
1 Lecture: Approximate integration

• Approximating integrals by the trapezoid rule and Simpson’s rule.

• Using the error estimates to compute integrals to within a specified absolute
error.

1.1 Introduction

We have spent a good deal of time studying methods for finding anti-derivatives.
Once we have the anti-derivative, the Fundamental theorem of calculus, part II, can
be used to evaluate the definite integrals. However, there are functions for which anti-
derivative cannot be written down in elementary terms. Two important examples are:∫

e−x
2

dx and
∫ sin x

x
dx.

The first arises in probability theory since a multiple of e−x
2

is the “bell curve” or
normal distribution. The second arises in electrical engineering, I think.

Thus, we would like an efficient way to find an approximate value for definite
integrals such as ∫ 1

0
e−t

2

dt.

Of course, we already know one way–write a Riemann sum and evaluate the sum.
However, we will find that there are much better ways. These other methods are
better because they require less arithmetic to obtain a specified accuracy.

We describe two methods. The trapezoid rule and Simpson’s rule. For each of
these rules, we approximate a function f by simpler functions that we can integrate
exactly.

1.2 The trapezoid rule.

Suppose that we are trying to evaluate∫ b

a
f(x) dx.

As with a Riemann sum, we begin with a partition and for simplicity, we choose the
regular partition a = x0 < x1 < . . . < xn = b which divides the interval [a, b] into n
equal intervals. The points xk are given by xk = a+ k

n
(b−a) and we let h = (b−a)/n

be the length of each interval. On each interval [xk−1, xk], we approximate f by the
linear function L(x) that agrees with f at the endpoints. The area under the graph
of this linear function is a trapezoid and we can compute its area easily as:

h

2
(f(xx−1) + f(xk)).



x xk−1 k

f(x  )k

k−1
f(x     )

Summing on k, gives that an approximate value for the integral is

h

2
(f(x0) + f(x1) + f(x1) + f(x2) + . . .+ f(xn−1) + f(xn)). (1)

Observe that each of the interior points of the partition occurs twice, so that we can
simplify the above expression to

Tn =
h

2
(f(x0) + 2f(x1)2f(x2) + . . .+ 2f(xn−1) + f(xn)). (2)

This is the trapezoid rule.

Example. Use the trapezoid rule with n = 5 to approximate ln 3 which is given by
the integral ∫ 3

1

1

x
dx.

Compare the approximate value with the approximate value from your calculator.

Solution. If we divide [1, 3] into n equal intervals, the length of each interval will be
(3−1)/5 = 2/5. The regular partition is 1, 7/5, 9/5, 11/5, 13/5, 3. The trapezoid rule
gives us:

T5 =
1

5
(1 + 2

5

7
+ 2

5

9
+ 2

11

9
+ 2

1

3
9 +

1

3
) ≈ 1.11027

My calculator tells me that ln 3 ≈ 1.09861223 so that the error, which we call ET
is

ET =
∫ 3

1

1

x
dx− T5 ≈ −0.01166.

Note that because the function 1/x is convex up, we know that the trapezoid rule
will be larger than the integral.

Remark. One could certainly complain that we need to use a calculator (or com-
puter) to compute the trapezoid rule Tn so we might as well use the ln key on our
calculator. But in this case, at least, the trapezoid rule only requires that we do
arithmetic in order to compute the more complicated logarithm function.



1.3 Error bound for the trapezoid rule.

The way we computed the error above is silly–if we know the logarithm accurrately
then there is no need to compute the error. It is a remarkable fact that we can find
a useful upper bound for the error without knowing the exact value of the integral.
The error is estimated in the following theorem.

Theorem 1 If f has two derivatives on [a, b] and |f ′′(x)| ≤ M2 for all x in [a, b],
then the error for the trapezoid rule ET satisfies

|ET | ≤
M2(b− a)3

12n2
.

Notice that this theorem tells us that the error tends to zero as n → ∞. Even
better, it tells us that the error goes to zero at a certain rate.

Example. Use this theorem to estimate

T5 −
∫ 3

1

1

x
dx.

Solution. If f(x) = 1/x, then f ′(x) = −1/x2 and f ′′(x) = +2/x3. Since 1/x2 is
decreasing on [1, 3], the maximum value occurs at x = 1 and so we can let M2 = 2.
Thus

ET =
16

12 · 52
= .053̄

We see that in this case, the error estimate is of the same order of magnitude as the
error we found above.

A more interesting use of the error estimate is that we can use it find a value of
n which guarantees that the error is less than a predetermined tolerance.

Example. Find a value of n so that Tn is within 10−4 of the integral
∫ 3

1
1
x
dx.

Solution. We use the value of M2 = 2 for the function 1/x on the interval [1, 3] which
we found in the previous example. Thus the error Tn is less than 2 · (2− 1)3/(12n2).
Thus we want to find n so that

16

12n2
< 10−4.

