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Abstract

We determine how the flag f -vector of any graded poset changes under the Rees product with the
chain, and more generally, any t-ary tree. As a corollary, the Möbius function of the Rees product
of any graded poset with the chain, and more generally, the t-ary tree, is exactly the same as the
Rees product of its dual with the chain, respectively, t-ary chain. We then study enumerative and
homological properties of the Rees product of the cubical lattice with the chain. We give a bijective
proof that the Möbius function of this poset can be expressed as n times a signed derangement
number. From this we derive a new bijective proof of Jonsson’s result that the Möbius function of
the Rees product of the Boolean algebra with the chain is given by a derangement number. Using
poset homology techniques we find an explicit basis for the reduced homology and determine a
representation for the reduced homology of the order complex of the Rees product of the cubical
lattice with the chain over the symmetric group.

2010 Mathematics Subject Classification: 06A07, 05E10, 05A05.

1 Introduction

Björner and Welker [2] initiated a study to generalize concepts from commutative algebra to the area
of poset topology. Motivated by the ring-theoretic Rees algebra, one of the new poset operations they
define is the Rees product.

Definition 1.1 For two graded posets P and Q with rank function ρ the Rees product, denoted P ∗Q,
is the set of ordered pairs (p, q) in the Cartesian product P × Q with ρ(p) ≥ ρ(q). These pairs are
partially ordered by (p, q) ≤ (p′, q′) if p ≤P p′, q ≤Q q′, and ρ(p′)− ρ(p) ≥ ρ(q′)− ρ(q).

The rank of the resulting poset is ρ(P ∗Q) = ρ(P ). For more details concerning the Rees product and
other poset products, see [2].

From the perspective of topological combinatorics, one of the most important results that Björner
and Welker show in their paper is that the poset theoretic Rees product preserves the Cohen-Macaulay
property; see [2].

Theorem 1.2 (Björner-Welker) If P and Q are two Cohen-Macaulay posets then so is the Rees
product P ∗Q.

∗Part of this work was completed during the second author’s 2006-2007 sabbatical at MIT.
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Very little is known about the Rees product of specific examples of Cohen-Macaulay posets. How-
ever, what has been studied has yielded rich combinatorial results. The first example in this vein is
due to Jonsson [5], who settled an open question of Björner and Welker concerning the Rees product
of the Boolean algebra with the chain. For brevity, throughout we will use the notation Rees(P,Q) to
denote the Rees product

Rees(P,Q) = ((P − {0̂}) ∗Q) ∪ {0̂, 1̂}.

As usual, we will assume that P and Q are graded posets with P having unique minimal element 0̂
and unique maximal element 1̂.

Theorem 1.3 (Jonsson) The Möbius function of the Rees product of the Boolean algebra Bn on n
elements with the n element chain Cn is given by the nth derangement number, that is,

µ(Rees(Bn, Cn)) = (−1)n+1 ·Dn.

Recall the nth derangement number Dn is the number of permutations in the symmetric group Sn

on n elements having no fixed points. Classically Dn = bn!
e e for n ≥ 1 where b·e denotes the nearest

integer function. Jonsson’s original proof uses an non-acyclic element matching to show the Euler
characteristic vanishes appropriately.

The paper is organized as follows. In the next section we begin by expressing the flag f -vector of
the Rees product of any graded poset with a t-ary tree in terms of the flag f -vector of the original poset.
We obtain the surprising conclusion that the Möbius function of the poset with the tree coincides with
the Möbius function of its dual with the tree. We then study the signed version of Jonsson’s results,
that is, the Rees product of the rank n+1 cubical lattice Cn, (i.e., the face lattice of the n-dimensional
cube) with the n + 1 element chain Cn+1. Using poset techniques, we give explicit formulas for the
for the Möbius function of Rees(Cn, Cn+1) and show its Möbius function equals (−1)n ·n ·D±

n−1. Here

D±
n is the signed derangement number with D±

n = d2n−1(n−1)!√
e

c for n ≥ 1. As a corollary to our
enumerative results, we give an explicit bijective proof of Jonsson’s theorem. We then find an explicit
basis for the reduced homology of the order complex of Rees(Cn, Cn+1) and determine a representation
of the reduced homology of this order complex over the symmetric group. In the last section we end
with further questions.

2 Rees product of graded posets with a tree

In this section we determine the flag vector of the Rees product of any graded poset P with a t-
ary tree. As a consequence we show the Möbius function of the Rees products Rees(P, Tt,n+1) and
Rees(P ∗, Tt,n+1) coincide, although the posets are not isomorphic in general.

For nonnegative integers n and t, let Tt,n+1 be the poset corresponding to a t-ary tree of rank n,
that is, the poset consisting of tk elements of rank k for 0 ≤ k ≤ n with each nonleaf element covered
by exactly t children. Observe that the 1-ary tree T1,n+1 is precisely the (n + 1)-chain Cn+1. Recall
for a graded poset P of rank n + 1 and S = {s1, . . . , sk} ⊆ {1, . . . , n} with s1 < · · · < sk, the flag
f-vector fS = fS(P ) is the number of chains 0̂ < x1 < · · · < xk < 1̂ with ρ(xi) = si.

We now define two weight functions. Here we use the notation [k] to denote the t-analogue of the
nonnegative integer k, i.e., [k] = 1 + t+ · · ·+ tk−1.
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Definition 2.1 For a nonempty subset S = {s1 < · · · < sk} ⊆ P define

w(S) = [s1] · [s2 − s1 + 1] · · · [sk − sk−1 + 1]

with w(∅) = 1. For a nonempty subset S = {s1 < · · · < sk} ⊆ {1, . . . , n} define

v(S) = w(S ∪ {n+ 1})− w(S) = t · w(S) · [(n+ 1)− sk]

with v(∅) = t · [n].

Lemma 2.2 For a graded poset P of rank n + 1, let R = Rees(P, Tt,n+1). Then the flag f-vector of
the poset R is given by

fS(R) = w(S) · fS(P ), (2.1)
fS∪{n+1}(R) = w(S ∪ {n+ 1}) · fS(P ), (2.2)

for S ⊆ {1, . . . , n}.

Proof: Consider first S = {s1 < · · · < sk} ⊆ {1, . . . , n}. Given an element x1 of rank ρ(x1) = s1
from the poset P , there are [s1] copies of it in the Rees poset R. Each of these copies has [s2− s1 + 1]
elements in R of rank s2 which are greater than it with respect to the partial order of the Rees poset R.
In general, each rank si element in R has [si+1 − si + 1] elements greater than it in the Rees poset R.
Hence relation (2.1) holds.

To show (2.2), note the maximal element 1̂ of P gets mapped to the [n + 1] coatoms of the Rees
poset R. In particular [(n+ 1)− sk + 1] of these elements will cover a given element of rank sk in R.
Hence the result follows. 2

Lemma 2.3 For a graded poset P of rank n+ 1, let R = Rees(P, Tt,n+1). Then

µ(R) =
∑

S⊆{1,...,n}

(−1)|S| · v(S) · fS(P ).

Proof: By Philip Hall’s theorem, we have

µ(R) =
∑

S⊆{1,...,n+1}

(−1)|S|−1fS(R)

=
∑

S⊆{1,...,n}

(−1)|S|−1fS(R) +
∑

S⊆{1,...,n}

(−1)|S|fS∪{n+1}(R)

=
∑

S⊆{1,...,n}

(−1)|S|−1 w(S) · fS(P ) +
∑

S⊆{1,...,n}

(−1)|S| w(S ∪ {n+ 1}) · fS(P ),

where we have expanded the flag f -vector of the poset R using Lemma 2.2. Combining the two sums
proves the desired identity. 2
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Theorem 2.4 For a graded poset P of rank n+ 1 we have

µ(Rees(P, Tt,n+1)) = µ(Rees(P ∗, Tt,n+1)),

where P ∗ is the dual of P . In particular, for the chain on n+ 1 elements we have

µ(Rees(P,Cn+1)) = µ(Rees(P ∗, Cn+1)).

