
1 Lecture 39: The substitution rule.

• Recall the chain rule and restate as the substitution rule.

• u-substitution, bookkeeping for integrals.

• Definite integrals, changing limits.

• Symmetry-integrating even and odd functions.

1.1 The substitution rule.

Recall the chain rule: If F ′ = f and g is differentiable, then

(F ◦ g)′(x) = F ′(g(x))g′(x).

We can restate this as:
The substitution rule. If F is an anti-derivative of f and g is a differentiable

function, then F ◦ g(x) is an anti-derivative of (f ◦ g)(x)g′(x). In other words,

F ◦ g(x) =
∫
f(g(x))g′(x) dx.

1.2 u-substitution

The Leibniz notation provides a convenient way to keep track of the substitution rule.
We let

u = g(x), du = g′(x)dx. (1)

To evaluate the indefinite integral∫
f(g(x))g′(x) dx

set u = g(x) and then du = g′(x)dx making these substitutions gives∫
f(g(x))g′(x) dx =

∫
f(u) du = F (u) = F (g(x)) + C

where F is an anti-derivative for f . In a definite integral, we need to also change the
limits when x = a, then u = g(a) and when x = b, u = g(b). Thus, we have∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du.

An example will illustrate how we use this procedure.

Example. Find ∫
2x sin(x2) dx.



Solution. Set u = x2 and then du = 2xdx. Making the substitutions as in (1) gives∫
2x sin(x2) dx =

∫
sinu du = cosu + C = cos(x2) + C.

Exercise. Check our answer by differentiating.

Below is a slightly more interesting example. In this example, we do not find
exactly the derivative of u = g(x) hiding in the integral. However, we may multiply
the equation du = g′(x)dx by a constant and still use this method.

Example. Find ∫ 1

(1− 2x)2
dx.

Solution. In this example, we only need to substitute by the linear function u =
1 − 2x and then du = (−2)dx. In this case, we need to divide by −2 to obtain
−1
2
du = dx. Then we obtain,∫ 1

(1− 2x)2
dx =

−1

2

∫ 1

u2
du =

1

2
u−1 =

1

2

1

1− 2x
+ C.

This works because if u = g(x) and v = cg(x), then we have dv = c du = cg′(x) dx
by the constant multiple rule for differentiation.

Example. Try the substitution u = sin(x) in the integral∫
sin(x) dx.

Solution. If u = sin(x), then du = cos(x) dx or dx = 1
cos(x)

du. Thus we obtain∫
sin(x) dx =

∫ u

cos(x)
du.

To evaluate this integral, we would need additional work to eliminate the x. Of
course, this is not the right away to evaluate this integral since∫

sin(x) dx = − cos(x) + C.

For now, we will only multiply the equation relating dx and du by constants.



Example. Find the integral ∫
sin(x) cos(x) dx

Solution. If we set u = sin(x), then du = cos(x) dx and we have∫
sin(x) cos(x) dx =

∫
u dx =

1

2
u2 + C =

1

2
sin2(x) + C.

If we set u = cos(x), then du = − sin(x) dx and we have∫
sin(x) cos(x) dx = −

∫
u dx = −1

2
u2 + C = −1

2
cos2(x) + C.

Check these answers. Explain why we have found two different answers.

1.3 Definite integrals.

To evaluate definite integrals, we have a choice. We may change the limits as described
above. Another approach is to separate the steps of finding the anti-derivative and
evaluating the anti-derivative. In this approach, we would use substitution to find
the indefinite integral and then evaluate to find the definite integral.

We give a simple example where we change limits.

Example. Find ∫ 4

1

√
2x + 1 dx.

Solution. Set u = 2x + 1 and then du = 2dx. If x = 1, then u = 3 and if x = 4,
then u = 9. Thus, ∫ 4

1

√
2x + 1 dx =

1

2

∫ 9

3
u1/2 du

=
1

2

2

3
u2/3

∣∣∣9
3

=
1

3
(93/2 − 33/2) = 9−

√
3.



