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Abstract.

Let Ω be a domain in Rn whose boundary is C1 if n ≥ 3 or C1,β if
n = 2. We consider a magnetic Schrödinger operator LW,q in Ω and show
how to recover the boundary values of the tangential component of the
vector potential W from the Dirichlet to Neumann map for LW,q. We also
consider a steady state heat equation with convection term ∆+2W ·∇ and
recover the boundary values of the convection term W from the Dirichlet
to Neumann map. Our method is constructive and gives a stability result
at the boundary.

1 Introduction

In this note, we consider inverse boundary value problems for the magnetic Schrödinger
operator and the Laplacian with a convection term. We recover the boundary values
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of the coefficients from the Dirichlet to Neumann map. Our method is constructive
and gives a continuous dependence result. Our method is local in the sense that we
only need to know the action of the Dirichlet to Neumann map on functions sup-
ported in an arbitrarily small neighborhood of x0 in order to recover the value of a
coefficient at x0. In three dimensions, we work in domains which are C1 and require
no smoothness on the coefficients beyond continuity. In two dimensions, we need to
assume that the boundary is C1,β for some β > 0 to push our method through.

The identifiability at the boundary is often a first step in recovering the coefficients
in the interior. We expect that we will be able to use the results of this paper to
establish interior identifiability with less regularity for the coefficient of the operator
and the boundary of the domain.

Before giving more of the background, we give a careful description of the operators
we will study. Throughout this note, Ω will denote a C1-domain in Rn, n ≥ 3 or if
n = 2, a domain which is C1,β for some β > 0. Recall that a C1-domain (or C1,β-
domain) Ω is a bounded connected open set and has a C1 (or C1,β) defining function
ρ : Rn → R with Ω = {x : ρ(x) > 0} , ∂Ω = {x : ρ(x) = 0}. In addition, ∇ρ does not
vanish on ∂Ω. Thus, if we fix x0 ∈ ∂Ω, we may normalize ρ so that ∇ρ(x0) = −ν(x0)
where ν(x) is the normal to ∂Ω which points out of Ω.

We will use LW,q to denote a magnetic Schrödinger operator with vector potential
W and electric potential q. Thus,

LW,q =
n∑

j=1

(
1

i

∂

∂xj

+ Wj

)2

+ q.

The vector potential W : Ω̄ → Cn is a continuous function on Ω̄ and the electric
potential q is in L∞(Ω). As we shall see, the electric potential does not enter into
our arguments in any essential way. Our argument allows vector potentials that are
complex, though the main interest is in real-valued potentials.

We will also consider the Laplacian with a convection term

LW = ∆ + 2W · ∇

where ∆ is the Laplacian and the convection coefficient W : Ω̄ → Cn is a continuous
function.

Next, we define the Dirichlet to Neumann operator associated to the operators
LW and LW,q. We begin with the magnetic Schrödinger operator, LW,q. For f in
H1/2(∂Ω), we let u denote the solution of the Dirichlet problem,{

LW,qu = 0, in Ω
u = f, on ∂Ω.

(1.1)

Our method requires that we be able to solve the Dirichlet problem and thus we
assume that zero is not an eigenvalue for the operator LW,q with Dirichlet boundary
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conditions. We define the Dirichlet to Neumann operator acting on f by

ΛW,qf =
∂u

∂ν
+ iW · νu.

In general, ΛW,qf is not a function. We give a more careful (and useful) definition
of ΛW,qf as an element of H−1/2(∂Ω). If g is in H1(Ω) (and hence the trace of g on
∂Ω lies H1/2(∂Ω)–we will use g to denote both the function in Ω and its trace on the
boundary), we have

〈ΛW,qf, g〉 =
∫
Ω
∇u(x) · ∇ḡ(x) + W (x) · (iu(x)∇ḡ(x)− iḡ(x)∇u(x))

+(W (x) ·W (x) + q(x))u(x)ḡ(x) dx. (1.2)

Since u is a solution of the Dirichlet problem, (1.1), the right-hand side of this ex-
pression depends only on the trace of g on ∂Ω and not on the extension of g into
Ω.