Proof: Let S = {s1 < · · · < sk} ⊆ {1, . . . , n}. The result follows by noting that v(S) = v(Srev),
where the reverse of S is Srev = {n+ 1− sk, n+ 1− sk−1, . . . , n+ 1− s1} and applying Lemma 2.3. 2

It is clear from the definition of the weight v(S) that the Möbius function µ(Rees(P, Tt,n+1)) is
divisible by t. When the poset has odd rank we can say more.

Corollary 2.5 For a graded poset P of odd rank n + 1, the Möbius function µ(Rees(P, Tt,n+1)) is
divisible by [2] = 1 + t. In particular, for a graded poset P of odd rank n + 1, the Möbius function
µ(Rees(P,Cn+1)) is even.

Proof: Observe that 1 + t divides [k] if and only if k is even. Hence 1 + t does not divide v(S) for a
set S = {s1 < · · · < sk} implies that s1 is odd, si has the same parity as si+1 and n+ 1− sk is odd.
This implies that n is odd. Hence that n is even implies that the weight v(S) is divisible by 1 + t for
all subsets S, including the empty set. Thus by Lemma 2.3 the Möbius function of Rees(P, Tt,n+1) is
divisible by 1 + t. 2

3 Rees product of the cubical lattice with the chain

In this section we give an explicit formula for the Möbius function of the poset Rees(Cn, Cn+1). After
finding an R-labeling in Section 4, we relate the Möbius function with a class of permutations, that
is, the double augmented barred signed permutations. These are in a one-to-one correspondence
with certain skew diagrams. We will return to these when we consider homological questions for
Rees(Cn, Cn+1). In Section 6 we give a bijective proof of the Möbius function result expressed as a
permanent of a certain matrix.

We represent an element (x, i) ∈ Rees(Cn, Cn+1) − {0̂, 1̂} as an ordered pair where the n-tuple
x = (x1, x2, . . . , xn) ∈ {0, 1, ∗}n and i ∈ {1, . . . , n}. Observe that such an element (x, i) has rank k if
there are exactly k − 1 stars appearing in its first coordinate, 1 ≤ i ≤ k.

For a graded poset P with minimal element 0̂ and maximal element 1̂, throughout we will use the
shorthand µ(P ) to denote the Möbius function µP ([0̂, 1̂]).

Proposition 3.2 gives an explicit formula for the Möbius function of the poset Rees(Cn, Cn+1). The
proof will require the following lemma.

Lemma 3.1 The following identity holds:

1 +
n∑

k=0

(
n

k

)
(−1)k+1k!(n− k + 1) = 0.
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Proof: Define sequences (an)n≥0 and (bn)n≥0 by an = (−1)n+1n! and bn = n + 1. These sequences
have exponential generating functions

A(x) =
∑
n≥0

(−1)n+1xn = − 1
1 + x

and

B(x) =
∑
n≥0

(1 + n)
xn

n!
= (1 + x)ex.

Thus, D(x) = A(x)B(x) = −ex. But

D(x) =
∑
n≥0

n∑
k=0

(
n

k

)
akbn−k

xn

n!

=
∑
n≥0

n∑
k=0

(
n

k

)
(−1)k+1k!(n− k + 1)

xn

n!
,

which proves the claim. 2

Proposition 3.2 The Möbius function of the Rees product of the cubical lattice with the chain is
given by

µ(Rees(Cn, Cn+1)) = −1 +
n∑

i=0

(−1)n−i · 2n−i

(
n

i

)
(i+ 1)(n− i)!.

Proof: Let x be an element of corank k from Rees(Cn, Cn+1)− {0̂, 1̂}. First note that the number of
elements of corank i in the half-open interval [x, 1̂) is

(
k−1
i−1

)
· (k − i + 1). This follows from the fact

that the element x = (b, p) has k− 1 non-stars appearing in b, so a corank i element y = (c, q) ∈ [x, 1̂)
has i − 1 more stars appearing in c and the second coordinate q satisfying p ≤ q ≤ p + k − i + 1.
Hence there are

(
k−1
i−1

)
· (k − i + 1) such elements y. Secondly, we claim that for a corank k element

x ∈ Rees(Cn, Cn+1)− {0̂, 1̂}, we have

µ([x, 1̂]) = (−1)k · (k − 1)!. (3.1)

We induct on the corank k. The case k = 0 is clear, as then x is a coatom. For the general case, we
have

µ([x, 1̂]) = −
∑

x<y≤1̂

µ([y, 1̂])

= −

1 +
∑

x<y≤1̂,
1≤corank(y)≤k−1

µ([y, 1̂])


= −

(
1 +

k−1∑
i=1

(−1)i · (i− 1)! · number of elements of corank i in [x, 1̂)

)
,
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n Dn = (−1)n+1µ(Rees(Bn, Cn) (−1)nµ(Rees(Cn, Cn+1)) = Factorization
0 1 0 = 0
1 0 1 = 1 · 1
2 1 2 = 2 · 1
3 2 15 = 3 · 5
4 9 116 = 4 · 29
5 44 1165 = 5 · 233
6 265 13974 = 6 · 2329
7 1854 195643 = 7 · 27949
8 14833 3130280 = 8 · 391285
9 133496 56345049 = 9 · 6260561
10 1334961 1126900970 = 10 · 112690097

Table 1: Table of Möbius values for the Rees product of the Boolean algebra with the chain and the
Rees product of the cubical lattice with the chain.

where the third equality is applying the induction hypothesis. The number of corank i elements in
the half-open interval [x, 1̂) is

(
k−1
i−1

)
· (k − i+ 1), giving

µ([x, 1̂]) = −

(
1 +

k−1∑
i=1

(−1)i

(
k − 1
i− 1

)
· (i− 1)! · (k − i+ 1)

)
= (−1)k · (k − 1)!

by Lemma 3.1.

To finish the argument, there are 2n−k ·
(
n
k

)
· (k + 1) elements of rank k + 1, each having Möbius

value µ(x, 1̂) = (−1)n−k+1 · (n−k)!. Hence the lemma follows the fact that for a poset P with 0̂ and 1̂,
the identity µP (0̂, 1̂) = −

∑
0̂<x≤1̂ µP (x, 1̂) holds. 2

4 Edge labeling

We begin by recalling some facts about R-labelings. For a complete overview, we refer the reader to
Section 5 of Björner and Wachs’ paper [1].

Given a poset P an edge labeling is a map λ : E(P ) → Λ, where E(P ) denotes the edges in the
Hasse diagram of P and the labels are elements from a poset Λ. An edge labeling λ is said to be an
R-labeling if in every interval [x, y] of P there is a unique saturated chain c : x = x0 ≺ x1 ≺ · · · ≺
xk = y whose labels are rising, that is, which satisfies λ(x0, x1) <Λ λ(x1, x2) <Λ · · · <Λ λ(xk−1, xk).
Given a maximal chain m : 0̂ = x0 ≺ x1 ≺ · · · ≺ xn = 1̂ in P , the descent set of m is the set
D(m) = {i : λ(xi−1, xi) 6<Λ λ(xi, xi+1)}. Alternatively, when we view the labels of the maximal chain
as the word λ(m) = λ1 · · ·λn, where λi = λ(xi−1, xi) and the rank of P is n, there is a descent in the
ith position of λ(m) if the labels λi and λi+1 are either incomparable in the label poset Λ or satisfy
λi >Λ λi+1. In particular, a maximal chain m is said to be rising if its descent set satisfies D(m) = ∅
and falling if D(m) = {1, . . . , n}.

