Lecture 8: L'Hopital's rule

- Recognize indeterminate forms. Especially, $0 / 0, \infty / \infty$. Be able to reduce limits of the form $0 \cdot \infty, 1^{0}$ and 1^{∞} to evaluating a limit of a quotient.
- State L'Hopital's rule for quotients.
- Compute limits using L'Hopital's rule.

Some well-known limits

Recall some familiar limits:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x} & =2 \\
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x} & =1 \\
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}} & =\frac{1}{2}
\end{aligned}
$$

The first two may be viewed as difference quotients and this allows us to know the limit. For example,

$$
\frac{\sin (2 x)}{x}=\frac{\sin (2 x)-0}{x-0}
$$

and thus with $f(x)=\sin (2 x)$,

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}=f^{\prime}(0)=2
$$

Indeterminate forms

Each of the limits above can be thought of as

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

where

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 .
$$

This is an indeterminate form of type $\frac{0}{0}$.
As the above examples show, these limits can have many values depending on the functions f and g. This is why the expression $f(x) / g(x)$ is called an indeterminate form.

Exercise. Given a value a, can you choose f and g so that the indeterminate form has the value a ?

If in the above limit we have

$$
\lim _{x \rightarrow a} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=\infty
$$

then this is an indeterminate form of type $\frac{\infty}{\infty}$. (We say the same if one or both of the limits is $-\infty$.

Example.

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x}
$$

Indeterminate forms of type 0∞. If

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} g(x)=\infty
$$

then

$$
\lim _{x \rightarrow a} f(x) g(x)
$$

is an indeterminate form. This can be rewritten as $0 / 0$ by considering $f(x) /\left(g(x)^{-1}\right)$.
Exercise. Can you also rewrite this indeterminate form as $\infty /$ infty?
Indeterminate forms of 1^{∞}. We rewrite

$$
f(x)^{g(x)}=e^{g(x) \ln (f(x))} .
$$

If f approaches 1 , then $\ln f$ approaches 0 and we assume that g has a limit of ∞ Thus on the right-hand side, the exponent is the indeterminate form $\infty \cdot 0$.

Example. Compute

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Solution. We rewrite this as

$$
\lim _{x \rightarrow 0} e^{\frac{1}{x} \ln (1+x)}
$$

since we evaluated the limit of the exponent above and the exponential function is continuous, we have

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e
$$

The rule, finally.

Theorem 1 If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is an indeterminate form of type $0 / 0$ or of type ∞ / ∞, and we have

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exists and equals L.
We will not give the proof here. If a is finite, then the rule can be proven by a generalization of the mean value theorem.

Example. Try to apply L'Hopital's rule to

$$
\lim _{x \rightarrow 0} \frac{x}{e^{x}} .
$$

What do we obtain? What is the value of the limit?
Solution. Misapplying L'Hopital's rule gives 1. L'Hopital's rule is not applcable because x / e^{x} is not an indeterminate form at 0 . The correct value of the limit is 0 . I

Examples

Example. Use L'Hopital to compute

$$
\lim _{x \rightarrow 0} \ln (1+x) x, \quad \lim _{x \rightarrow \infty} \frac{e^{x}}{x}, \quad \lim _{x \rightarrow \infty} x e^{-x}, \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

Example. Show that

$$
\lim _{x \rightarrow \infty} e^{x} x^{n}=\infty
$$

for $n=0,1,2,3, \ldots$.
Solution. The base case $n=0$ is obvious.
If we know that $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty$, then by L'Hopital,

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n+1}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{(n+1) x^{n}}
$$

If the limit is infinity for n, it will also be $+\infty$ for $n+1$.
Now the principle of mathematical induction tells us that the limit is $+\infty$ for all whole numbers n.