In a similar manner, we define the Dirichlet to Neumann operator for the convec-
tion operator LW . For f in the Sobolev space H1/2(∂Ω), we let u be the solution of
the Dirichlet problem for LW ,{

LW u = 0 in Ω
u = f on ∂Ω.

(1.3)

We define ΛW f = ∂u
∂ν

where the precise definition of the normal derivative as an
element of H−1/2(∂Ω) is given by

〈ΛW f, g〉 =
∫
Ω
∇u(x) · ∇ḡ(x)− 2ḡ(x)W (x) · ∇u(x) dx. (1.4)

Again, because u is a solution of (1.3), the right-hand side of (1.4) depends only on
the boundary values of g and not the particular extension of g into the interior.

In the theorem below and throughout this paper, we will let Wtan = W − νW · ν
denote the tangential component of the boundary values of W . With these definitions,
we now may state our main results. Our first theorem allows us to recover the
tangential component of the boundary values of W .

Theorem 1.1 Let Ω be a C1-domain if n ≥ 3 or C1,β-domain for some β > 0 if
n = 2. Let W : Ω̄ → Cn be a continuous vector potential and q ∈ L∞(Ω), a scalar
potential. Assume that zero is not an eigenvalue for LW,q. For each x0 ∈ ∂Ω and
α, a unit tangent vector to ∂Ω at x0, we may find a family of functions fM with fM

supported in a ball of radius 1/M about x0,

lim
M→∞

‖fM‖L2(∂Ω) = 1 (1.5)

and so that
lim

M→∞
〈(ΛW,q − Λ0,0)fM , fM〉 = α ·W (x0).

Thus, we may recover the tangential component of W at the boundary from the Dirich-
let to Neumann map.
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From this theorem, we easily obtain a continuous dependence result. We also will
use ‖T‖ to denote the operator norm of T on L2(∂Ω).

Corollary 1.2 Let Ω , Wj and qj be as in Theorem 1.1. Then we have

‖(W1 −W2)tan‖L∞(∂Ω) ≤
√

2‖ΛW1,q1 − ΛW2,q2‖.

Remark. One deficiency of our results, is that we do not have a sharp criterion which
tells us when the operator norm on the right is finite. If Ω and W are smooth, this
norm will be finite.

We have a similar pair of results for the convection operator. As we shall see, the
functions fM used in finding the boundary values of the vector potential may also be
used to reconstruct the boundary values of the drift term in the convection operator.

Theorem 1.3 Let Ω be a C1-domain if n ≥ 3 or C1,β-domain for some β > 0 if
n = 2 and W : Ω̄ → Cn a continuous vector-valued function. Assume that 0 is not
an eigenvalue for LW in Ω. Then for each x0 ∈ ∂Ω and α which is a unit tangent
vector to ∂Ω at x0, we may find a family of functions fM with fM supported in a ball
about x0 of radius 1/M ,

lim
M→∞

‖fM‖L2(∂Ω) = 1

and
lim

M→∞
〈(ΛW − Λ0)fM , fM〉 = −(iα + ν(x0)) ·W (x0).

As a consequence, we may recover the boundary values of W .

Remark. If W is real-valued, then the maximum principle implies that 0 is not an
eigenvalue for LW , thus our hypothesis is satisfied in the case that is most interesting.

Corollary 1.4 If Ω, W1 and W2 as in the theorem, then we have

‖W1 −W2‖L∞(∂Ω) ≤
√

3‖ΛW1 − ΛW2‖.

Ours are not the first results on identifiability at the boundary for first-order
terms. Nakamura, Sun and Uhlmann [9] consider the magnetic Schrödinger operator
in smooth domains in Rn, n ≥ 3, and with C∞-coefficients. Their methods should
also give boundary identifiability when n = 2. They go on to study the problem
of recovery in the interior. The problem of identifiability of a vector potential was
first studied by Sun [11]. Other authors who have considered this problem include
Eskin and Ralston [5] and Tolmasky [13]. In his Ph.D. thesis [10], Salo gives recovery
of a continuous vector potential in domains that are C1,1. We relax the regularity
hypothesis for the boundary determination to just C1.