The usefulness of an R-labeling is that it gives an alternate way to compute the Möbius function µ
of a poset. Variations of this result are due to Stanley in the case of admissible lattices, Björner for R-
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labelings and edge lexicographic labelings, and Björner–Wachs for non-pure posets with a CR-labeling.
See [1] for historical details.

Theorem 4.1 Let P be a graded poset of rank n with an R-labeling. Then with respect to this R-
labeling the Möbius function is given by

µ(0̂, 1̂) = (−1)n · number of falling maximal chains in P .

Let λ : E(Rees(Cn, Cn+1)) → {0,±1,±2, . . . ,±n, n + 1} × {0, 1} be a labeling of the edges of the
Hasse diagram of Rees(Cn, Cn+1) defined by

Edge Condition λ(E) Notation
(x, i) ≺ (y, i) xa = 1, ya = ∗ (a, 0) a
(x, i) ≺ (y, i) xa = 0, ya = ∗ (−a, 0) −a
(x, i) ≺ (y, i+ 1) xa = 1, ya = ∗ (a, 1) a
(x, i) ≺ (y, i+ 1) xa = 0, ya = ∗ (−a, 1) −a
0̂ ≺ (x, 1) (0, 0) 0
(x, i) ≺ 1̂ (n+ 1, 0) n+ 1

where x = (x1, . . . , xn) and y = (y1, . . . , yn). The elements {0,±1, . . . ,±n, n+ 1} × {0, 1} are partially
ordered with the product order, that is (x, i) ≤ (y, j) if x ≤ y and i ≤ j.

Proposition 4.2 The labeling λ is an R-labeling of Rees(Cn, Cn+1).

Proof: Let I = [(x, i), (y, j)] be an interval in Rees(Cn, Cn+1)−{0̂, 1̂} of lengthm with x = (x1, . . . , xn)
and y = (y1 . . . , yn). We wish to find a saturated chain c : (x, i) = (z0, p0) ≺ (z1, p1) ≺ · · · ≺ (zm, pm) =
(y, j) in the interval I with increasing edge labels.

Let S0 = {k : xk = 0 and yk = ∗} and S1 = {k : xk = 1 and yk = ∗}. Let s = j − i and t = |S0|.
Without loss of generality, we may assume S0 = {i1, . . . , it} and S1 = {it+1, . . . , im} with i1 > · · · > it
and it+1 < · · · < im. Set (z0, p0) = (x, i). For 1 ≤ k ≤ m, let (zk, pk) = ((z1,k, . . . , zn,k), pk) where

zi,k =
{
∗ if i = ik,
zi,k−1 otherwise,

and

pk =
{
pk−1 if 1 ≤ k ≤ m− s,
pk−1 + 1 otherwise.

The first coordinate of the edge labels of the chain c form the strictly increasing sequence −i1 < · · · <
−it < it+1 < · · · < im as the ij ’s are all positive, while the second coordinate of the edge labels form
the weakly increasing sequence 0 ≤ · · · ≤ 0 ≤ 1 ≤ · · · ≤ 1. Hence the chain c constructed is increasing.

We also claim that the chain c is the unique such chain that is increasing in the interval I. For
any maximal chain in this interval, each i ∈ S0 appears as the first coordinate in an edge label with
a negative sign and every i ∈ S1 must appear with a positive sign. Hence there is exactly one way
to linearly order these m values. The second coordinate of the labels of any maximal chain in I is a
permutation of the multiset {0m−s, 1s}. Again, there is exactly one way to order these m values in a
weakly increasing fashion. Hence the increasing chain c is unique.
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For the case when the interval is [0̂, (y, j)] ∈ Rees(Cn, Cn+1) with (y, j) 6= 1̂, the first edge label
in any saturated chain is always (0, 0). Hence the first coordinate of the labels in any increasing
chain in this interval must all be non-negative, implying an increasing chain must pass through the
atom (a, 1) = ((1, . . . , 1), 1). The remainder of the increasing chain is given by the unique increasing
maximal chain in the interval [(a, 1), (y, j)].

For an interval of the form [(x, i), 1̂], since the last edge label of any saturated chain has label
(n + 1, 0), this forces all the elements of such a chain to be of the form (y, i) with x ≤Cn y. In
particular, the rank n element of such a chain is precisely the element (b, i) = ((∗, . . . , ∗), i). Hence
the increasing maximal chain in [(x, i), 1̂] is given by the increasing maximal chain guaranteed in
[(x, i), (b, i)] concatenated with the element 1̂. 2

5 Falling chains

Define the set of (double augmented) barred signed permutations S±
n to be those permutations π =

π0π1 · · ·πn+1 satisfying (i) π0 = 0 and πn+1 = n+ 1, (ii) for 1 ≤ i ≤ n, πi is equal to one of ai, −ai,
ai or −ai for some ai ∈ {1, . . . , n}, and (iii) a1 · · · an is a permutation in the symmetric group Sn

on n elements. Given a double augmented barred signed permutation π = π0π1 · · ·πn+1, a descent at
position i occurs when |πi| > |πi+1|, where |πj | denotes the element πj with its (possible) bar removed
and sign preserved.

Proposition 5.1 With respect to the R-labeling λ of the poset Rees(Cn, Cn+1), the falling chains are
described as the set of double augmented barred signed permutations π = π0π1 · · ·πn+1 ∈ S±

n satisfying

1. if πi is unbarred then there must be a descent at the ith position.

2. if πi is barred, then either (i) πi+1 is unbarred or (ii) πi+1 is barred and there is a descent at
the ith position.

Example 5.2 The permutation (0,−3,−4, 2,−1, 5) ∈ S±
4 corresponds to the falling chain

0̂ ≺ (0100, 1) ≺ (01 ∗ 0, 1) ≺ (01 ∗ ∗, 2) ≺ (0 ∗ ∗∗, 2) ≺ (∗ ∗ ∗∗, 3) ≺ 1̂

in the poset Rees(C4, C5).

Proof of Proposition 5.1: Given a barred signed permutation satisfying the conditions of the
proposition, we wish to find a falling chain c : 0̂ ≺ (x1, i1) ≺ · · · ≺ (xn, in) ≺ 1̂ in Rees(Cn, Cn+1). For
1 ≤ k ≤ n, if πk < 0 then set x1,k = 1; otherwise set x1,k = 0. To find (xk, ik) recursively, set i1 = 0,
let xwk,k = ∗, and set

ik =
{
ik−1 + 1 if πk is barred,
ik−1 if πk is not barred.

Observe that c is a falling chain. The labels on the barred signed permutation correspond to the
labels on the falling chain. Note that if the unbarred signed permutation does not have a descent at
some position k, then πk is barred and πk+1 is not, implying the second coordinate in the labeling
λ((xk, ik), (xk+1, ik+1)) is 1, while the second coordinate in the labeling λ((xk+1, ik+1), (xk+2, ik+2))

8



is 0. Hence, the chain is not rising in the kth position. Otherwise, the unbarred permutation has a
descent and hence the first coordinate in the labeling λ((xk, ik), (xk+1, ik+1)) is greater than the first
coordinate in the labeling λ((xk+1, ik+1), (xk+2, ik+2)) and hence the chain is not rising. 2

Throughout we will use Fn to denote the set of all the falling double augmented barred signed
permutations in S±

n .

Theorem 5.3 The Möbius function of the Rees product Rees(Cn, Cn+1) is given by

µ(Rees(Cn, Cn+1)) = (−1)n ·
∑

c

2n−c1

(
n

c1, . . . , ck

)
· c1 ·

k∏
i=2

(ci − 1),

where the sum is over all compositions c = (c1, . . . , ck) of n and 1 ≤ k ≤ n.

Proof: By Theorem 4.1, to determine the Möbius function of the poset Rees(Cn, Cn+1) it is enough
to count the number of falling chains in Rees(Cn, Cn+1). Proposition 5.1 allows one to separate the
double augmented barred signed permutations corresponding to falling chains into substrings which
consist of a sequence of unbarred elements followed by a sequence of barred elements.