Solving this inequality for n gives

4

3
· 104 ≤ n2

or that
115.47 < n.

Since n has to be a whole number we choose n = 116.



1.4 Simpson’s rule

In principle, the trapezoid rule is enough. With enough computing power, we can
choose n large enough and approximate the integral as accurately as we like. This is
not as easy as it sounds. To compute to 10−13 accuracy (as your calculator does), we
would need n to be around 106.

A bit of thought lets us produce a rule that is much more accurate, and thus
requires less work.

In the trapezoid rule, we replaced f by a function which was linear on each interval
and computed the integral of the simpler function. An obvious thing to try is to
approximate f by a polynomial on intervals and then integrate the polynomial. We
consider the case of quadratic polynomials, or parabolas. Notice that a quadratic
expression Q(x) = Ax2 + Bx + C has three coefficients, so it is natural to try and
find a quadratic function which agrees with f at three points.

Suppose that we know f(−h), f(0) and f(h). This is a bit of a mess, but if we
ask that Q(−h) = f(−h), Q(0) = f(0) and Q(h) = f(h), we obtain the system of
equations

Ah2 +Bh+ C = f(h)

C = f(0)

Ah2 −Bh+ C = f(−h)

Solving this system, we obtain

Q(x) =
1

2h2
(f(−h)(x2 − xh) + 2f(0)(h2 − x2) + f(h)(x2 + xh)).

If we are brave and compute we find∫ h

−h
Q(x) dx =

h

3
(f(−h) + 4f(0) + f(h)).

Now, we consider an interval [a, b] and use the regular partition with n points. If n
is even, we can apply the above argument on the interval [x0, x2], [x2, x4] . . . [x2n−2, X2n],
we obtain the following approximate expression for the integral

∫ b
a f(x) dx,

h

3
(f(x0)+4f(x1)+f(x2)+f(x2)+4f(x3)+f(x4)+ . . .+f(xn−2)+4f(xn−1)+f(xn)).

Again, we collect the repeated terms and obtain Simpson’s rule for n even:

Sn =
h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3)2f(x4) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)).

To illustrate this rule, we approximate an integral.

Example. Use Simpson’s rule rule with n = 6 to approximate∫ 3

1

1

x
dx.

Use the value of ln 3 from your calculator to find the error.



Solution. We use subintervals of length h = 1/3. We put f(x) = 1/x. Simpson’s
rule for n = 6 reads

S6 =
1

6
(1 + 4 · 3

4
+ 2

3

5
+ 4 · 1

2
+ 2 · 3

7
+ 4 · 3

8
+

1

3
) ≈ 1.0989.

We have that ln 3− 1.0989 ≈ 3 · 10−4.

It is amazing that the pattern of coefficients in Simpson’s rule gives such an
improvement.

As with the trapezoid rule, there is an error estimate which reads:

Theorem 2 If f has four derivatives on [a, b] and |f (4)(x)| ≤ M4 for all x in [a, b],
then the error for the trapezoid rule ES satisfies

|ES| ≤
M4(b− a)5

180n4
.

Notice that the exponent here is 4, while it was 2 for the trapezoid rule. This
tells us that for a fixed n, Simpson’s rule should give us approximately twice as many
decimal places correct.

Example. Find a value of n so that when we approximate
∫ 3

1
1
x
dx, by Sn, we obtain

an error of at most 10−4.

Solution. If f(x) = 1/x, then f (4)(x) = 24/x5. We may use M4 = 24 on the interval
[1, 3]. We want the error to be less than 10−4. Thus we want

24 · 32

180n4
< 10−4.

Solving this inequality for n gives

4.26̄ · 104

180
< n4

or 14.37 < n. Since n must be even, we choose n = 16.

Example. Explain how to compute π to within an error of 10−2.



Solution. There are many ways to compute π. A nice one is:

π = 4 tan−1(1) = 4
∫ 1

0

1

1 + x2
dx.

Thus, we need to evaluate the integral
∫ 1

0
1

1+x2 dx to within an error of 1
4
· 10−2.

To estimate the error in the trapezoid rule, we need an upper bound on the
second derivative of f(x) = 1/(1 + x2). Compute: f ′(x) = −2x/(1 + x2)2 and
f ′′(x) = (6x2 − 2)/(1 + x2)3. A rough estimate is f ′′(x) ≤ 4 for x in [0, 1]. Thus

|ET | ≤
4 · 13

12n2
≤ 1

4
10−2.

or 4
3
102 ≤ n2. or n ≈ 11.54. Thus n = 12 will do.

If we are industrious and do the arithmetic, we obtain

π ≈ 3.1404.

Remark. One could also try to use Simpson’s rule. But finding the fourth derivative
of f(x) = 1/(1 + x2) is quite a mess.


