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Abstract. We show how the flagf -vector of a polytope changes when cutting off any
face, generalizing work of Lee for simple polytopes. The result is in terms of explicit
linear operators oncd-polynomials. Also, we obtain the change in the flagf -vector when
contracting any face of the polytope.

1. Introduction

The flag f -vector records the face incidence information of a polytope. For ann-
dimensional polytope there are linear dependencies among the 2n entries of the flag
f -vector. These dependencies are given by the generalized Dehn–Sommerville relations
[2] which determine a subspace of dimension thenth Fibonacci number. Many bases
exist for this subspace, but the one given by thecd-index [4] has been particularly fruitful
for exploring and answering questions about flag vectors and revealing their underlying
algebraic structure.

For a general polytope determining thecd-index is as difficult as determining its flag
f -vector. The groundbreaking result which has enabled thecd-index to be used as a tool
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to understand the combinatorics of polytopes was found by Ehrenborg and Readdy [10].
They showed thecd-index is a coalgebra homomorphism and applied their coproduct
techniques to determine how thecd-index of a polytope, and, more generally, of an
Eulerian poset, changes under geometric operations, such as taking the pyramid or the
prism. Both these operations are expressed as derivations oncd-polynomials. Billera et
al. [8] used these coalgebra techniques to show the flagf -vector of zonotopes satisfy
precisely the same linear relations as those of all polytopes. Additionally, the coproduct
formulations of the pyramid and prism operations enabled them to give a very compact
proof of Bayer and Billera’s result [2] that the flagf -vectors of all polytopes span
the linear space determined by the generalized Dehn–Sommerville equations [8]. As a
consequence, they prove thecd-index of zonotopes is coefficientwise minimized on the
cube of the same dimension [7]. Other work in this vein includes how to compute the
cd-index of products of polytopes, due to Ehrenborg and Fox [9], and how to compute
the torich-vector of posets, due to Bayer and Ehrenborg [3].

Recently Billera and Ehrenborg [6] succeeded in proving a long-outstanding conjec-
ture of Stanley, namely, that thecd-index of polytopes is minimized on the simplex.
The proof of this result and that of the cubical analogue for zonotopes relied heavily on
the ability to computecd-indices. In the first case, Billera et al. gave an explicit expres-
sion for thecd-index of a zonotope in terms of the corresponding intersection lattice
[7]. Such a correspondence was known to exist by Bayer and Sturmfels [5] but had not
before been made so concrete. For the second result, Billera and Ehrenborg determined
how thecd-index of a polytope changes under anS-shelling. Both of these results point
to the future role thecd-index will have in proving inequalities for flag vectors. Hence, it
is a fundamental question to understand how changes in a polytope affect thecd-index.

In his dissertation Lee studied how theh-vector changes under operations applied to
a simplicial complex. For example, one of his results (dualized) is that theh-polynomial
of a simplen-dimensional polytopeP with ak-dimensional faceF cut off is given by

h(P − F) = h(P)+ h(F) · (x + · · · + xn−k−1
)
.

See Proposition 2.10.1(iv) of [11]. For simple polytopes theh-vector determines the flag
f -vector and thecd-index of the polytope [13, Theorem 3.1].

Generalizing Lee’s result, in this paper we consider the impact on the flagf -vector
after cutting off any faceF from a polytope. The technique we use is to contract the
face F into a vertex and then cut off this vertex. Although the resulting object after
contracting the face may not be a polytope, it is a regular cell complex and results about
thecd-index extend to this case.

When contracting a faceF , the change in thecd-index is a linear combination of the
cd-indices of the face figures of all the subfaces of the faceF . The coefficients in this
linear combination arecd-polynomials. The previously known result [10] for cutting off
a vertexv expresses the change in thecd-index in terms of a derivation of thecd-index
of the vertex figure ofv. In our generalization to cutting off any faceF , the change
depends on a family of explicit linear operators applied to the same face figures as in the
contraction case.