By Proposition 5.1, the element 0 will alway be part of the first substring and the last substring
will consist only of the element n + 1. Determining the size of each substring is equivalent to taking
a composition c = (c1, c2, . . . , ck) of n. Note that the first substring will be of size c1 + 1 to account
for the element 0 and the (k + 1)st substring will consist only of the element n+ 1.

In each substring there is a sequence of elements without bars followed by a sequence of elements
with bars. Given the size of each substring we determine at what place the barred elements begin. In
the first substring we can begin the bars at any place, so there are c1 ways. For all the other substrings
the first element cannot be barred, for otherwise it would belong to the previous substring. Thus, we
can begin the sequence of barred elements in ci − 1 ways for i = 2, . . . , k. The total number of ways
to place bars over elements is c1 ·Πk

i=2(ci − 1).

Next, we choose the elements that will be in each substring. This is done in
(

n
c1,c2,...,ck

)
ways. Now

we must sign these elements. Note that the elements in each substring must be arranged in decreasing
order. Once we have chosen the signs, this can be done in exactly one way. Furthermore, all of the
elements in the first block must be negative because the falling double augmented signed permutation
begins with the element 0. This leaves 2n−c1 ways to sign the remaining elements. 2

6 Signed derangement numbers, skew diagrams and a bijective proof

Recall that the derangement number Dn can be expressed as the permanent of an n × n matrix
having 0’s on the diagonal and 1’s everywhere else. Motivated by this, define the signed derangement
number D±

n by

D±
n = per


1 2 · · · 2
2 1 · · · 2
...

...
. . .

...
2 2 · · · 1

 ,
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that is, the permanent of an n × n matrix having 1’s on the diagonal and 2’s everywhere else. It
is straightforward to see that this permanent enumerates signed permutations π = π1 · · ·πn ∈ S±

n

having no fixed points, that is, no index i satisfying πi = i. See [3, 4] for details.

Lemma 6.1 For n ≥ 0, D±
n is the nearest integer to 2n·n!√

e
.

Proof: This follows directly from the generating function
∑

n≥0D
±
n

xn

n! = e−x

1−2x . 2

In this section we give a bijective proof of the following theorem.

Theorem 6.2 The Möbius function of the Rees product of the cubical lattice with the chain is given
by

µ(Rees(Cn, Cn+1)) = (−1)n · n ·D±
n−1.

As a corollary to Theorem 6.2, we can slightly modify our proofs to give a bijective proof of Jonsson’s
result (Theorem 1.3).

Corollary 6.3 There is an explicit bijection implying that

µ(Rees(Bn, Cn)) = (−1)n+1 ·Dn.

In order to prove Theorem 6.2, we will work with skew diagrams associated to falling double
augmented barred and signed permutations. In Section 7 we will use these skew diagrams to describe
∆(Rees(Cn, Cn+1)), the order complex of the Rees product of the cubical lattice with the chain, in
the spirit of Wachs’ work with the d-divisible partition lattice [10]. We will also use these diagrams
to construct an explicit basis for the homology of Rees(Cn, Cn+1).

Besides the interest in the bijection itself to prove Theorem 6.2, these diagrams allow us to find
explicit bases for the integer homology H̃n(∆(Rees(Cn, Cn+1)),Z) indexed by the falling augmented
signed barred permutations.

We begin by recalling some objects from combinatorial representation theory. For background
material in this area, we refer to Sagan’s book [6]. Let (λ1, . . . , λk) ` n be a partition of the integer n
with λ1 ≤ · · · ≤ λk. Recall the Ferrers diagram of λ consists of n boxes where row i has λi boxes for
i = 1, . . . , k and all the rows are left-justified. Given two Ferrers diagrams µ ⊆ λ, the skew diagram
λ/µ is the set of all boxes λ/µ = {b : b ∈ λ and b /∈ µ}.

For us, a hook is a skew diagram of the form λ/µ where λ = ((h + 1)v) and µ = (h(v−1)).
We will be interested in skew diagrams consisting of a disjoint union of hooks. More precisely, let
c = (c1, . . . , ck) be a composition of n with ci = ui + bi, for i = 1, . . . , k where u1 ≥ 0, ui > 0 for
i = 2, . . . , k, and bi > 0 for i = 1, . . . , k. Form the partitions λ = (λ1, . . . , λk) and µ = (µ1, . . . , µk)
where λi = (u1 + · · · + ui + i)bi for 1 ≤ i ≤ k, µi = ((u1 + · · · + ui + i − 1)bi−1, u1 + · · · + ui + i) for
1 ≤ i ≤ k− 1, and µk = (u1 + · · ·+ uk + k− 1)bk−1. The skew diagram λ/µ is then a union of k hooks
where the southeast corner of the last box of the ith hook touches the northwest corner of the first
box of the (i+ 1)st hook. We call such a diagram an unsigned barred permutation skew diagram. We
call a filling of the n boxes with the elements {1, . . . , n} standard if the rows are decreasing when read
from left to right and the columns are decreasing when read from top to bottom. If we insert a box
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0 −5 −7 −8

−9

11 6

2

−3

10 4 −1

12

Figure 1: The skew diagram corresponding to the falling double augmented barred signed permutation
π = 0 − 5 − 7 −8 −9 11 6 2 −3 10 4 −1 12 in S±

11.

labelled 0 in front of the first horizontal row and add a box labelled n+1 as the new last hook, then we
call such a filled diagram a standard double augmented unsigned barred skew diagram. Given a double
augmented unsigned barred permutation that is falling, recall that it consists of strings of unbarred
and barred elements concatenated together. Given such a falling permutation, one forms the standard
skew diagram by representing the first string of unbarred elements as the first horizontal string of
boxes in the first hook concatenated with the same number of vertical boxes as the number of barred
elements in the first string of the permutation. Note that the ith hook has ui + 1 horizontal boxes,
where ui is the number of unbarred elements in the first string of the permutation. See Figure 1.

Theorem 6.4 There exists an explicit bijection between the set of all fixed point free permutations in
the symmetric group on n elements and the set of all standard skew diagrams λ/µ having n boxes and
hooks of size greater than 1.

Proof: We describe an algorithm to move between these two sets. The idea is to first break a cycle
at the end of each of its descent runs to form blocks. Each of these blocks will become a hook in the
resulting skew diagram. The next step is to use the first element of each block (for the first block, use
the second element) to determine which elements will be barred in a given block. The third step is to
reverse the order of the blocks. The fact that the original first block contained the smallest element
in the given cycle will enable us to recover the complete cycle decomposition of a permutation from
its skew diagram in the general case when a permutation has more than one cycle.

We first consider the case where π = (π1, . . . , πn) ∈ Sn consists of a single cycle of length n with
π1 = 1, that is, the smallest element of the set {π1, . . . , πn}.

1. Identify the descents within the cycle. For each run of consecutive descents, say [i, j] = i, i +
1, . . . , j, break the permutation in front of the last descent in the run, that is, the (j − 1)st
position provided this does not create a first block having size one.

2. Suppose reading from left to right the first element in the ith block is mij , where the elements
in this block have the linear order mi1 < mi2 < · · · . (For the case of the first block, let m1j be
the second element in this block when reading from left to write and where the block elements
have linear order m1,1 < m1,2 < · · · .) Rewrite the elements in the block in decreasing order and
place bars over each of the last j − 1 elements.

11



3. Reverse the order of the blocks, that is, if B1|B2| · · · |Bk is the original block decomposition,
reverse this to Bk|Bk−1| · · · |B1. Finally, remove the vertical block separators.

This yields the union of unsigned hooks, where a hook consists of the run of unbarred elements
followed by the run of barred elements.

