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Abstract

Given a Newtonian coalgebra we associate to it a chain complex. The homology groups of
this Newtonian chain complex are computed for two important Newtonian coalgebras arising in
the study of flag vectors of polytopes: R〈a,b〉 and R〈c,d〉. The homology of R〈a,b〉 corresponds
to the homology of the boundary of the n-crosspolytope. In contrast, the homology of R〈c,d〉
depends on the characteristic of the underlying ring R. In the case the ring has characteristic 2,
the homology is computed via cubical complexes arising from distributive lattices. This paper ends
with a characterization of the integer homology of Z〈c,d〉.

1 Introduction

This paper introduces homological algebra to Newtonian coalgebras. Newtonian coalgebras were first
introduced by Joni-Rota [13] and then studied systematically by Hirschhorn-Raphael [12] for the
polynomial ring k[x]. For more recent work, we refer to Aguiar’s papers [2, 1].

The renaissance of Newtonian coalgebras has been its connection with studying the difficult ques-
tion of characterizing face incidence information of polytopes. Beginning in [11], Ehrenborg and
Readdy first introduced the ideas of coalgebras to polytopal theory. Their main result is that the
cd-index, a noncommutative polynomial which encodes polytopal face incidence data without linear
redundancies, is in fact a coalgebra homomorphism. As one consequence, geometric operations on a
polytope can be expressed as derivation operations on the cd-index. With Billera, Ehrenborg and
Readdy continued this line of work by characterizing the flag vector data of polytopes arising from
central hyperplane arrangements [8]. The power of Newtonian coalgebras was again exploited when
Billera and Ehrenborg [7] settled the Stanley conjecture for Gorenstein* lattices [16] in the case of
polytopes.

For A a Newtonian coalgebra, the central object we will work with is the Newtonian chain complex
Nn(A); see (2.2). The two interesting cases we consider are when A is R〈a,b〉, the Newtonian coalgebra
generated by the two non-commutative variables a and b, and R〈c,d〉, the Newtonian subalgebra
generated by the variables c = a + b and d = ab + ba. Both are geometrically motivated as they
arise in the seminal coalgebraic study of flag vectors [11]. Surprisingly, the problem of determining
the homology of their respective Newtonian chain complexes reduces to computing the homology of
well-known objects.

The homology of the Newtonian algebra R〈a,b〉 case corresponds to the reduced homology of the
boundary of the crosspolytope. For the R〈c,d〉 case, the behavior of the homology groups is dependent
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on the underlying ring R. When the element 2 is a unit in the ring R, the Newtonian chain complex
Nn(R〈c,d〉), abbreviated Cn(R), is the direct sum of chain complexes corresponding to the reduced
homology of simplices of various dimensions. The case when the ring R has characteristic 2 is quite
different. The corresponding topological objects are then cubical complexes built from distributive
lattices. By a theorem of Kalai and Stanley (see Theorem 4.3), these cubical complexes are contractible
and thus only have zeroth homology.

The next important ring to consider is the integers. By first considering Z4 we are able to obtain
the homology groups for Nn(Z〈c,d〉) = Cn(Z) using homological algebra techniques. However, even
more can be obtained. Namely, in Theorem 5.2 we describe how the image of the boundary map ∂i+1

is contained in the kernel of ∂i, thus giving a larger understanding of the chain complex.

We hope that this paper will spur interest in Newtonian coalgebras and their homology groups.

2 Preliminaries on Newtonian coalgebras

Let R be a commutative ring with unit. Let A be an R-module with a coassociative coproduct
∆ : A −→ A⊗A, that is, ∆ satisfies (∆⊗ id) ◦∆ = (id⊗∆) ◦∆. Define a map dn : A⊗n −→ A⊗(n+1)

by
dn =

∑
i+j=n−1

(−1)i · id⊗i ⊗∆⊗ id⊗j .

Then we have the following lemma.

