
1 Lecture: Integration of rational functions by de-

composition into partial fractions

• Recognize and integrate basic rational functions, except when the denominator
is a power of an irreducible quadratic.

• Divide to write a rational function as the sum of a polynomial and a proper
rational function.

• Write out the form of the partial fractions decomposition.

• Find the partial fractions decomposition of a rational function by solving for
the constants.

1.1 Summary.

Theorem 1 Every rational function has an anti-derivative that can be expressed in
terms of polynomials, the logarithm function and the function tan−1.

The goal of this section is to describe a procedure that will allow us to find this
anti-derivative. We will not prove every step of the argument. However, by following
this procedure, we will be able to integrate the functions that arise in practice.

We begin by defining rational functions:

Definition. A rational function is a function which is the quotient of two polyno-
mials.

A proper rational function is a rational function where the degree of the numerator
is strictly less than the degree of the denominator. The division algorithm allows us to
write any rational function as the sum of a polynomial and a proper rational function.
Thus, we only need to consider how to integrate proper rational functions.

Example. Write
x3

x+ 1

as the sum of a polynomial and a proper rational function.

Solution. Using the division algorithm, we can write

x3 = (x+ 1)(x2 − x+ 1) + 1

thus, we have
x3

x+ 1
= x2 − x+ 1 +

1

x+ 1
.



Second approach. For simple functions such as this one, one can often to the
division by a trick:

x3

x+ 1
=

x3 − 1 + 1

x+ 1

=
(x+ 1)(x2 − x+ 1)

x+ 1
+

1

x+ 1

= x2 − x+ 1 +
1

x+ 1
.

where the second step requires us to remember how to factor b3 − a3.

Notice that in this example, when we divide, we put the function into a form
where it is easy to find the anti-derivative:

∫ x3

x+ 1
dx =

∫
x2 − x+ 1 +

1

x+ 1
dx =

x3

3
− x2

2
+ x+ ln |x+ 1|+ C.

In general, we will not be so lucky. However, there are further simplifications that
allow us to integrate all rational functions.

1.2 Some elementary rational functions

In this section, we recall several rational functions that we know how to integrate.
The main point of this section is that every rational function can be written in terms
of these simple functions.

The basic functions we consider are:∫ A

(ax+ b)k
dx (1)

where A, a 6= 0 and b are constants and k is a natural number. The basic function
we consider is ∫ Ax+B

(ax2 + bx+ c)k
dx. (2)

where A, B, a 6= 0, b, and c are constants and the quadratic expression in the
denominator is irreducible. This means that the equation ax2 + bx + c = 0 has no
real roots and happens precisely when the discriminant b2 − 4ac < 0.

We recall the techniques for integrating these functions:

Example. Find ∫ 1

(2x+ 1)2
dx.



Solution. Substituting u = 2x+ 1 gives that du = 2dx. Thus, we have that∫ 1

(2x+ 1)2
dx =

1

2

∫ 1

u2
dx = −1

2
u−1 + C = − 1

(4x+ 2)
+ C.

Example. Find ∫ x+ 3

x2 + 4x+ 6
dx.

Solution. Here we begin by complete the square in the denominator, x2 + 4x+ 6 =
(x+2)2 +2. Note that if we have an irreducible quadratic, then the expression should
be strictly positive. Now, we substitute u = x+ 2, du = dx in the integral and obtain
that ∫ x+ 3

x2 + 4x+ 6
dx =

∫ u

u2 + 2
du+

∫ 1

u2 + 2
du.

The first integral on the write can be evaluated by substituting v = u2 + 2 and we
obtain ∫ u

u2 + 2
du =

1

2
ln(u2 + 2) + C.

The second integral is can be evaluated and leads to a tan−1.∫ 1

u2 + 2
du =

1√
2

tan−1(
u√
2

) + C.

Combining everything, and putting u = x+ 2 gives∫ x+ 3

x2 + 4x+ 6
dx =

1

2
ln((x+ 1)2 + 2) +

1√
2

tan−1(
x+ 2√

2
+ C.

The alert reader will observe that we have not discussed how to integrate functions
such as ∫ 1

(x2 + 1)k
dx

when k > 1. There is a reduction formula which allows us to reduce the value of k,
however we will not discuss this case.



1.3 Decomposition into partial fractions.

In this section, we describe how to decompose a general proper rational function into
simpler functions that we can integrate as in the previous section.

We begin by factoring the denominator into linear and irreducible quadratic fac-
tors. It is a deep theorem of algebra that this is always possible for polynomials with
real coefficients. We also assume that all common factors between the numerator and
denominator have been canceled.

So let us consider a rational function where the denominator is a product of linear
factors Lj(x) and quadratic factors Qk(x) raised to various powers. We claim that
we can find constant so that we have

P (x)

L1(x)k1 . . . Lm(x)kmQ1(x)j1 . . . Qn(x)jn
=

A1,1

L1(x)
+ . . .+

A1,k1

L1(x)k1

. . .