The problem of determining all the linear inequalities for flagf -vectors of poly-
topes is settled in three dimensions [14] and is still open in higher dimensions. See
Bayer’s paper [1] for the best-known results for 4-polytopes. One application of know-
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ing how flag f -vectors behave under the cutting and contraction operations would be
to construct sequences of polytopes whose flagf -vectors approach the extreme rays
of the cone generated by all flagf -vectors of polytopes. This would give a method to
prove that a given linear inequality on flagf -vectors is the best possible and cannot be
improved.

2. Definitions and Notation

We define the basic terminology used throughout this paper. The statements of the results
will be phrased in geometric language, while the proofs will be in terms of the partially
ordered sets (posets) corresponding to these geometric objects. For a standard reference
on polytopes, see [15].

Given a convexn-dimensional polytopeP and 0≤ i ≤ n− 1, let fi be the number
of i -dimensional faces of the polytopeP. The vector( f0, . . . , fn−1) is called the f -
vectorof P. A classic result is that thef -vector satisfies the Euler–Poincar´e relation∑n−1

i=0 (−1)i fi = 1− (−1)n. The f -vector has a natural extension by counting chains of
faces in the polytope. For a subsetS⊆ {0, . . . ,n− 1}, we denote byfS the number of
chains of faces (flags) in P, F1 ⊆ · · · ⊆ Fk, with S= {dim F1 < · · · < dim Fk}. The
vector consisting of all the numbersfS, S⊆ {0, . . . ,n− 1}, is called theflag f -vector
of P. Observe thatf{i } = fi and f∅ = 1. The linear span of the flagf -vectors of all
polytopes, and more generally, of all Eulerian posets, is described by a system of linear
equations known as the generalized Dehn–Sommerville equations [2].

For anyS⊆ {0, . . . ,n−1}, we sethS =
∑

T⊆S(−1)|S−T | · fT , and we call the vector
of all such numbers theflag h-vectorof P. Define a polynomial in the noncommuting
variablesa andb, called theab-index, by

9(P) =
∑

S

hS · uS,

whereuS = u0 · · ·un−1, ui = b if i ∈ S andui = a if i 6∈ S. A result conjectured
by Fine and proved by Bayer and Klapper [4] is that theab-index of a polytope can be
written as a polynomial in the variablesc= a+b andd = a ·b+b ·a. This polynomial
in terms of the variablesc andd is called thecd-index. It gives an implicit encoding of
the generalized Dehn–Sommerville equations [2].

Let F be a nonempty face of the polytopeP. There exists a linear functional` and
a real numberc such that for all pointsx ∈ P we have that̀ (x) ≥ c, but x ∈ P and
`(x) = c implies that the pointx belongs to the faceF . That is, the hyperplanè(x) = c
is a supporting hyperplaneof the faceF . We define the polytopeP − F , that is, the
polytope P with the face F cut off, by

P − F = {x ∈ P: `(x) ≥ c+ δ},
whereδ is an arbitrary small positive real number. Observe that the polytopeP − F
depends on the choice of`, c, andδ, but the combinatorial type ofP− F is independent
of these variables.

Let v be a vertex of then-dimensional polytopeP and let`(x) = c be a supporting
hyperplane of the vertexv. Thevertex figureof v is the(n− 1)-dimensional polytopeP
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defined by

P/v = {x ∈ P: `(x) = c+ δ},
whereδ is an arbitrary small positive real number. As before, the combinatorial type
of P/v is well-defined. Observe that every face of the polytopeP/v corresponds to a
face ofP that containsv. For ak-dimensional faceF of the polytopeP the face figure
P/F is an(n− k− 1)-dimensional polytope with the property that every face ofP/F
corresponds to a face ofP that containsF . More formally, choose a maximal chain of
facesF0 ⊆ F1 ⊆ · · · ⊆ Fk = F such that dim(Fi ) = i . Then the face figureP/F is the
iterated quotient

P/F = (· · · ((P/F0)/F1) · · ·)/Fk.

Observe that the faceFi corresponds to a vertex in the quotient(· · · (P/F0) · · ·)/Fi−1

and hence the iterated expression is well-defined.
Let Z〈a,b〉 be the polynomial ring in the noncommutative variablesa andb. Let

Z〈c,d〉 be the subring generated byc= a+ b andd = ab+ ba. The ringZ〈a,b〉 has a
grading by letting the degree ofa andb be 1. The ringZ〈c,d〉 inherits this grading; thus
c has degree 1 andd has degree 2.