Example 6.5 As an example, let π = (135764928) ∈ S9. We have

π → 1357|64|928
→ 1357|46|298
→ 7531̄|64̄|98̄2̄
→ 98̄2̄64̄7531̄

If a permutation consists of more than one cycle, without loss of generality we may assume the
permutation is written in standard cycle notation, that is, each cycle is written so that it begins
with the smallest element in its cycle and the cycles are then ordered in increasing order by the
smallest element in each cycle. Given such a permutation, apply the algorithm to each individual
cycle. Concatenate the resulting barred words using the original order of the cycles.

We can reverse this process beginning with a standard unsigned skew diagram.

1. Given a standard unsigned skew diagram, we will separate it into cycles based on the minimal
element. Break the diagram after the hook containing the element 1. Next, break the diagram
after the hook containing the smallest element occurring to the right of the first break. Then
break after the hook containing the smallest element to the right of the second break. Continue
this process until there is a break at the end of the diagram. These breaks now correspond to
individual cycles in the final permutation.

2. Within each of these breaks, put parentheses around the elements of each hook and reverse the or-
der of the hooks, that is, if break i has hooks hi,1hi,2 · · ·hi,j then reverse these to hi,jhi,j−1 · · ·hi,1.

3. In each parenthetical piece, remove the bars and reorder the elements by the following rule. The
now unbarred elements in each parenthesis can be linearly ordered, say mi1 < mi2 < · · · < mik .
If there were bars over j numbers in this piece, reorder the elements as mi1mij+1mi2 · · ·mik if
j 6= k and mi1mikmi2 · · ·mik−1

if j = k.

4. Within each cycle, leave the vertical bars fixed for the moment and switch the first two numbers
of all the parenthetical pieces except the first piece which begins the cycle. Remove the inner
parentheses and concatenate the pieces within each vertically barred piece into one cycle.

These processes we have described are the inverse of each other. Thus we have a bijection. 2

Example 6.6 Let 87̄2̄61̄95̄43̄ be a falling barred permutation. The algorithm gives:

87̄2̄61̄95̄43̄ → 87̄2̄61̄|95̄43̄|
→ (61̄)(87̄2̄)|(43̄)(95̄)
→ (16)(287)|(34)(59)
→ (16827)(3495)
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Let F ⊆ [n − 1] be the set of fixed points for a permutation π ∈ Sn−1. We will build n ordered
pairs, (Fi, τ) where i = 1, . . . , n and τ is a partial permutation on n−|F |−1 elements from the set [n].
Set

Fi =
{
F ∪ {i} if i /∈ F,
F ∪ {n} if i ∈ F,

where i = 1, . . . , n. To define τ , consider the partial permutation π̂ consisting of the cycles of π with
sizes greater than 1. The elements in these cycles can be linearly ordered as mi1 < mi2 < · · · <
min−|F |−1

. The elements of [n]−Fi also can be linearly ordered as li1 < · · · < lin−|F |−1
. Define a map Ψ

which sends mij 7→ lij . Set τ = Ψ(π̂). Let Fπ = {(Fi, τ) : i = 1, . . . , n} so that |Fπ| = n.

Proposition 6.7 There exists a bijection between {Fπ : π ∈ Sn} and the set of standard unsigned
skew diagrams where each hook except the first has size greater than one.

Proof: Given a permutation π with fixed point set F and one ordered pair (Fi, τ), we will define a
map which sends Fi to the first hook of the diagram and which sends τ to the rest of the diagram.
To create the first part of the map, write the elements of Fi in decreasing order. To place the bars,
consider two cases.

1. If i /∈ F place bars over the element i and every element less than i.

2. If i ∈ F we use the linear total order on F , say f1 < · · · < f|F |. We have i = fj for some
j = 1, . . . , |F |. Place bars over the smallest j elements.

This map can be reversed given the first piece of some unsigned skew diagram.

To determine the rest of the diagram, we use τ , a partial permutation on an n− |F | − 1 element
subset of [n]. There is a bijection between all such partial permutations and the set of fixed point
free permutations in Sn−|F |−1. Use the linear order on the elements of τ , that is, these elements can
be written mi1 < · · · < mik . Let Φ be a map between these two sets where Φ(mij ) = j. Note that
because the partial permutation τ can be written as a product of cycles with no one-cycles, then Φ(τ)
is also a fixed point free product of cycles. Composing Φ with the algorithm above, we can go from a
partial permutation τ to the rest of the diagram having hook sizes greater than 1. 2

To prove Theorem 6.2, we sign the first hook (which consists of the horizontal piece 0 concatenated
with the vertical piece) in one way, that is, with all negative signs, and then reorder the elements in
decreasing order. For the remaining hooks, we can sign these remaining elements in 2n−|F |−1 ways
and within each hook reorder them in a decreasing manner in one way.

As a corollary, we can slightly modify our proofs to give a bijective proof of Jonsson’s result
(Theorem 1.3) for the Möbius function of the Rees product of the Boolean algebra with the chain.

Proof of Theorem 1.3: It is enough to observe that Rees(Bn, Cn) is isomorphic to the upper or-
der ideal generated by any atom of Rees(Cn, Cn+1). Hence Rees(Bn, Cn) inherits the R-labeling of
Rees(Cn, Cn+1). The maximal chains in Rees(Bn, Cn) are described by augmented barred permuta-
tions, that is, permutations of the form π = π1 · · ·πnπn+1 with πn+1 = n+ 1, |π| = |π1| · · · |πn| ∈ Sn

(unlike before, here |πj | denotes removing any bar and negative sign occurring in πj), π1 not barred
and each of the elements π2, . . . , πn may be barred. The falling chains correspond to unsigned labeled
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skew diagrams having hooks of size greater than or equal to 2 which are augmented at the end with
a block containing the element n+ 1. Theorem 6.4 now applies to prove the result. 2

Shareshian and Wachs [7, Theorem 6.2] have proved a dual version of Proposition 3.2 where they
instead work with a doubly-truncated face lattice of the crosspolytope On. To state their results we
use Rees−(P,Q) to indicate the maximal element is removed from P before taking the Rees product
of two graded posets P and Q, that is, Rees−(P,Q) = Rees(P − {1̂}, Q).

Theorem 6.8 (Shareshian–Wachs) For all n,

dim H̃n−1(∆(Rees−(On, Cn))) = D±
n .

Shareshian and Wachs’ original proof follows from the Björner–Welker Theorem 1.2 and from the fact
that the reduced homology of a Cohen-Macaulay poset vanishes everywhere except the top dimension,
where the dimension is given by the Möbius function of the poset. One can also give a bijective proof
along the lines of Theorem 6.4 using the standard R-labeling of the cross-polytope. For q-analogues
of Theorems 1.3 and 6.8, see [7, Theorem 2.1.6 and Theorem 2.4.5].

7 A basis for the homology

Let P be a graded poset of rank n with minimal element 0̂ and maximal element 1̂. The order complex
(or chain complex) of P , denoted ∆(P ), is the simplicial complex with vertices given by the elements
of P −{0̂, 1̂} and (i− 1)-dimensional faces are given by chains of i elements x1 < x2 < · · · < xi in the
subposet P − {0̂, 1̂}. See [11] for further details. In this section we consider homological questions for
the order complex of the poset Rees(Cn, Cn+1). A similar analysis for the d-divisible partition lattice
was done by Wachs [10].

Proposition 7.1 The order complex ∆(Rees(Cn, Cn+1)) is a Cohen-Macaulay complex and has van-
ishing homology groups in every dimension except for the top dimension. This is given by

dim H̃n(∆(Rees(Cn, Cn+1)) = n ·D±
n−1.

This follows by a result of Björner and Welker [2] that the Rees product of any two Cohen-Macaulay
posets is also Cohen-Macaulay. Furthermore, the absolute value of the Möbius function of the poset
Rees(Cn, Cn+1) gives the dimension of the top homology group of ∆(Rees(Cn, Cn+1)).