Interior identifiability of a convection term has been considered by several authors
including Cheng, Nakamura and Somersalo [3] and Salo [10] in dimensions three and
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higher and Cheng and Yamamoto [4], Tong, Cheng and Yamamoto [14] and Tamasan
[12] in two dimensions. Tong, Cheng, and Yamamoto work with Lp coefficients and do
not need identifiability at the boundary as a first step towards interior identifiability.
Cheng, Nakamura and Somersalo prove a result on identifiability at the boundary
in dimensions three and higher. Their methods likely extend to two dimensions.
Isakov [7] proves a theorem on identifiability at the boundary for nonlinear equations
that includes the operators we consider, however he requires additional smoothness
assumptions on the domain and the coefficients. Salo [10] proves the coefficient W
is uniquely determined by the Dirichlet to Neumann map in dimensions three and
higher. Salo’s argument at the boundary uses the singular solutions of Alessandrini
[1]. It would be interesting to adapt Alessandrini’s techniques to give a reconstruction
of W at the boundary, rather than just showing uniqueness.

Our proof for recovering W at the boundary will follow the argument used by Salo
for recovering the the vector potential for a magnetic Schrödinger operator [10]. Salo’s
method is based on work of Brown [2]. Our proof requires estimates for the L2(Ω)
norm of one of the functions appearing in the expressions (1.2) and (1.4) defining the
Dirichlet to Neumann maps. By contrast, the recovery of a conductivity in the work
of Brown [2] only requires the standard energy estimate for the gradient of a solution.
The new estimate is obtained using methods developed by Jerison and Kenig [8] in
their study of harmonic functions in Lipschitz domains.

In our proofs, we will use c and C to denote constants that depend only on the
domain Ω.

2 Construction of approximate solutions

In this section, we write down the boundary functions fM that we will use to recover
W . We will present these functions as the boundary values of an approximate solution
to the Laplacian. The remainder of this section is devoted to proving estimates for
solutions of boundary value problems with this data.

We will fix a point x ∈ ∂Ω and a unit vector α which is tangent to ∂Ω. By a
change of coordinates we may assume that x is the origin and that the normal to ∂Ω
at the origin is −en. We recall that ρ is a defining function for Ω and we normalize
ρ so that |∇ρ(0)| = 1.

Next, we let ω be a modulus of continuity for ∇ρ. Thus ω : [0,∞) → [0,∞) is
a strictly increasing continuous function with ω(0) = 0. We let η ∈ C∞

0 (Rn) be a
function which is supported in the ball of radius 1/2 centered at 0 and which satisfies∫

Rn−1
η(x′, 0)2 dx′ = 1. (2.1)

We put ηM(x) = η(M(x′, ρ(x)) where we are using x′ = (x1, . . . , xn−1) to denote the
first n − 1 coordinates. For M large, we will have ηM supported in a ball of radius
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1/M . Finally, we define u0 = v0 by

u0(x) = v0(x) = ηM(x)eN(iα·x−ρ(x)). (2.2)

Since our defining function for Ω, ρ, is C1, we have that u0 and v0 are compactly
supported and C1. The parameters N and M are related by the equation

M−1ω(M−1) = N−1. (2.3)

Note that since ω is increasing on [0,∞), the equation (2.3) will have exactly one
solution N for each M . Also, since limt→0+ ω(t) = 0, there is a value M0 so that
ω(M−1) < 1 if M > M0. We will assume that M > M0 and then we have M < N .

Our next Lemma gives several technical facts that will be needed in the estimates
that follow. In this lemma and below, we use δ(x) to denote the distance from x to
the boundary of Ω.

Lemma 2.1 Let η be continuous and supported in B1(0). Set ηM(x) = η(M(x′, ρ(x))).
Let N and M be related as in (2.3). We have the following

lim
M→∞

Mn−1N
∫
Ω

exp(−2Nρ(x))ηM(x) dx =
1

2

∫
Rn−1

η(x′, 0) dx′

and ∣∣∣∣∫
Ω

δ(x)k exp(−2Nρ(x))ηM(x) dx
∣∣∣∣ ≤ CM1−nN−k−1.

