)+C
$$

For now, we will only multiply the equation relating $d x$ and $d u$ by constants.

Example. Find the integral

$$
\int \sin (x) \cos (x) d x
$$

Solution. If we set $u=\sin (x)$, then $d u=\cos (x) d x$ and we have

$$
\int \sin (x) \cos (x) d x=\int u d x=\frac{1}{2} u^{2}+C=\frac{1}{2} \sin ^{2}(x)+C .
$$

If we set $u=\cos (x)$, then $d u=-\sin (x) d x$ and we have

$$
\int \sin (x) \cos (x) d x=-\int u d x=-\frac{1}{2} u^{2}+C=-\frac{1}{2} \cos ^{2}(x)+C .
$$

Check these answers. Explain why we have found two different answers.

1.3 Definite integrals.

To evaluate definite integrals, we have a choice. We may change the limits as described above. Another approach is to separate the steps of finding the anti-derivative and evaluating the anti-derivative. In this approach, we would use substitution to find the indefinite integral and then evaluate to find the definite integral.

We give a simple example where we change limits.
Example. Find

$$
\int_{1}^{4} \sqrt{2 x+1} d x .
$$

Solution. Set $u=2 x+1$ and then $d u=2 d x$. If $x=1$, then $u=3$ and if $x=4$, then $u=9$. Thus,

$$
\begin{aligned}
\int_{1}^{4} \sqrt{2 x+1} d x & =\frac{1}{2} \int_{3}^{9} u^{1 / 2} d u \\
& =\left.\frac{1}{2} \frac{2}{3} u^{2 / 3}\right|_{3} ^{9} \\
& =\frac{1}{3}\left(9^{3 / 2}-3^{3 / 2}\right)=9-\sqrt{3}
\end{aligned}
$$

Here is a solution following the strategy of separating the steps.
Solution. Set $u=2 x+1$ and then $d u=2 d x$. If $x=1$, then $u=3$ and if $x=4$, then $u=9$. Thus,

$$
\begin{aligned}
\int \sqrt{2 x+1} d x & =\frac{1}{2} \int u^{1 / 2} d u \\
& =\frac{1}{2} \frac{2}{3} u^{3 / 2}+C \\
& =\frac{1}{3}(2 x+1)^{3 / 2}+C
\end{aligned}
$$

Now that we have the anti-derivative, we may use the Fundamental Theorem of Calculus to obtain

$$
\int_{1}^{4} \sqrt{2 x+1} d x=\left.\frac{1}{3}(2 x+1)^{3 / 2}\right|_{1} ^{4}=\frac{1}{3}\left(9^{3 / 2}-3^{3 / 2}\right)=9 \sqrt{3} .
$$

Finally, we give an example where a bit more algebra is needed.
Example. Find the anti-derivative

$$
\int x \sqrt{2 x+1} d x .
$$

Solution. Again, we substitute $u=2 x+1$ and $d u=2 d x$ or $d x=f r a c 12 d u$ but this leaves an x. We solve $u=2 x+1$ to express $x=\frac{1}{2}(u-1)$. Making the substitutions, we have

$$
\int x \sqrt{2 x+1} d x=\int \frac{1}{2}(u-1) u^{1 / 2} \frac{1}{2} d u=\frac{1}{4} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u .
$$

Taking the anti-derivative and then replacing u by $2 x+1$ gives

$$
\frac{1}{4} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u=\frac{2}{20} u^{5 / 2}-\frac{2}{12} u^{3 / 2}+C
$$

And replacing u by $2 x+1$ gives

$$
\int x \sqrt{2 x+1} d x==\frac{1}{10}(2 x+1)^{5 / 2}-\frac{1}{6}(2 x+1)^{3 / 2}+C .
$$

1.4 Quadratic expressions

We recall several anti-differentiation formulae involving inverse trig functions.

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (x)+C, \quad \int \frac{1}{1+x^{2}} d x=\arctan (x)+C
$$

and

$$
\int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\operatorname{arcsec}(x)+C
$$

Often we can reduce other integrals involving quadratic expressions to one of these by a substitution.

Example. Find the indefinite integrals

$$
\int \frac{1}{x^{2}+4} d x, \quad \int \frac{1}{4 x^{2}+9} d x
$$

Solution. In the first example, let $x=2 u, d x=2 d u$. With this we have a common factor in the denominator and obtain
$\int \frac{1}{x^{2}+4} d x=\int \frac{1}{4 u^{2}+4} 2 d u=\frac{2}{4} \int \frac{1}{1+u^{2}} d u=\frac{1}{2} \arctan (u)+C=\frac{1}{2} \arctan (2 x)+C$.
Check your answer by differentiating!!!
For the second example, we would like a common factor in the denominator. We may write $4 x^{2}+9=9\left(\frac{4}{9} x^{2}+1\right)$. Thus if we substitute $u=2 x / 3$ we will obtain a familiar integral.

$$
\int \frac{1}{9+4 x^{2}}=\int \frac{1}{9\left((2 x / 3)^{2}+1\right)} d x
$$

Now substituting $u=2 x / 3$ or $d u=\frac{2}{3} d x$, we obtain

$$
\int \frac{1}{9\left((2 x / 3)^{2}+1\right)} d x=\frac{1}{9} \int \frac{1}{\left.u^{2}+1\right)} \frac{3}{2} d u=\frac{1}{6} \arctan (u)+C=\frac{1}{6} \arctan (2 x / 3)+C .
$$

Example. Complete the square to find

$$
\int \frac{1}{\sqrt{2 x-x^{2}}} d x
$$

Solution. If we complete the square, we may write $2 x-x^{2}=1-\left(x^{2}-2 x+1\right)=$ $1-(x-1)^{2}$. Thus, we have

$$
\int \frac{1}{\sqrt{2 x-x^{2}}} d x=\int \frac{1}{\sqrt{1-(x-1)^{2}}} d x
$$

If we substitute $u=x-1, d u=d x$, we obtain

$$
\int \frac{1}{\sqrt{1-(x-1)^{2}}} d x=\int \frac{1}{\sqrt{1-u^{2}}} d x=\arcsin (u)+C=\arcsin (x-1)+C
$$

1.5 Further topics, symmetry

The substitution $u=-x$ gives

$$
\int_{0}^{a} f(x) d x=\int_{-a}^{0} f(-u) d u
$$

If f is odd, or even, this simplifies further.
A function is even if $f(-x)=f(x)$. For even functions we have

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x .
$$

A function is odd if $f(-x)=-f(x)$ and for odd functions,

$$
\int_{-a}^{a} f(x) d x=0
$$

Example. Find

$$
\int_{-2}^{2} x^{3}+x^{2}+x+2 d x \quad \int_{-1}^{1} x^{101} \sin \left(x^{100}\right) d x \quad \int_{-10}^{11} x d x
$$

April 22, 2014