Lemma 2.1 The identity dn+1 ◦ dn = 0 holds, that is, d is a boundary map.

Proof: By linearity it is enough to prove that dn+1 ◦ dn applied to an element x1 ⊗ · · · ⊗ xn is equal
to zero. This follows from the fact that ∆ is coassociative. 2

Using the boundary map d we obtain a chain complex. The natural question to consider is to
compute the homology of this chain complex. Our interest will be do to this in the case when A is a
Newtonian coalgebra.

Definition 2.2 An R-module A is a Newtonian coalgebra if A has an associative product µ : A⊗A −→
A with unit 1 and coassociative coproduct ∆ : A −→ A⊗A such that

∆ ◦ µ = (µ⊗ id) ◦ (id⊗∆) + (id⊗ µ) ◦ (∆⊗ id). (2.1)

In what follows we only consider Newtonian algebras A that have grading A =
⊕

n≥0An such that
A0 is isomorphic to the ring R, Ai ·Aj ⊆ Ai+j and ∆(An) ⊆

⊕
i+j=n−1Ai ⊗Aj .

The Newtonian coalgebras that we are interested in are R〈a,b〉 and R〈c,d〉. The first Newtonian
coalgebra R〈a,b〉 is generated by two non-commutative variables a and b such that ∆(a) = ∆(b) =

2



1⊗ 1. The second Newtonian coalgebra R〈c,d〉 is a Newtonian subcoalgebra of R〈a,b〉 where we set
c = a + b and d = a · b + b · a. Then R〈c,d〉 is generated by the two non-commutative variables c
and d such that ∆(c) = 2 · 1⊗ 1 and ∆(d) = c⊗ 1 + 1⊗ c.

From [11, Lemma 2.2 and Corollary 3.2] we have the two following lemmas.

Lemma 2.3 Let R〈a,b〉 =
⊕

n≥0An be the grading of R〈a,b〉. Then the kernel of the coproduct
∆ : An −→

⊕
i+j=n−1Ai ⊗Aj is generated by the element (a− b)n.

Lemma 2.4 Let R〈c,d〉 =
⊕

n≥0An be the grading of R〈c,d〉. Then the kernel of the coproduct
∆ : An −→

⊕
i+j=n−1Ai ⊗ Aj is 0 if n is odd and is generated by the element (c2 − 2d)n/2 if n is

even.

Let Wn,i(A) denote
Wn,i(A) =

⊕
j1+···+jn−i+1=i

Aj1 ⊗ · · · ⊗Ajn−i+1 .

Observe that dn+1−i maps Wn,i to Wn,i−1. Thus setting ∂i = dn+1−i, we have the Newtonian chain
complex

Nn(A) : 0 −→Wn,n(A) ∂n−→Wn,n−1(A)
∂n−1−→ · · · ∂2−→Wn,1(A) ∂1−→Wn,0(A) −→ 0. (2.2)

Let Hi(Nn(A)) denote the ith homology group of this chain complex, that is,

Hi(Nn(A)) = ker(∂i)/im(∂i+1).

The tensor ring, T (A), of the Newtonian coalgebra A is the direct sum

T (A) =
⊕
i≥1

A⊗i.

If A is generated by k elements x1, . . . , xk, it will be convenient to view the tensor ring generated by
the k + 1 elements x1, . . . , xk,⊗. Thus it is natural to consider monomials in these k + 1 variables.
Moreover, let ⊗ be a generator of degree 1, that is, the degree of an element y1⊗ y2⊗ · · ·⊗ yk is given
by deg(y1) + deg(y2) + · · ·+ deg(yk) + k− 1. Let Tn(A) consists of all homogeneous elements of T (A)
of degree n. Then Tn(A) is the direct sum of all the components appearing in the Newtonian chain
complex Nn(A), that is, Tn(A) =

⊕
kWn,k(A).