The proof of this Lemma is not difficult and we omit the details. We will also
need Hardy’s inequality. If f is a function in H1

0 (Ω), then Hardy’s inequality states
that ∫

Ω

∣∣∣∣∣f(x)

δ(x)

∣∣∣∣∣
2

dx ≤ C
∫
Ω
|∇f(x)|2 dx. (2.4)

This estimate holds if the domain Ω is Lipschitz and the constant depends only on
the geometry of Ω.

Lemma 2.2 Let u0 be as defined in (2.2). For M > M0, we have

‖∆u0‖H−1(Ω) ≤ Cω(M−1)M (1−n)/2N1/2.

Proof. We compute

∆u0(x) = div(∇ηM(x) exp(N(iα · x− ρ(x))))

+Ndiv(ηM(x)(en −∇ρ(x)) exp(N(iα · x− ρ(x))))

+N∇ηM(x) · (iα− en) exp(N(iα · x− ρ(x)))

+N2ηM(x)(iα− en) · (iα−∇ρ(x)) exp(N(iα · x− ρ(x)))

= F1(x) + F2(x) + F3(x) + F4(x).
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We estimate the contribution from each term. To study F1(x), we pair with a test
function f in H1

0 (Ω), use Cauchy-Schwarz and then Lemma 2.1 to obtain

|〈f, F1〉| =
∣∣∣∣∫

Ω
∇ηM(x) · ∇f(x) exp(−N(iα · x + ρ(x))) dx

∣∣∣∣
≤ C‖∇f‖L2(Ω)M

(3−n)/2N−1/2.

Recalling the relation between M and N , (2.3), we obtain

‖F1‖H−1(Ω) ≤ Cω(M−1)M (1−n)/2N1/2.

To estimate F2, we use Cauchy-Schwarz, Lemma 2.1, and our assumption that
|∇ρ(x)− en| ≤ ω(M−1) on the support of ηM to obtain that

|〈f, F2〉| ≤ Nω(M−1)‖∇f‖L2(Ω)

(∫
Ω

ηM(x)2 exp(−2Nρ(x)) dx
)1/2

≤ Cω(M−1)M (1−n)/2N1/2.

To estimate F3, we use Cauchy-Schwarz, Hardy’s inequality (2.4) and Lemma 2.1
to obtain

〈f, F3〉 ≤ CN

∫
Ω

(
f(x)

δ(x)

)2

dx

1/2 (∫
Ω

δ(x)2|∇ηM(x)|2 exp(−2Nρ(x)) dx
)1/2

≤ C
M

N
M (1−n)/2N1/2‖∇f‖L2(Ω).

Recalling that ω(M−1) = M/N (see (2.3)), we obtain the estimate of the Lemma.
For the term F4, we use that ∇ρ(0) = en, is the unit inner normal to ∂Ω, and

α is a unit tangent vector to Ω to obtain (iα − en) · (iα − en) = 0. Hence, by the
continuity of ∇ρ, it follows that

|(iα− en) · (iα−∇ρ(x))| ≤ Cω(M−1), x ∈ supp ηM

Thus, as with F3, we use Cauchy-Schwarz, Lemma 2.1 and Hardy’s inequality (2.4)
to obtain

〈f, F4〉 ≤ CN2

∫
Ω

(
f(x)

δ(x)

)2

dx

1/2

ω(M−1)
(∫

Ω
δ(x)2ηM(x)2 exp(−2Nρ(x)) dx

)1/2

≤ Cω(M−1)M (1−n)/2N1/2‖∇f‖L2(Ω).

The desired estimate for ‖∆u0‖H−1(Ω) follows from the inequalities above for F1

to F4.
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Our next step is to estimate LW,qu0 and LW u0. These estimates are easy conse-
quences of Lemma 2.2.