We next give an explicit basis for the homology H̃n(∆(Rees(Cn, Cn+1)),Z) indexed by the falling
augmented signed barred permutations. Recall that Fn denotes the set of falling augmented signed
barred permutations from S±

n . For each σ ∈ Fn we define a subposet Cσ of Rees(Cn, Cn+1) as follows.
Let mσ = mσ,0 ≺ mσ,1 ≺ · · · ≺ mσ,n be the chain in Rees(Cn, Cn+1) − {0̂, 1̂} labeled by σ ∈ Fn. For
example, for the double augmented barred signed permutation σ = σ0 · · ·σ6 = 0 − 1 −3 5 2 −4 6,
we have mσ = (01001, 1) ≺ (∗1001, 1) ≺ (∗1 ∗ 01, 2) ≺ (∗1 ∗ 0∗, 2) ≺ (∗ ∗ ∗0∗, 3) ≺ (∗ ∗ ∗ ∗ ∗, 4).

We define the elements of Cσ recursively. The rank 0 elements of Cσ are of the form (x, 1), where
x is a 0-dimensional face of the n-cube. For 1 ≤ i ≤ n − 1, the rank i elements of Cσ are of the
form (x, j), where x is an i-dimensional face of the n-cube and the second coordinate j is determined
according to the following rules:
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i. If σi−1 is not barred, σi is not barred, and σi+1 is either barred or unbarred, then j = k where
(y, k) is any rank i− 1 element of Cσ.

ii. If σi−1 is either barred or unbarred, and both σi and σi+1 are barred, then j = k+1 where (y, k)
is any rank i− 1 element of Cσ.

iii. If σi−1 is either barred or unbarred, σi is barred and σi+1 is not barred, then j = k where (y, k) is
a rank i−1 element of Cσ. The exception to this rule is for the i-dimensional element x occurring
in the chain mσ, that is, mσ,i = (x, r). In this case, mσ,i becomes the element (x, k + 1) in Cσ.

iv. If σi−1 is barred, σi is not barred, and σi+1 is either barred or unbarred, then j = k + 1 where
(y, k) is any rank i − 1 element of Cσ different from mσ,i−1. Notice that both mσ,i−1 and mσ,i

have the same second coordinate, namely k + 1.

Finally, there are two rank n elements (∗ · · · ∗, k) and (∗ · · · ∗, k+ 1), where k is the second coordinate
of any rank n− 1 element of Cσ.

Define C̃n to be the poset Cn − {0̂} ∪ {1̂′}, that is, the face lattice of the n-dimensional cube with
its minimal element removed and adjoined with a second maximal element 1̂′ which also covers all the
coatoms in Cn − {0̂}.

Theorem 7.2 For σ ∈ Fn, the order complex ∆(Cσ) is isomorphic to the suspension of the barycentric
subdivison of the boundary of the n-cube.

Proof: It is enough to show the posets Cσ and C̃n are isomorphic. Define the “forgetful” map
f : Cσ → C̃n which sends an element (x, k) ∈ Cσ to the element x for elements of ranks 1 through
n − 1 in Cn−1. For the two rank n elements, let f(∗ · · · ∗, jn) = 1̂ and f(∗ · · · ∗, jn + 1) = 1̂′. Clearly
the map f is a bijection from the elements of Cσ to those of C̃n. Additionally, f is order-preserving
since for (y, k) ≺ (x, j) in Cσ, one has y ≺ x in the cubical lattice Cn

To define the inverse map f−1, one follows the described scheme to determine the second coordinate
as above. Note that for elements x and y with y ≺ x in C̃n and ρ(y) < n, the inverse map satisfies
f−1(y) = (y, k) ≺ f−1(x) = (x, j) since k ≤ j by construction. The two maximal elements of C̃n are
easily seen to be mapped to the two maximal elements of Cσ, so the bijection is order-preserving as
desired. 2

Corollary 7.3 For σ ∈ Fn, the order complex ∆(Cσ) is homotopy equivalent to the suspension of the
(n− 1)-dimensional sphere Sn−1.

Proof: The order complex of Cn is the barycentric subdivision of the boundary of the n-cube. The
boundary of the n-cube is homotopic to Sn−1. The poset C̃n differs from Cn − {0̂, 1̂} by the addition
of two maximal elements 1̂ and 1̂′. Therefore, the order complex of C̃n is found from ∆(Cn) by
forming two (k+1)-dimensional faces on the vertices V (ψ)∪{1̂} and V (ψ)∪{1̂′}, where V (ψ) are the
vertices of a k-face ψ in ∆(Cn). This is a suspension over the barycentric subdivision of the boundary
of the n-cube which is homotopic to the suspension of Sn−1. Thus, by Theorem 7.2 we then have
∆(Cσ) ∼= ∆(C̃n) and we have proven the corollary. 2
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The suspension of Sn−1 is homotopic to Sn, and as a result ∆(Cσ) is a triangulation of the n-
sphere. Let ρσ denote a fundamental cycle of the spherical complex ∆(Cσ). To show that the set
{ρσ : σ ∈ Fn} forms a basis for H̃n(∆(Rees(Cn, Cn+1))), we first place a total order on Fn. Let
σ = 0σ1 · · ·σn n+ 1 and τ = 0τ1 · · · τn n+ 1 be two permutations from Fn. If the entries σ1, . . . , σi−1

and τ1, . . . , τi−1 are unbarred, σi is barred and τi is unbarred, then we say σ > τ . Otherwise, if σ
and τ are barred and unbarred at exactly the same places and the permutation σ without the bars is
lexicographically greater than the permutation τ without its bars, then we say σ > τ . We then have

Lemma 7.4 If mτ is a maximal chain in Cσ then τ ≤ σ.

Proof: Let σ and τ be permutations in Fn with τ > σ. We want to show mτ is not a chain in Cσ.
There are two cases to consider.

First suppose σ and τ are barred at precisely the same locations and that the unbarred permutation
τ is lexicographically greater than the unbarred permutation σ. Let i be the least index where σi is
barred and σi+1 is not barred. If such an i does not exist, then each permutation corresponds to a
diagram consisting of one hook and as such has a labeling −1 · · ·−n, implying σ = τ , a contradiction.
So we may assume such an i satisfying 1 ≤ i < n exists. We see the first i elements in the chain
mτ are elements in Cσ. However, the ith element mτ,i = (x, rσ,i + 1) where x is the unique rank i
element in Cn−{0̂} given by the unbarred permutation τ and rσ,i is the number of bars over elements
σ1, σ2, . . . , σi, will not be an element in Cσ. (Note, the second coordinate rσ,i +1 in mσ,i is the same as
the ith second coordinate rτ,i +1 in mτ,i for all i.) We can see this by observing that the only element
in Cσ with first coordinate a rank i element in Cn −{0̂} and with second coordinate rσ,i + 1 = rτ,i + 1
corresponds to the unique element given by the unbarred σ. Thus, since the unbarred σ is not equal
to the unbarred τ , mτ is not a chain in Cσ.

For the second case, suppose that σj is barred if and only if τj is barred for j = 1, . . . , i− 1 and τi
is barred while σi is not barred. We claim the ith element mτ,i in mτ is not an element of Cσ. Note
the second coordinate rτ,j + 1 in mτ,j is the same as the second coordinate rσ,j + 1 in mσ,j where
j = 1, . . . , i − 1 because the pattern of bars coincide for the first i − 1 terms in the permutations.
However, in Cσ all rank i elements Cn − {0̂} have second coordinate ri−1. As there is no bar over σi,
the second coordinate does not increase. Since the element τi is barred, the element (x, rσ,i−1 + 1) is
an element in the chain mτ but not in the poset Cσ. 2

Theorem 7.5 The set {ρσ : σ ∈ Fn} forms a basis for H̃n(∆(Rees(Cn, Cn+1))) over Z.