3 Homology of ab-polynomials

Theorem 3.1 The homology of the Newtonian chain complex Nn(R〈a,b〉) vanishes everywhere except
for the top homology, which is spanned by (a− b)n.
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First proof: Observe that we are interested in monomials of length n in the two variables a and b
and in the tensor sign ⊗. These monomials are in bijection with the faces of the boundary of the
n-dimensional crosspolytope. For instance, the 2n monomials in a and b correspond with the 2n facets
of the crosspolytope and the term 1⊗ · · · ⊗ 1 corresponds to the empty face. Also the boundary map
of the chain complex corresponds to the geometric boundary map under this bijection. Hence, the
question of computing the homology of R〈a,b〉n is equivalent to computing the relative homology
of the boundary of the crosspolytope. This homology vanishes everywhere but in the top homology,
where it is one-dimensional. This top homology group is the kernel of ∆, which is determined in
Lemma 2.3. 2

Second proof: This proof works under the assumption that the element 2 is a unit in the ring R.
Begin by making a change of basis into c/2 = (a + b)/2 and e = a− b, that is, R〈a,b〉 = R〈c/2, e〉.
Observe that ∆(c/2) = 1⊗ 1 and ∆(e) = 0. For S a subset of {1, . . . , n} let Vn,k,S be the subspace of
Wn,k(R〈c/2, e〉) spanned by the

( |S|
n−k
)

monomials where e appears in every position not in the set S.
Hence we have the direct sum decomposition Wn,k(R〈c/2, e〉) =

⊕
S Vn,k,S . Moreover, the boundary

map ∂k : Wn,k(R〈c/2, e〉) −→ Wn,k−1(R〈c/2, e〉) restricts to a map ∂k : Vn,k,S −→ Vn,k−1,S . Hence
associated with the subset S we have the chain complex

Mn,S : 0 −→ Vn,n,S
∂n−→ Vn,n−1,S

∂n−1−→ · · · ∂2−→ Vn,1,S
∂1−→ Vn,0,S −→ 0.

For the Newtonian chain complex Nn(R〈a,b〉) we have the decomposition Nn(R〈a,b〉) =
⊕

SMn,S .

Observe that Mn,S is isomorphic to the chain complex that computes the reduced homology of
an (|S| − 1)-dimensional simplex. This reduced homology vanishes everywhere except when S is the
empty set. In this case the homology is one-dimensional and is generated by en = (a− b)n. 2

Let R〈a1, . . . ,ak〉 denote the Newtonian coalgebra of non-commutative polynomials in the variables
a1, . . . ,ak such that ∆(ai) = 1⊗ 1. Similar to Theorem 3.1 we have the following result, the proof of
which we omit.

Theorem 3.2 The homology of the Newtonian chain complex Nn(R〈a1, . . . ,ak〉) vanishes every-
where except for the top homology, which is spanned by the (k − 1)n elements of the form (ai1+1 −
ai1) · · · (ain+1 − ain), where 1 ≤ ij ≤ k − 1.

4 Homology of cd-polynomials

We now begin the study of the homology of the Newtonian coalgebra R〈c,d〉. Since the homol-
ogy varies for different rings R, let us introduce the notation that Cn(R) stands for the Newtonian
chain complex Nn(R〈c,d〉). Similarly, let Cn denote the Newtonian chain complex Nn(Z〈c,d〉). In
this section we obtain the homology groups of Cn(R) when 2 is invertible in R or the ring R has
characteristic 2. In the next section we compute the homology groups for the case R is the integers.

Theorem 4.1 Let R be a ring such that 2 is a unit in R. When n is odd the homology of the Newtonian
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chain complex Cn(R) vanishes everywhere. When n is even the homology of Cn(R) vanishes everywhere
except for the top homology, which is spanned by (c2 − 2d)n/2.