Lemma 2.3 Let Ω, u0 be as in Lemma 2.2. Suppose W and q are in L∞(Ω). Then
we have the estimates

‖LW,qu0‖H−1(Ω) ≤ CM (1−n)/2N1/2ω(M−1)

and
‖LW u0‖H−1(Ω) ≤ CM (1−n)/2N1/2ω(M−1)

Proof. The proof of this lemma amounts to showing that ‖LW u0 − ∆u0‖H−1(Ω) is
smaller than ‖∆u0‖H−1(Ω) as M → ∞. The additional terms are lower order than
those we studied in Lemma 2.2 and may be estimated using the tools introduced in
the proof of that Lemma. We omit the details.

Our next step is to construct solutions of the Dirichlet problem for LW,q (or LW )
and the Laplacian. We let v = v0 + v1 where v1 is the solution of{

∆v1 = −∆v0, in Ω
v1 ∈ H1

0 (Ω)
(2.5)

It is easy to see that v is a solution to the Dirichlet problem for the Laplacian in Ω
with boundary data u0.

When discussing the magnetic Schrödinger operator, we will let u = u0 +u1 where
u1 is a solution of {

LW,qu1 = −LW,qu0, in Ω
u1 ∈ H1

0 (Ω).
(2.6)

It is clear that u is a solution of the Dirichlet problem for LW,q with boundary data
u0.

When discussing the convection equation, we make the analogous definition for
u = u0 + u1 by setting {

LW u1 = −LW u0 in Ω
u1 ∈ H1

0 (Ω).
(2.7)

And we see that u is a solution of the Dirichlet problem for LW with boundary data
u0.

Our first estimates are the energy estimates for u1 and v1. These follow immedi-
ately from our estimates of Lemma 2.3 and standard Hilbert space existence theory.

Lemma 2.4 Let u1 be the solution of (2.6) or (2.7) and let v1 be the solution of
(2.5). Assume also that 0 is not an eigenvalue for LW,q (or LW ) in Ω. Then we have

‖∇u1‖L2(Ω) ≤ Cω(M−1)N1/2M (1−n)/2

‖∇v1‖L2(Ω) ≤ Cω(M−1)N1/2M (1−n)/2
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Our next step is to estimate the L2-norm of v1, the solution of (2.5).

Lemma 2.5 Let n ≥ 3 and Ω be a C1-domain, then the solution of (2.5) satisfies

‖v1‖L2(Ω) ≤ CM (1−n)/2N−1/2.

Note that away from the support of v0, the function v1 is harmonic. Thus we
expect that v1 decays like the Green’s function for Ω, G(x, y). If n ≥ 5, then the
elementary estimate G(x, y) ≤ |x − y|2−n is enough to imply that v1 is in L2(Ω).
When n = 3 and 4, we need additional estimates which rely on the vanishing of G on
the boundary of Ω. When n = 2, we need additional regularity on the boundary to
push the argument through.

Proof. We begin the proof by using the Poincaré inequality in a ball centered at 0
and of radius 100M−1 to obtain∫

Ω∩B100M−1 (0)
|v1(x)|2 dx ≤ CM−2

∫
Ω
|∇v1(x)|2 dx = CM−1−nNω(M−1)2

= CM1−nN−1 (2.8)

where we have also used Lemma 2.4 and (2.3). We extend |v1| by setting |v1| = 0
outside Ω and the resulting function will be sub-harmonic in Rn \BM−1(0). Thus, we
may use the mean-value inequality for sub-harmonic functions and the L2-estimate
(2.8) to conclude that

|v1(x)| ≤ C(M/N)1/2, if 2M−1 ≤ |x| ≤ 4M−1. (2.9)

We let w(x) = ωx(∂Ω ∩ B4M−1(0)) where ωx is the harmonic measure for Ω. We
observe that the Hölder continuity of harmonic functions and the Harnack principle
imply that w(x) ≥ c on Ω ∩ B2M−1(0) (see [8, Lemma 5.2]). Thus by the maximum
principle and (2.9), we conclude

|v1(x)| ≤ Cw(x)(M/N)1/2, x ∈ Ω \B2M−1(0). (2.10)

According to Lemma 5.8 in Jerison and Kenig [8] for M large, we have

w(x) ≤ CM2−nG(x, A4M−1(0)), x ∈ Ω \B8M−1(0). (2.11)