Recall that aderivation f on a ringR is a linear map which satisfies the Leibniz rule
(or product rule)f (x · y) = f (x) · y+x · f (y). To determine a derivation, it is enough to
specify it on the generators. LetE be a derivation onZ〈a,b〉 by letting E(a) = ab and
E(b) = ba. This derivation restricts to a derivation onZ〈c,d〉. To see this, it is enough
to verify E(c) = d andE(d) = dc. Observe that this derivation increases the degree by
one.

In [10] the authors gave a formula for thecd-index of a polytope with a vertex cut off
in terms of the derivationE.

Proposition 2.1[10]. Let P be a convex polytope and letv be a vertex of P. Then the
cd-index of the polytope P− v, that is, the polytope P with the vertexv cut off, is given
by

9(P − v) = 9(P)+ E(9(P/v)).

We now introduce some poset terminology. A standard reference for basic concepts is
Chapter 3 of [12]. A graded posetQ is a poset with minimal element0̂, maximal element
1̂, and a rank functionρ such thatρ(0̂) = 0 andρ(x) = ρ(y) − 1 for y coveringx.
The rank ofQ is defined to be the rank of the maximal element1̂, denoted byρ(Q). For
x, y ∈ Q andx ≤ y, the interval [x, y] is the set{z: x ≤ z ≤ y}. Observe the interval
[x, y] is also a graded poset of rankρ(x, y) = ρ(y)− ρ(x).

The notion of the flagf -vector can be extended to graded posets. We present a
different approach to define theab-index by counting chains in a poset. For a chain
c = {0̂ = x0 < x1 < · · · < xk+1 = 1̂} in a graded posetQ of rankn + 1, define the
weightof the chainc to be the product wt(c) = w1 · · ·wn, where

wi =
{

b if i ∈ {ρ(x1), . . . , ρ(xk)},
a− b otherwise.
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Theab-index is then given by

9(Q) =
∑

c

wt(c), (2.1)

where the sum is over all chainsc in the posetQ.
For a polytopeP, let L(P) denote the set of all faces ofP, including the polytope

itself and the empty face∅, where the elements ofL(P) are ordered by inclusion.
ObserveL(P) is a graded poset, and, in fact, is a lattice. The rank function is given by
ρ(x) = dim(x) + 1, the minimal element is the empty face and the maximal element
is the polytopeP. The intervals of the face lattice also have a geometric interpretation.
For F andG two faces ofP such thatF ⊆ G, the face lattice of the face figureG/F is
the interval [F,G]. Notice that theab-index of a polytope and theab-index of its face
lattice are the same.

The Möbius functionon a posetQ is defined asµ(x, x) = 1 andµ(x, y) =
−∑x≤z<y µ(x, z) for x < y. A poset Q is calledEulerian if its Möbius function
on any interval [x, y] in Q is given byµ(x, y) = (−1)ρ(x,y). An important fact which
follows from the Euler–Poincar´e formula is that face lattices of convex polytopes are
Eulerian. The result by Bayer and Klapper of the existence of thecd-index extends to
Eulerian posets, that is, every Eulerian poset has acd-index.

Let Bk denote thek-dimensional open unit ball{x ∈ Rk: ‖x‖ < 1} and similarly let
Sk−1 denote the(k − 1)-dimensional sphere{x ∈ Rk: ‖x‖ = 1}. A finite regular cell
complex0 is a finite collection of nonempty pairwise disjoint open cellsσi ⊆ Rn so that
(σi , ∂σi ) is homeomorphic to(Bk,Sk−1), wherek = dimσi and∂σi can be expressed
as a union ofσj ’s. Again, we refer to Chapter 3 of [12] as a reference on regular cell
complexes. The geometric realization of0, denoted|0|, is |0| =⋃ σi . We only consider
cell complexes where the geometric realization is an(n− 1)-dimensional sphere. Form
theface poset P(0) from0 by defining a partial order on the cells byσi ≤ σj if σi ⊆ σj

and adjoining a minimal element0̂ and a maximal element1̂.
The essential property we will need is that the face poset of a finite regular cell complex

is Eulerian; see Proposition 3.8.9 of [12]. Observe that every polytope is a regular cell
complex and that the notion of a face figure extends to regular cell complexes. Thus,
Proposition 2.1 generalizes to regular cell complexes as follows.

