
1 Lecture: Rationalizing substitutions

• Substitution u = n
√
ax+ b.

• The Weierstraß substitution, u = tan(x/2). (Not to be examined.)

In the previous section, we described an algorithm that will let us integrate any
rational function. In this section, we learn a few substitutions that will allow us to
convert integrals that we do not yet know how to do into rational functions.

2 The substitution u = n
√
ax + b.

If R(v) is a rational function, then we may find the anti-derivative∫
R(

n
√
ax+ b) dx

by the substitution u = n
√
ax+ b.

We consider an example:

Example. Evaluate ∫ 1√
x+ 1

dx.

Solution. We let u =
√
x. If we compute du 1

2
√
x
dx, we might be confused as to what

do next since dx is not multiplied by 1
2
√
x

in the integral.

There are several ways around this problem. One is to solve u =
√
x for x giving

x = u2. Then we can write dx = 2udu. (This may seem like something new, but in
fact we used a similar technique when we substituted x = sin u a few days ago.)

With these substitutions, we have∫ 1

1 +
√
x
dx =

∫ 2u

1 + u
du.

The integral on the right is the integral of a rational function. To evaluate the
integral, we divide to write the integrand as a sum of a polynomial and a proper
rational function. This gives:∫ 2u

1 + u
du =

∫
2 +

2

1 + u
du.

We can evaluate the anti-derivative on the right, to obtain.∫
2 +

2

1 + u
du = 2u+ ln |1 + u|+ C.

Replacing u by
√
x gives∫ 1

1 +
√
x
dx = 2

√
x+ ln |1 +

√
x|+ C.



2.1 The Weierstraß substitution.

It is possible to evaluate any rational expression in cosx and sinx. In this section,
we explain how to do this.

The key to this method is an ingenious substitution that allows to express both
sinx and cosx as rational functions.

We begin by setting u = tan(x/2). Recalling that cos2(x/2) = 1/sec2(x/2) =
1/(1 + tan2(x/2)), we obtain that

cos2(x/2) =
1

1 + u2
.

If we use the double angle formulae, then

cos(x) = (2 cos2(x/2)− 1) =
2

1 + u2
− 1 =

1− u2

1 + u2
.

It is perhaps a bit of a surprise that

sin x =
√

1− cos2(x) =
2u

1 + u2
.

And then, we have x = 2 tan−1 u so that

dx =
1

1 + u2
du.

Using this substitution, it is clear that any rational expression in sin and cos
becomes a rational function in u.

Example. Find the antiderivative.∫ 1

2 + cosx
dx

Solution. With the substitution

sin x =
2u

1 + u2
, dx =

2

1 + u2
du

we obtain that∫ 1

2 + cosx
dx =

∫ 1

2 + 2u
1+u2

1

1 + u2
du =

∫ 1

2 + 2u2 + 2u
du

This integral, we can evaluate:

1

2

∫ 1

1 + u+ u2
du =

1

2

∫ 1

(u+ 1
2
)2 + 3

4

du =
2√
3

tan−1(
2√
3

(u+
1

2
) + C.

Thus, in the end, we obtain:∫ 1

2 + cosx
dx =

2√
3

tan−1(
2√
3

(tan(x/2) +
1

2
) + C.



3,4,5

The Weierstraß substitution has another interesting application that I should not talk
about because this is a calculus class and the application is in algebra. However, let
us live dangerously.

The relations

cosx =
1− u2

1 + u2
sin x =

2u

1 + u2

imply that for any value of u, the point(
1− u2

1 + u2
,

2u

1 + u2

)

lies on the unit circle. If we substitute a rational number for u, then we end up with a
point on the unit circle which has rational coordinates. If we clear the denominators,
this gives us an integer solution of a2 + b2 = c2.

To work out the details, we let u = m/n and if we simplify to clear all fractions
in (

1− (m/n)2

1 + (m/n)2

)2

+

(
2(m/n)

1 + (m/n)2

)2

= 1

we obtain
(n2 −m2)2 + (2mn)2 = (m2 + n2)2.

Substituting m = 1, n = 2 gives the familiar relation

32 + 42 = 52.

And m = 2 and n = 3 gives
52 + 122 = 132.

Exercise. Does the expression (m2 − n2, 2mn,m2 + n2) give all integer solutions of
the equation a2 + b2 = c2?

Exercise. Can you find an integer solutions of a3 + b3 = c3?, a4 + b4 = c4?