Here, for x ∈ ∂Ω and r small, we let Ar(x) denote a point in Ω with |Ar(x)− x| = r
and δ(Ar(x)) ≥ cr. Also, G(x, y) ≥ 0 is the Green’s function for the Laplacian on Ω.
From the easy upper bound for G,

G(x, y) ≤ C|x− y|2−n, (2.12)

and the Hölder continuity of harmonic functions in Ω (see [8, Lemma 5.1]), we have

G(x, A4M−1(0)) ≤ CκM
−κ|x|2−n−κ, x ∈ Ω \B8M−1(0). (2.13)
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In a Lipschitz domain, the estimate (2.13) holds for some κ which tends to zero as the
Lipschitz constant increases. Since Ω is C1, the estimate (2.13) will hold for any κ in
(0, 1). This is well-known, but we were not able to locate a reference. To establish the
result for C1 domains, one may construct barrier functions in a cone by separation of
variables.

From (2.10), (2.11) and (2.13), we conclude for any κ in (0, 1), there is a constant
Cκ so that

|v1(x)| ≤ Cκ(M/N)1/2(M |x|)2−n−κ, |x| > 8M−1.

Integrating this inequality, gives∫
|x|>8M−1

|v1(x)|2dx ≤ CM1−nN−1.

To obtain this estimate, we must choose κ > 0 when n = 4 and κ > 1/2 if n = 3.
For n = 2, see the remark after the proof of Theorem 1.3. If n ≥ 5, we only need the
easy upper bound for G (2.12); the Hölder estimate is not needed. Combining the
Poincaré inequality (2.8) and our last estimate gives the result of the theorem.

With our main estimates established, we proceed to summarize in a technical
Lemma the consequences of Lemma 2.5 and Lemma 2.4 that we will need to complete
our proof.

Lemma 2.6 With u = u0 + u1 the solution of the magnetic Schrödinger equation or
convection operator and v = v0 + v1 the solution of the Laplacian constructed above,
we have the following estimates:

‖u0‖L2(Ω) ≤ CM (1−n)/2N−1/2 (2.14)

‖∇u1‖L2(Ω) ≤ CM (1−n)/2N1/2ω(M−1) (2.15)

‖u1/δ‖L2(Ω) ≤ CM (1−n)/2N1/2ω(M−1) (2.16)

‖u‖L2(Ω) ≤ CM (1−n)/2N1/2ω(M−1) (2.17)

‖δ∇u0‖L2(Ω) ≤ CM (1−n)/2N−1/2 (2.18)

‖v‖L2(Ω) ≤ CM (1−n)/2N−1/2 (2.19)

‖δ∇v‖L2(Ω) ≤ CM (1−n)/2N−1/2 (2.20)

‖∇v1‖L2(Ω) ≤ CM (1−n)/2N1/2ω(M−1) (2.21)

‖v1/δ‖L2(Ω) ≤ CM (1−n)/2N1/2ω(M−1) (2.22)

Proof. The estimates (2.14) and (2.18) for u0 are easy because we have an explicit
formula (2.2) for u0. The estimate (2.15) for ∇u1 and the estimate (2.21) for ∇v1

are restatements of the energy estimates in Lemma 2.4. The estimates in (2.16) and
(2.22) follow from (2.15) and (2.21) and the Hardy inequality, (2.4). The estimate
(2.17) for u = u0 + u1 follows from the estimate (2.14) for u0, the estimate for ∇u1,
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(2.15), and the Poincaré inequality in Ω. The estimate (2.19) follows from (2.14)
(recall u0 = v0) and the estimate for v1 in Lemma 2.5. Finally, the estimate (2.20)
follows from (2.19) by using interior estimates for harmonic functions [6, Theorem
2.10] and the Hardy-Littlewood maximal functions as in Salo [10, Lemma 5.5].

Remark. The estimate (2.17) for the L2 norm of the solution to the magnetic Schrödinger
operator is probably not sharp. However, it is sufficient for our purposes.

3 Proofs of the main results.

We are ready to give the last few steps needed to prove our main theorem.