Here is a solution following the strategy of separating the steps.

Solution. Set u = 2x + 1 and then du = 2dx. If x = 1, then u = 3 and if x = 4,
then u = 9. Thus, ∫ √

2x + 1 dx =
1

2

∫
u1/2 du

=
1

2

2

3
u3/2 + C

=
1

3
(2x + 1)3/2 + C.

Now that we have the anti-derivative, we may use the Fundamental Theorem of
Calculus to obtain∫ 4

1

√
2x + 1 dx =

1

3
(2x + 1)3/2

∣∣∣∣4
1

=
1

3
(93/2 − 33/2) = 9

√
3.

Finally, we give an example where a bit more algebra is needed.

Example. Find the anti-derivative∫
x
√

2x + 1 dx.

Solution. Again, we substitute u = 2x+ 1 and du = 2dx or dx = frac12du but this
leaves an x. We solve u = 2x + 1 to express x = 1

2
(u− 1). Making the substitutions,

we have ∫
x
√

2x + 1 dx =
∫ 1

2
(u− 1)u1/21

2
du =

1

4

∫
(u3/2 − u1/2) du.

Taking the anti-derivative and then replacing u by 2x + 1 gives

1

4

∫
(u3/2 − u1/2) du =

2

20
u5/2 − 2

12
u3/2 + C.

And replacing u by 2x + 1 gives∫
x
√

2x + 1 dx ==
1

10
(2x + 1)5/2 − 1

6
(2x + 1)3/2 + C.



1.4 Quadratic expressions

We recall several anti-differentiation formulae involving inverse trig functions.∫ 1√
1− x2

dx = arcsin(x) + C,
∫ 1

1 + x2
dx = arctan(x) + C

and ∫ 1

|x|
√
x2 − 1

dx = arcsec(x) + C.

Often we can reduce other integrals involving quadratic expressions to one of these
by a substitution.

Example. Find the indefinite integrals∫ 1

x2 + 4
dx,

∫ 1

4x2 + 9
dx.

Solution. In the first example, let x = 2u, dx = 2du. With this we have a common
factor in the denominator and obtain∫ 1

x2 + 4
dx =

∫ 1

4u2 + 4
2du =

2

4

∫ 1

1 + u2
du =

1

2
arctan(u)+C =

1

2
arctan(2x)+C.

Check your answer by differentiating!!!
For the second example, we would like a common factor in the denominator. We

may write 4x2 + 9 = 9(4
9
x2 + 1). Thus if we substitute u = 2x/3 we will obtain a

familiar integral. ∫ 1

9 + 4x2
=
∫ 1

9((2x/3)2 + 1)
dx

Now substituting u = 2x/3 or du = 2
3
dx, we obtain

∫ 1

9((2x/3)2 + 1)
dx =

1

9

∫ 1

u2 + 1)

3

2
du =

1

6
arctan(u) + C =

1

6
arctan(2x/3) + C.

Example. Complete the square to find∫ 1√
2x− x2

dx.



Solution. If we complete the square, we may write 2x − x2 = 1 − (x2 − 2x + 1) =
1− (x− 1)2. Thus, we have∫ 1√

2x− x2
dx =

∫ 1√
1− (x− 1)2

dx.

If we substitute u = x− 1, du = dx, we obtain∫ 1√
1− (x− 1)2

dx =
∫ 1√

1− u2
dx = arcsin(u) + C = arcsin(x− 1) + C.

1.5 Further topics, symmetry

The substitution u = −x gives∫ a

0
f(x) dx =

∫ 0

−a
f(−u) du.

If f is odd, or even, this simplifies further.
A function is even if f(−x) = f(x). For even functions we have∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx.

A function is odd if f(−x) = −f(x) and for odd functions,∫ a

−a
f(x) dx = 0.

Example. Find∫ 2

−2
x3 + x2 + x + 2 dx

∫ 1

−1
x101 sin(x100) dx

∫ 11

−10
x dx.
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