1 Lecture 19: Arc length-graphs

1. Compute lengths of curves which are presented as graphs.

A definition of arc-length

By now, we know how to find the length of a line segment. If the coordinates of the endpoints are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{x}\right)$, then the theorem of Pythagoras tells us that we can find the length of the line segment joining these points by the formula

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

We will use this simple fact to give a definition of the length of a curve. To do this, we begin by approximating the curve by an inscribed polygonal path. If the curve is of the form $\{(x, f(x)): a \leq x \leq b\}$, then we partition the interval $[a, b]$ with $P=\left\{a=x_{0}<x_{1}<x_{2} \ldots<x_{n}=b\right\}$. We let $\Delta x_{i}=x_{i}-x_{i-1}$ and then we connect the points $\left\{\left(x_{i}, f\left(x_{i}\right)\right): i=0 \ldots n\right\}$ to form a polygonal curve whose length is

$$
S=\sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}} \approx \sum_{i=1}^{n} \sqrt{1+f^{\prime}\left(t_{i}\right)^{2}} \Delta x_{i} .
$$

This looks suspiciously like a Riemann sum for an integral and if we let the mesh of the partition tend to zero, we obtain the arc length of this curve is

$$
\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Some examples

We begin by showing that this definition agrees with what we learned in school for lines and circles.

Example. Find the length of the line $y=2 x$ for $1 \leq x \leq 4$.
Example. Find the length of the semi-circle $y=\sqrt{9-x^{2}}, 0 \leq x \leq 3$.

Example. Find the length of the curve $y=x^{3 / 2}$ for $0 \leq x \leq 1$.

Solution.

$$
\int_{0}^{1} \sqrt{1+9 x / 4} d x .=\frac{8}{27}\left((13 / 4)^{3 / 2}-1\right) \approx 1.44
$$