Proof of Theorem 1.1. We fix x0 in the boundary and wish to recover the tangential
component of W at x0. As above, we assume that x0 = 0 and that −en is the unit
outer normal to ∂Ω at x0. For M sufficiently large, we define

fM(x) = M (n−1)/2u0(x) (3.1)

where u0 is the function defined in (2.2). Thanks to the normalization of η in (2.1) it
is easy to see that

lim
M→∞

∫
∂Ω
|fM(x)|2 dx = 1

which gives the conclusion (1.5) in the statement of the theorem.
Using that the Dirichlet to Neumann map for the Laplacian, Λ0,0, is self-adjoint,

we write

〈(ΛW,q − Λ0,0)fM , fM〉 = Mn−1
∫
Ω

W (x) · (iu(x)∇v̄(x)− iv̄(x)∇u(x))

+(W (x) ·W (x) + q(x))u(x)v̄(x) dx

= Mn−1
(
i
∫
Ω

u0(x)W (x) · ∇v̄0(x)− v̄0(x)W (x) · ∇u0(x) dx

+i
∫
Ω

u0(x)W (x) · ∇v̄1(x) dx

+i
∫
Ω

u1(x)W (x) · ∇v̄(x) dx

−i
∫
Ω

v̄1(x)W (x) · ∇u0(x) dx

−i
∫
Ω

v̄(x)W (x) · ∇u1(x) dx

+
∫
Ω
(W (x) ·W (x) + q(x))u(x)v̄(x) dx

)
= I + II + III + IV + V + V I.

Using estimates (2.14) and (2.21), we obtain an estimate for II,

Mn−1

∣∣∣∣∫
Ω

u0(x)W (x) · ∇v̄1(x) dx
∣∣∣∣ ≤ C‖W‖L∞(Ω)ω(M−1).
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From estimate (2.16) and (2.20), we obtain an estimate for III,

Mn−1

∣∣∣∣∫
Ω

u1(x)W (x) · ∇v̄(x) dx
∣∣∣∣ ≤ Mn−1‖W‖L∞(Ω)‖u1/δ‖L2(Ω)‖δ∇v‖L2(Ω)

≤ Cω(M−1)‖W‖L∞(Ω).

The term IV is estimated using Cauchy-Schwarz, (2.18) and (2.22) to obtain

Mn−1

∣∣∣∣∫
Ω

v̄1(x)W (x) · ∇u0(x) dx

∣∣∣∣ ≤ C‖W‖L∞(Ω)M
n−1‖v1/δ‖L2(Ω)‖δ∇u0‖L2(Ω)

≤ Cω(M−1)‖W‖L∞(Ω).

To estimate V , we use Cauchy-Schwarz, (2.15) and (2.19) to obtain

Mn−1

∣∣∣∣∫
Ω

v̄(x)W (x) · ∇u1(x) dx

∣∣∣∣ ≤ CMn−1‖W‖L∞(Ω)‖v‖L2(Ω)‖∇u1‖L2(Ω)

≤ Cω(M−1)‖W‖L∞(Ω).

To estimate the last term, V I, we use that W and q are bounded and estimates (2.17)
and (2.19) to obtain

Mn−1

∣∣∣∣∫
Ω
(W (x) ·W (x) + q(x))u(x)v̄(x) dx

∣∣∣∣ ≤ Cω(M−1).

We study the main term, I:

Mn−1i
∫
Ω

W (x) · (u0(x)∇v̄0(x)− v̄0(x)∇u0(x)) dx

= 2Mn−1N
(∫

Ω
W (x) · αηM(x)2 exp(−2Nρ(x)) dx

)
= 2Mn−1NW (0) · α

∫
Ω

exp(−2Nρ(x))ηM(x)2 dx

+2Mn−1N
∫
Ω

α · (W (x)−W (0)) exp(−2Nρ(x))ηM(x)2 dx

= W (0) · α + o(1)

by Lemma 2.1 and the continuity of W .
This completes the proof of our theorem.