Proposition 2.2. Let0 be a finite regular cell complex and letv be a vertex of0. Then
thecd-index of the regular cell complex0 − v, that is, the complex0 with the vertexv
cut off, is given by

9(0 − v) = 9(0)+ E(9(0/v)).

The motivation for needing the generality of regular cell complexes is that when we
contract a face of a polytope the result may not be a polytope. For example, contracting
an edge of a triangle gives a 2-gon. However, after contracting a face of a polytope, the
result is a regular cell complex0 whose face poset is Eulerian and hence has acd-index.
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3. The Facet Obtained by Cutting a Face

Let P be a polytope and letF be a face of the polytopeP. When cutting the faceF off
P we create a new facetT of the polytope. This facet is described by

T = {x ∈ P: `(x) = c+ δ}.

When the faceF is a vertexv, T is the vertex figure ofv. Observe that every nonempty
face ofT corresponds to a face of one dimension higher from the polytopeP. Moreover,
these faces ofP are not faces ofF , but instead they strictly contain a subface ofF .
Hence letK denote the subposet of the face lattice of the polytopeP:

K = {x ∈ L(P): there existsy ∈ (0̂, F ] such thaty ≤ x}.

Thus we have that the face lattice of the facetT is isomorphic to

L(T) ∼= (K − (0̂, F ]) ∪ {0̂}.

For k ≥ 0 define thecd-polynomials

τ2k = (c2− 2d)k and τ2k+1 = −(c2− 2d)k · c.

As ab-polynomials theτn satisfy the identity

(a− b) · τn = (a− b)n · ((−1)n · a− b).

Theorem 3.1. Let P be a polytope with nonempty face F. Let T be the facet created
by cutting off the face F from the polytope P. Then thecd-index of the facet T is given
by

9(T) =
∑

X

τdim(X) ·9(P/X),

where X ranges over all nonempty subfaces of the face F.

Proof. Let K be the subposet defined in the previous discussion. Consider(K −
(0̂, F ]) ∪ {0̂} as a subposet of the face lattice of the polytopeP. That is, the rank of
an elementx in K is the rank ofx in the original face latticeL(P). Since the subposet
(K−(0̂, F ])∪{0̂}does not have any elements of rank 1, we have that9((K−(0̂, F ])∪{0̂})
is equal to(a− b) ·9(T) by the chain definition (2.1) of theab-index.

For a chainc = {x1 < x2 < · · · < xk+1 = 1̂} in K , let m(c) denote the smallest
element of the chainc, that is,m(c) = x1. Moreover, define

r (c) = max{y: 0̂< y ≤ F andy ≤ m(c)}.

Noter (c) = F ∧m(c), where∧ denotes the meet operation of the face latticeL(P).
For x ∈ (0̂, F ] define

Cx =
∑

c

wt(c),
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where the sum is over all chainsc in K satisfyingr (c) = x andm(c) > x. Hence we
have ∑

0̂<x≤F

Cx = 9
(
(K − (0̂, F ]) ∪ {0̂}) = (a− b) ·9(T). (3.1)

We claim the following identity holds:

(a−b)ρ(x)−1 · ((a−b)+b) ·9([x, 1̂])=
∑

x≤y≤F

(
Cy+(a−b)ρ(y)−1 ·b ·9([y, 1̂])

)
, (3.2)

where0̂ < x ≤ F . To see this, consider all the chainsc in K such thatm(c) ≥ x. The
weight of these chains is counted by the left-hand side of (3.2). To count the right-hand
side of (3.2), lety = r (c) so thatx ≤ y ≤ F . Two cases occur. First, ify < m(c),
then all such chains are counted byCy. If y = m(c), then these chains are counted by
(a− b)ρ(y)−1 · b ·9([y, 1̂]). Thus the identity in (3.2) holds.