Proof: To show that {ρσ : σ ∈ Fn} are linearly independent, let
∑

σ∈Fn
aσρσ = 0 where aσ ∈ k.

With respect to the total order we have described above, suppose τ is the greatest element of Fn for
which aτ 6= 0. We apply Lemma 7.4 to derive a contradiction. We have for a maximal chain mr in Cσ

0 =
∑

σ∈Fn

aσρσ|mτ =
∑

σ∈Fn,σ≤τ

aσρσ|mτ = aτρτ |mτ = ±aτ ,

since the fundamental cycle evaluated at a facet has coefficient ±1. However, this gives a contradiction.
Since the rank of H̃n(∆(Rees(Cn, Cn+1))) is equal to |Fn| , we have proven the basis result when k is
a field.
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When k = Z, linear independence of {ρσ : σ ∈ Fn} implies this set is also linearly inde-
pendent over the rationals Q and hence that it spans H̃n(∆(Rees(Cn, Cn+1))) over Q. Let ρ ∈
H̃n(∆(Rees(Cn, Cn+1))). Then ρ =

∑
σ∈Fn

cσρσ for cσ ∈ Q. We will show cσ ∈ Z for all σ ∈ Fn.
Suppose τ is the greatest element of Fn for which cτ 6= 0. Then by Lemma 7.4

ρ|mτ =
∑

σ∈Fn,σ≤τ

cσρσ|mτ = cτρτ |mτ = ±cτ .

Since ρ ∈ H̃n(∆(Rees(Cn, Cn+1))), we have ρ|mτ ∈ Z. Thus cτ ∈ Z and ρ−cτρτ ∈ H̃n(∆(Rees(Cn, Cn+1))).
Repeat this argument for ρ− cτρτ to conclude cν ∈ Z and ρ− cτρτ − cνρν ∈ H̃n(∆(Rees(Cn, Cn+1)))
for ν the next to the last element in the total order on Fn for which cν 6= 0. Since there are finitely-
many elements in Fn, we may conclude that cσ ∈ Z for all σ ∈ Fn. Hence {ρσ : σ ∈ Fn} spans
H̃n(∆(Rees(Cn, Cn+1))) over Z and thus is a basis for H̃n(∆(Rees(Cn, Cn+1))) over Z. 2

8 Representation over Sn

In this section we develop a representation of H̃n(∆(Rees(Cn, Cn+1))) over the symmetric group. This
can be done using a set of skew Specht modules.

The homology of the order complex of Rees(Cn, Cn+1) is an Sn-module in the following manner.
A signed permutation π ∈ S±

n corresponds to a labeled maximal chain of the poset Rees(Cn, Cn+1). A
permutation τ ∈ Sn acts on the chains of Rees(Cn, Cn+1) by sending the maximal chain labeled with
π to the maximal chain whose labels are τπ. Note that under the action of τ the placement of the bars
is fixed and the signs remain attached to the same numbers. This action induces an action on the faces
of ∆(Rees(Cn, Cn+1)) and even further on the homology group itself whose basis is indexed by a subset
of chains in Rees(Cn, Cn+1). We have τρπ = ρτπ for any basis element ρπ ∈ H̃n(∆(Rees(Cn, Cn+1))).

Theorem 8.1 There exists an Sn-module isomorphism between

H̃n(∆(Rees(Cn, Cn+1))) and
⊕

2n−|λ1|Sλ,

where the direct sum is over all partitions λ with each λi shaped into hooks as described in Section 7
taken with multiplicity 2n−|λ1|.

To prove this result, we will need some tools from combinatorial representation theory. For more
details and background information, see [6].

Recall that two tableaux t1 and t2 of shape λ are row equivalent, written t1 ∼ t2, if the entries in
each row of t1 are a permutation of the entries in the corresponding row of t2. A tabloid of shape λ
(λ-tabloid or tabloid, for short) is then an equivalence class {t}. For a fixed partition λ we denote
by Mλ the k-vector space having λ-tabloids as a basis. In the usual way a permutation σ ∈ Sn acts
on a λ-tableau by replacing each entry by its image under σ. Thus σ acts on a λ-tabloid {t} by
σ{t} = {σt}. For a tableau t of shape λ, the polytabloid corresponding to t is

et =
∑
σ∈Ct

sgn(σ){σt},
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where the sum is over all permutations belonging to the column stabilizer Ct of t.

The Specht module Sλ is the submodule of Mλ spanned by the polytabloids et, where t has shape λ.
The Specht module Sλ is an Sn-module in the following manner. A permutation τ ∈ Sn acts linearly
on the elements of Sλ by permuting the entries of t, that is, τet = eτt.

Specht modules were developed to construct all irreducible representations of the symmetric group
over C. We will use these modules to give a representation of H̃n(∆(Rees(Cn, Cn+1))) over Sn.

Recall that a tableau t is said to be standard if the entries are increasing in each row and column
of t. The following theorem is originally due to Young, though not in this form. It is also due to
Specht.

Theorem 8.2 (Specht, Young) The set

{et : t is a standard λ-tableau}

is a basis for Sλ.

With these definitions in mind, we can begin the proof of Theorem 8.1. Let ν = λ− µ be a skew
diagram consisting of the union of k hooks, as described in Section 4, where the ith hook has size |νi|.
We consider the case where ν = ν1 · · · νk is fixed.

Define a new set F−
n = {−σ : σ = σ1 · · ·σn ∈ Fn} where −σ = −σ1−σ2 · · · −σn. It is easily noted

there exists a bijection between F−
n and Fn. We use this bijection to move between basis elements of

H̃n(∆(Rees(Cn, Cn+1))) which correspond to decreasing labeled skew shapes and standard tableaux
which have increasing labels.

Consider the usual unsigned Specht module Sλ in the case λ is composed of hooks of size at least
two and is augmented at the end with a block containing the element n + 1. It is generated by
polytabloids which are indexed by standard labelings of λ. Define an Sn-module homomorphism

θ : Sλ → H̃n(∆(Rees(Cn, Cn+1)))

where et 7→ ρ−σ for t a standard λ-tableau and σ ∈ F−
n is found by writing the labels on t from left

to right and by placing bars over all elements which occur in the rightmost columns of a hook.

We wish to extend this map over “signings” of Sλ. Given a standard polytabloid et ∈ Sλ where t is
a standard tableau, we sign the elements occurring in the last k− 1 hooks of t, that is, sign the labels
on λ2, . . . , λk. This can be written as a subset A ⊂ [n] − {λ1} where A corresponds to the elements
in t labeled with a negative sign. For each et there are

∑n−|λ1|
j=0

(
n−|λ1|

j

)
such signings, or equivalently,

such subsets A. We let eAt denote the signing by A of the polytabloid et. Using the binomial theorem,
there is an isomorphism

n−|λ1|⊕
j=0

(
n− |λ1|

j

)
Sλ ∼= 2n−|λ1|Sλ.

This is an CSn-module with action πeAt = eAπt where π ∈ Sn permutes the labels of the tableau t.

To show each Specht module Sλ occurs with multiplicity 2n−|λ1| in the top homology group,
we extend the map θ to θ :

∑n−|λ1|
j=0

(
n−|λ1|

j

)
Sλ → H̃n(∆(Rees(Cn, Cn+1))) where basis elements are

mapped by eAt 7→ ρ−σ. The permutation σ is found by attaching negative signs to the labels in t
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which are also in A. Then the labels in each hook written in increasing order. As before, we form
the permutation σ by writing down the labels reading from left to right with bars placed over the
rightmost element in every row. Note that when A is empty, we are back in the usual unsigned case.

Set Eλ = {eAt } where t ranges over all standard Young tableaux of shape λ and A ranges over all
subsets of [n]− {λ1}.