Proof of Corollary 1.2. We consider two magnetic Schrödinger operators which sat-
isfy the hypotheses of Theorem 1.1 in a C1-domain Ω. Fix x0 in ∂Ω and α a tangent
vector to ∂Ω. Subtracting the expressions for the recovery of W1 and W2 from The-
orem 1.1, we obtain

|α · (W1(x0)−W2(x0))| = lim
M→∞

|〈(ΛW1,q1 − ΛW2,q2)fM , fM〉|

≤ lim
M→∞

‖ΛW1,q1 − ΛW2,q2‖‖fM‖2
L2(Ω).

= ‖ΛW1,q1 − ΛW2,q2‖

12



Thus, if α is unit tangent vector to ∂Ω at x0, we obtain

|α · (W1(x0)−W2(x0))| ≤ ‖ΛW1,q1 − ΛW2,q2‖.

Choosing x0 so that |(W1(x0)−W2(x0))tan| is a maximum and α parallel to the real
part and then the imaginary part of w = (W1(x0)−W2(x0))tan gives

|(W1(x0)−W2(x0))tan| ≤ (|Re w|2 + | Im w|2)1/2 ≤
√

2‖ΛW1,q1 − ΛW2,q2‖.

Proof of Theorem 1.3. We fix x0 ∈ ∂Ω and α a vector which is tangent to the bound-
ary at ∂Ω. We let fM(x) = M (n−1)/2u0(x) as in (3.1) in the study of the magnetic
Schrödinger operator. We have

〈(ΛW − Λ0)fM , fM〉 = −2Mn−1
∫
Ω

v̄(x)W (x) · ∇u(x) dx.

If we imitate the arguments we used for the magnetic Schrödinger operator, we obtain
that

〈(ΛW − Λ0)fM , fM〉 = −2Mn−1
∫
Ω

v̄0(x)W (x) · ∇u0(x) dx + o(1).

Recalling the definition of u0, (2.2), we obtain

lim
M→∞

−2Mn−1
∫
Ω

v̄0(x)W (x) · ∇u0(x) dx = −(iα + ν(x0)) ·W (x0).

Since we may compute (±iα + ν(x)) · W (x0) for all unit tangent vectors α, we may
recover W (x0).

Remark. Here, we give the changes that are needed to two dimensions.
If we assume the domain is C1,β and the dimension is two, then we have that the

estimate (2.13) will hold with κ = 1. (See K.O. Widman [15] for a simple argument
if n ≥ 3. His argument extends to two dimensions with minor changes.) Applying
the remainder of the argument in Lemma 2.5, we conclude that

|v1(x)| ≤ CM−1/2N−1/2/|x|, |x| > 8M−1.

Integrating this inequality and using that Ω is bounded gives

‖v1‖L2(Ω) ≤ C(log(M))1/2M−1/2N−1/2.

Thus, we replace (2.19) and (2.20) in Lemma 2.5 by

‖v‖L2(Ω) + ‖δ∇v‖L2(Ω) ≤ CM−1/2N−1/2(log M)1/2

In the estimates for the terms III, V , and V I in the proof of Theorem 1.1, the
extra factor (log(M))1/2 is multiplied by ω(M−1). When ω(t) = Ctβ, the product
(log(M))1/2ω(M−1) will vanish in the limit. The rest of the proofs of Theorems 1.1
and 1.3 remain unchanged.
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Proof of Corollary 1.4. Fix x0 and let α be a unit tangent vector to ∂Ω at x0. From
Theorem 1.3, we obtain that

|(iα + ν(x0)) · (W1(x0)−W2(x0))| ≤ ‖ΛW1 − ΛW2‖.

Using the above inequality with α and −α and the triangle inequality, we obtain

|α · (W1(x0)−W2(x0))| ≤ ‖ΛW1 − ΛW2‖

and
|ν · (W1(x0)−W2(x0))| ≤ ‖ΛW1 − ΛW2‖.

Choosing a point where W1(x0) − W2(x0) is maximal and then α parallel to the
real and imaginary components of (W1(x0) − W2(x0))tan and estimating the normal
component of W1(x0)−W2(x0) separately, gives

‖W1(x0)−W2(x0))‖L∞(∂Ω) ≤
√

3‖ΛW1 − ΛW2‖.
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