By applying the Möbius inversion theorem to (3.2), we have

Cx + (a− b)ρ(x)−1 · b ·9([x, 1̂]) =
∑

x≤y≤F

(−1)ρ(x,y) · (a− b)ρ(y)−1 · a ·9([y, 1̂]).

Summing over allx satisfying0̂< x ≤ F gives∑
0̂<x≤F

Cx = −
∑

0̂<x≤F

(a− b)ρ(x)−1 · b ·9([x, 1̂])

+
∑

0̂<x≤F

∑
x≤y≤F

(−1)ρ(x,y) · (a− b)ρ(y)−1 · a ·9([y, 1̂]).

Change the order of summation in the second term of the left-hand side of this equation
and use that the interval [0̂, y] is Eulerian. After combining the two terms into one sum,
we have ∑

0̂<x≤F

Cx =
∑

0̂<x≤F

(a− b)ρ(x)−1 · ((−1)ρ(x)−1 · a− b
) ·9([x, 1̂]).

Factoring out an(a−b) and rewriting using the definition of thecd-polynomialsτj gives∑
0̂<x≤F

Cx = (a− b) ·
∑

0̂<x≤F

τρ(x)−1 ·9([x, 1̂]).

This and (3.1), after dividing by(a− b), yield the desired result.

As an example, letP be the polytope obtained from the four-dimensional cross-
polytope by cutting off a vertex. Thecd-index ofP is9(P) = c4+11·dc2+23·cdc+
15 · c2d + 30 · d2. (This can be computed from Proposition 2.1 and the expression for
the bipyramid operation appearing in Corollary 4.7 of [10].) Lete= uv be an edge inP
such thatu is a vertex from the four-dimensional cross-polytope andv is a vertex created
in the cut. The face figure ofe is a square, the vertex figure ofu is an octahedron, and
the vertex figure ofv is a pyramid with square base. We have the followingcd-indices:
9(P/e) = c2+2 ·d,9(P/u) = c3+4 ·dc+6 · cd, and9(P/v) = c3+3 ·dc+3 · cd.
Thecd-index of the facetT created when cutting off the edgee from the polytopeP is
given by9(T) = −c ·9(P/e)+9(P/u)+9(P/v) = c3+ 7 · dc+ 7 · cd.
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4. Contracting a Face

Lemma 4.1. The polynomials

γn = a · (a− b)n−1 · b+ (−1)n−1 · b · (a− b)n−1 · a

for n ≥ 1 with γ0 = 0 arecd-polynomials. Furthermore, for n ≥ 0,

γn = (a− b)n · b− b · τn.

Proof. Define a linear mapλ: Z〈a,b〉 −→ Z〈a,b〉 by λ(a · w) = a · (a− b) · w,
λ(b · w) = −b · (a− b) · w, andλ(1) = 0. Observe thatλ(c · w) = (c2 − 2d) · w and
λ(d · w) = (cd− dc) · w. Henceλ restricts to a linear map onZ〈c,d〉. Finally observe
thatλ(γn) = γn+1 for n ≥ 1 andγ1 = d. To obtain the second identity, note that it holds
for n = 0. Forn ≥ 1, it is straightforward to check.

Theorem 4.2. Let P be a convex polytope and let F be a nonempty face of that polytope.
Let P∗ be the regular cell complex created by contracting F in P. Then

9(P∗) = 9(P)−
∑

X

γdim(X) ·9(P/X),

where X ranges over all nonempty subfaces of the face F.

Proof. Let T be the facet created by cutting off the faceF from the polytopeP. We
first give a chain argument to show

9(P∗)+
∑

0̂<x≤F

(a− b)ρ(x)−1 · b ·9([x, 1̂]) = 9(P)+ b ·9(T).

To do this, observe first that there are two types of chains in the contracted cell complex
P∗: those which use the new vertexv created from contracting the faceF and those
which do not use the new vertexv. The weight of those chains inP∗ which use the vertex
v is given by the termb ·9(T) and those which do not use the vertexv contribute to the
weight9(P). The weight of the remaining chains in9(P) corresponds to the weight of
those chains inP which include at least one nonempty subface of the faceF . For such a
chainc if we let x denote the first nonempty subface ofF appearing inc, then the weight
of all such chains is

∑
0̂<x≤F (a− b)ρ(x)−1 · b ·9([x, 1̂]). Hence the identity holds.