Proposition 8.3 The map

θ : Eλ −→ {ρσ|σ ∈ Fn and sh(σ) = λ}

is a bijection.

Proof: Let θ′ be a map from {ρσ : σ ∈ Fn and sh(σ) = λ} to Eλ. Given σ ∈ Fn with shape λ, we
will define θ′(ρσ) = eAt such that θ(eAt ) = ρσ.

Set θ′(ρσ) = eAt by labeling λ from left to right with the elements of −σ. Then in each hook,
rearrange the labels so the absolute value of these labels is increasing. Call this labeling t′. The subset
A is determined by the negatively-labeled elements in t′ and t is given by the absolute value of t′.

One can check θ(θ′(ρσ)) = ρσ and θ′(θ(eAt )) = eAt . 2

Proposition 8.3 can be extended by linearity to a vector space isomorphism between the two spaces.

We sum over all possible partitions and signings of λ to get a bijection between basis elements
of
∑n−|λ1|

j=0

(
n−|λ1|

j

)
Sλ and the basis elements of H̃n(∆(Rees(Cn, Cn+1))) to conclude the following

corollary.

Corollary 8.4 The map
θ : {Eλ}λ −→ {ρσ|σ ∈ Fn}

is a bijection where λ ranges over all skew diagrams which are finite unions of hooks of size at least
two augmented at the end by a block containing the element n+ 1.

Again we extend by linearity to a vector space isomorphism between these two spaces. It is left
to prove the module isomorphism properties in order to prove Theorem 8.1. First, we look at which
elements of Sn fix basis elements of

∑n−|λ1|
j=0

(
n−|λ1|

j

)
Sλ and H̃n(∆(Rees(Cn, Cn+1))).

For a given tableau t, define St = Sλ1 × · · · × Sλk
where the λi are subsets of [n] corresponding to

the labels of the ith hook t.

Claim 8.5 The polytabloid eAt satisfies eAt = eAπt for all π ∈ St.

Proof: Given such a permutation π ∈ St, it acts on t by permuting labels only within individual
hooks of t. If the labels within a row are permuted, the polytabloid is fixed because each tabloid is a
row equivalence class. If a labels within a column are permuted, π acts as an element of the column
stabilizer Ct. For such an element π we have et = eπt. Lastly, if an element in a column is moved out
of its column but within its row because of the equivalence class, we can rewrite the tabloid with that
element occurring at the end of the row, leaving π to act as an element of Ct. 2

19



Claim 8.6 The fundamental cycle ρσ satisfies ρσ = ρπσ for all π ∈ St.

Proof: It is enough to show the posets Cσ and Cπσ are isomorphic to prove the equality of the
fundamental cycles of their order complexes ρσ and ρπσ. The elements of the posets Cσ and Cπσ have
bars in the same places and negative signs with the same numbers, so it is left to consider the ranks
in the poset where one element of rank i for some i has a different second coordinate from all other
elements of that rank. If the set of ranks with this property is the same in Cσ and Cπσ, the two posets
are isomorphic. In σ or πσ an element having rank i must correspond to a label at the end of a piece j
for some j. In Cσ, this element will have stars in positions corresponding to labels in the first j places
in the permutation. This is the same in Cπσ because π only permutes elements within individual
pieces. The fixed negative signs assure the non-starred elements are the same in both. Thus, we have
Cσ = Cπσ. 2

We now prove Theorem 8.1. For π ∈ St, we have πθ(eAt ) = θ(πeAt ). That is,

πθ(eAt ) = πρσ = ρπσ = ρσ = θ(eAt ) = θ(eAπt) = θ(πeAt )

It is left to show this relationship holds for τ ∈ Sn − St. In fact, it is enough to show θ(τeAt ) = πτρσ

for some π ∈ St.

Consider θ(τeAt ) and τρ−σ for some τ ∈ Sn − St and some eAt such that θ(eAt ) = ρσ. The
permutation τ acts on t by permuting the labels. The polytabloid eAτt is a sum of tabloids under
action by the column stabilizer Ct. Hence, we are only concerned with cycles of τ which move labels
from one hook of t to another hook of t. Let θ take eAτt onto ρ−bσ. We know σ̂ is found by attaching
the signs from A to t and reordering so each piece is decreasing, and τ acts on σ also by permuting
the labels. There is no guarantee that τσ will have hooks each of which having labels in decreasing
order. However, we can find a permutation π ∈ St such that πτσ will have hooks whose labels are in
decreasing order. Since there is only one way to write a set of integers in decreasing order, it is left to
show the labels on each hook of σ̂ are the same as the labels on the corresponding hook of τσ. (Hooks
of σ ∈ S±

n correspond to the hooks in the λ associated with σ.) If label l is in a different hook in σ̂
than in τσ, then τt mapped l to a different hook than τσ. This is a contradiction because labels in t
are in the same corresponding hooks as labels in σ. Hence, σ̂ = πτσ = τσ and θ(τeAt ) = ρ−τσ.

The isomorphism
⊕n−|λ1|

j=0

(
n−|λ1|

j

)
Sλ ∼= 2n−|λ1|Sλ induces the desired module isomorphism 2n−|λ|Sλ ∼=

H̃n(∆(Rees(Cn, Cn+1))). Thus, we have proved Theorem 8.1.

9 Concluding remarks

What poset P would have its Möbius function related to the permanent of a matric having s’s occur
on the diagonal and r’s in the off-diagonal entries? The case when s = r − 1 is the Rees product of
the r-cubical lattice with the chain, the case (r, s) = (1, 0) corresponds to the Rees product of the
Boolean algebra with the chain, and (r, s) = (2, 1) to the Rees product of the cubical lattice with the
chain.

The derangement numbers occur as the local h-vector of the barycentric subdivision of the n-
simplex [9]. Is there a relation between the local h-vector and the Rees product?

20



10 Acknowledgements

The authors would like to thank Richard Ehrenborg for his comments on an earlier version of this
paper and Bruce Sagan for some historical background related to representation theory.

References

[1] A. Björner and M. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math.
Soc. 348 (1996), no. 4, 1299–1327.

[2] A. Björner and V. Welker, Segre and Rees products of posets, with ring-theoretic applica-
tions, J. Pure Appl. Algebra 198 (2005), 43–55.

[3] W. Chen and J. Zhang, The skew and relative derangements of type B, Electron. J. Combin.
14 (2007), #N24.

[4] C-O. Chow, On derangement polynomials of type B, Sém. Lothar. Combin. 55 (2006), Article
B55b.

[5] J. Jonsson, The Rees product of a Boolean algebra and a chain, preprint 2008.

[6] B. E. Sagan, “The Symmetric Group: Representations, Combinatorial Algorithms, and Sym-
metric Functions,” Springer-Verlag, New York, Inc., 2001.

[7] J. Shareshian and M. Wachs, Poset homology of Rees products, and q-Eulerian polynomials,
Electron. J. Combin. 16(2) (2009), #R20.

[8] R. P. Stanley, “Enumerative Combinatorics, Vol. I,” Wadsworth and Brooks/Cole, Pacific
Grove, CA, 1986.

[9] R. P. Stanley, Subdivisions and local h-vectors, J. Amer. Math. Soc. 5 (1992), 805–851.

[10] M. Wachs, A basis for the homology of d-divisible partition lattices, Adv. Math. 117 (1996),
294–318.

[11] M. Wachs, Poset topology: tools and applications, in Geometric Combinatorics (E. Miller, V.
Reiner, B. Sturmfels, eds.), IAS/Park City Math Series, 13, Amer. Math. Soc., Providence, RI,
2007, 497–615.

Patricia Muldoon Brown, Department of of Mathematics, Armstrong Atlantic State University,
Savannah, GA 31419, patricia.brown@armstrong.edu

Margaret A. Readdy, Department of Mathematics, University of Kentucky, Lexington, KY 40506,
readdy@ms.uky.edu

21