+
Am,1
Lm(x)

+ . . .+
Am,km
Lm(x)km

+
B1,1x+ C1,1

Q1(x)
+ . . .+

B1,j1x+ C1,j1

Q1(x)j1
. . .

+
Bn,1x+ Cn,1

Qn(x)
+ . . .+

Bn,jnx+ Cn,jn
Qn(x)jn

.

I think we can all agree that the right-hand side is a big mess. This mess is called
the partial fractions decomposition. Let me summarize the rules for writing the
decomposition. For a linear factor raised to a power k, we obtain k terms where the
numerator is constant and the denominator is the linear factor raised to the powers
1, . . . , k. For a quadratic factor raised to the power k, we obtain k terms where the
numerator is a linear function and the denominator is a quadratic factor raised to the
powers 1, . . . , k.

An example might help.

Example. Write out the form of the partial fractions decomposition. Do not solve
for the constants.

f(x) =
x+ 3

(x+ 2)(x− 1)2(x2 + 1)2(x2 − 1)
.

Solution. Notice that the quadratic expression x2 + 1 is irreducible. The quadratic
expression x2 − 1 factors as (x− 1)(x + 1). After factoring and collecting like terms
in the denominator, we obtain that

f(x) =
x+ 3

(x− 1)3(x+ 1)(x+ 2)(x2 + 1)2
.



To obtain the decomposition, we consider each factor separately. A factor raised
to the k power will give us k terms. The denominators are the factor raised to the
powers 1, . . . , k. If the factor is linear, the numerators are constants and if the factor
is quadratic, the numerators are linear functions.

Applying these rules give:

f(x) =
A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3

+
D

x+ 1

+
E

x+ 2

+
Fx+G

x2 + 1
+

Hx+ I

(x2 + 1)2
.

1.3.1 Finding the constants

After we have written out the form of the partial fractions decomposition, finding the
values of the constants is a straightforward, but often lengthy computation.

• Find a common denominator.

• Collect like terms in the numerator.

• Write a system of equations by comparing coefficients of each power of x.

• If all is going well, this will give a system linear equations where the number
of equations is the same as the number of unknowns and one may solve this
system by elimination or your favorite method.

We illustrate this method with a simple example.

Example. Find the partial fractions decomposition of the function

g(x) =
x+ 2

x2 + x
.



Solution. The denominator factors as (x+ 1)x, thus the partial fractions decompo-
sition will contain two terms, one for each factor.

3x+ 2

x2 + x
=

A

x+ 1
+
B

x
.

Obtaining a common denominator on the left gives

3x+ 2

x2 + x
=
Ax+B(x+ 1)

x(x+ 1)

Collecting like terms on the left-hand side gives

3x+ 2

x2 + x
=

(A+B)x+B

x(x+ 1)

We obtain a system of two equations in A and B by comparing the coefficient of x
on both sides and the constant term.

x : A+B = 3

1 : B = 2

Here, the first entry in each row tells the power of x whose coefficients are equated
to obtain the equation. It is easy to see that the solutions of this system are

B = 2 A = 1

.
Thus, the partial fractions decomposition is

3x+ 2

x2 + x
=

3

x+ 1
+

2

x
.

We were not asked to evaluate an integral in the previous example, but we should
observe that the expression on the right is easy to integrate.

We end this lecture by giving one example where we follow the entire procedure.

Example. Find the anti-derivative ∫ 1

x4 − 1
dx



Solution. We observe that x4− 1 = (x2)2− 12 is a difference of squares and use this
to factor

x4 − 1 = (x2 − 1)(x2 + 1).

Next, we write out the form of the partial fractions decomposition:

1

(x− 1)(x+ 1)(x2 + 1)
=

A

x− 1
+

B

x+ 1
+
Cx+D

x2 + 1

Obtaining a common denominator on the right hand side gives

1

(x− 1)(x+ 1)(x2 + 1)
=

(x+ 1)(x2 + 1)

(x+ 1)(x2 + 1)

A

x− 1
+

(x− 1)(x2 + 1)

(x− 1)(x2 + 1)

B

x+ 1
+

(x2 − 1)

(x2 − 1)

Cx+D

x2 + 1

And if we multiply out each numerator and collect like terms we have

1

(x− 1)(x+ 1)(x2 + 1)
=

(A+B + C)x3 + (A−B +D)x2 + (A+B − C)x+ (A−B −D)1

(x− 1)(x+ 1)(x2 + 1)

This gives the system of equations:

x3 : A+B + C = 0

x2 : A−B +D = 0

x : A+B − C = 0

1 : A−B −D = 1

Solving this system gives:

A = 1/4 B = −1/4 C = −1/2.

After all of this, evaluating the integral is easy:∫ 1

x4 − 1
dx =

1

4

∫ 1

x− 1
dx− 1

4

∫ 1

x+ 1
dx− 1

2

∫ 1

x2 + 1
dx

=
1

4
ln |x− 1| − 1

4
ln |x+ 1| − 1

2
tan−1 x+ C

=
1

4
ln
|x− 1|
|x+ 1|

− 1

2
tan−1 x+ C.