We thus have

9(P∗) = 9(P)+ b ·9(T)−
∑

0̂<x≤F

(a− b)ρ(x)−1 · b ·9([x, 1̂])

= 9(P)−
∑

0̂<x≤F

(
(a− b)ρ(x)−1 · b− b · τρ(x)−1

) ·9([x, 1̂])

= 9(P)−
∑

0̂<x≤F

γρ(x)−1 ·9([x, 1̂]).
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Recall the four-dimensional polytopeP given as an example in the previous section.
Thecd-index of the polytopeP∗ obtained by contracting the edgee is given by9(P∗) =
9(P)− d ·9(P/e) = c4+ 10 · dc2+ 23 · cdc+ 15 · c2d+ 28 · d2.

5. Cutting Off a Face

In this section we obtain an expression for cutting off any dimensional faceF from a
polytopeP. Geometrically this follows from realizing this operation is equivalent to first
contracting the faceF into a pointv and then cutting off the pointv.

Define the family of linear operatorsEn onZ〈c,d〉 for n ≥ 0 by

En(w) =
{
(c2− 2d)(n−1)/2 · [−2d · w − c · E(w)] for n odd,
(c2− 2d)n/2 · E(w) for n even.

Note thatE0 = E is a derivation defined onZ〈c,d〉 by E(c) = d andE(d) = d · c.

Theorem 5.1. Let P be a polytope and let F be a nonempty face of P. Then

9(P − F) = 9(P)+
∑

X

Edim(X)(9(P/X)),

where X ranges over all nonempty subfaces of the face F.

In order to prove this theorem, we need the following lemma.

Lemma 5.2. For all nonnegative integers n we have

E(τn) = γn +
{−(c2− 2d)(n−1)/2 · 2d if n odd,

0 if n even.

Proof. Let εn denote the expression given in the bracelet. We prove the statement by
induction onn. The base casesn = 0 andn = 1 are straightforward to check. Assume
now that the identity holds forn and we prove it forn+ 2. We have

E(τn+2) = E(c2− 2d) · τn + (c2− 2d) · E(τn).

Applying the induction hypothesis gives

E(τn+2) = (cd− dc) · τn + (c2− 2d) · γn + (c2− 2d) · εn.

Expandingγn with Lemma 4.1 and observingεn+2 = (c2− 2d) · εn gives

E(τn+2) = (cd− dc) · τn + (a− b)2 · ((a− b)n · b− b · τn)+ εn+2.

After simplifying and using Lemma 4.1 again, we have

E(τn+2) = (a− b)n+2 · b− b · τn+2+ εn+2 = γn+2+ εn+2.
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Observe that Lemma 5.2 gives a different proof that the polynomialsγn are cd-
polynomials.

Proof of Theorem5.1. We first contract the faceF to a pointv to form the cell complex
P∗ and then cutv from P∗ to form the polytopeP− F . Observe thatEn(w) = εn ·w+
τn · E(w). Now by Theorems 3.1 and 4.2 we have

9(P − F) = 9(P∗)+ E(9(T))

= 9(P)−
∑

X

γdim(X) ·9(P/X)+ E

(∑
X

τdim(X) ·9(P/X)

)
= 9(P)+

∑
X

(E(τdim(X))−γdim(X)) ·9(P/X)+
∑

X

τdim(X) · E(9(P/X))

= 9(P)+
∑

X

εdim(X) ·9(P/X)+
∑

X

τdim(X) · E(9(P/X))

= 9(P)+
∑

X

Edim(X)(9(P/X)),

whereX ranges over all nonempty subfaces of the faceF .

Finally in our example, cutting off the edgeefrom the polytopeP we have9(P−e) =
9(P)+ E1(9(P/e))+ E0(9(P/u))+ E0(9(P/v)) = c4+ 18· dc2+ 31· cdc+ 16·
c2d+ 42 · d2.
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