Proof: We use the observation R〈c,d〉 = R〈c/2, e2〉. Now use the second proof of Theorem 3.1. Pick
the chain complexes corresponding to the sets S where the complement of S is the disjoint union of
pairs of consecutive elements. 2

Corollary 4.2 For p an odd prime number the homology of the Newtonian chain complex Cn(Zp) is
given by

Hi(Cn(Zp)) ∼=
{
Zp if i = n and n is even,
0 otherwise.

To every poset P we can associate a cubical complex C(P ) by letting the vertices of C(P ) be the
elements of the poset and the faces of C(P ) be the intervals in the poset that are isomorphic to Boolean
algebras. A finite meet-semilattice is called meet-distributive if [x, y] is an interval in P with x equal
to the meet of the coatoms in [x, y] implies the interval [x, y] is isomorphic to a Boolean algebra. The
most natural examples of finite meet-distributive meet-semilattices are finite distributive lattices.

Kalai and Stanley [15, Exercise 3.19b] proved the following topological result.

Theorem 4.3 Let P be a finite meet-distributive meet-semilattice. Then the associated cubical com-
plex C(P ) is collapsible and in fact contractible.

We next consider the characteristic 2 case.

Theorem 4.4 Let R be a ring such that 2 = 0. The homology of the Newtonian chain complex Cn(R)
is given by Hk(Cn(R)) ∼= R, where 0 ≤ k ≤ n. Moreover, the homology group Hk(Cn(R)) is generated
by any c⊗-monomial with k c’s and (n− k) ⊗’s.

Proof: For 0 ≤ s ≤ n let Vn,k,s be the subgroup of Wn,k(R〈c,d〉) generated by monomials consisting
of 2s− k c’s, k− s d’s and n− k ⊗’s. That is, we have the direct sum decomposition Wn,k(R〈c,d〉) =⊕

s Vn,k,s.

Since 2 = 0 we have that ∆(c) = 0, that is, the coproduct only acts on d. Hence if a monomial m
consists of x c’s, y d’s and z ⊗’s, then the boundary map of m consists of a sum of monomials with
x+ 1 c’s, y − 1 d’s and z + 1 ⊗’s. Thus the chain complex Cn(R) decomposes as a direct sum of the
following chain complexes:

Mn,s : 0 −→ Vn,n,s
∂n−→ Vn,n−1,s

∂n−1−→ · · · ∂2−→ Vn,1,s
∂1−→ Vn,0,s −→ 0.

Thus we have Cn(R) =
⊕

sMn,s.
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Figure 1: The distributive lattice L5,2 associated with 2 c’s and 3 ⊗’s. Observe that the three squares
in the lattice correspond to the monomials dd⊗, d⊗ d and ⊗dd.

Let Ln,s be the set of monomials consisting of s c’s and n− s ⊗’s. Define a partial order on Ln,s
by uc ⊗ v is covered by u ⊗ cv. See Figure 1 for the case when n = 5 and s = 2. The poset Ln,s is
a distributive lattice. In fact, it is the lattice of lower order ideals of a product of an s-element chain
with an (n− s)-element chain.

Let w be a monomial in c’s, d’s and ⊗’s having i d’s. Write w as the product u1du2d · · ·dui+1.
Let F (w) be the i-dimensional cubical face in C(Ln,s) associated to the interval between u1c⊗ u2c⊗
· · · c⊗ ui+1 and u1 ⊗ cu2 ⊗ c · · · ⊗ cui+1. Observe that F is a bijection between monomials and faces.
Moreover, the boundary of the face F (w) is F applied to each monomial in ∂(w). Thus the homology
of the chain complex Mn,s is equal to the homology of the cubical complex C(Ln,s). However this
homology is shifted, that is, the zeroth homology of the cubical complex appears as the (n − s)th
homology group of Mn,s.

By Theorem 4.3 we know that the cubical complex C(Ln,s) is collapsible to a point. Thus this
cubical complex has the same homology as a point and this homology is generated by one of its vertices.
Hence the (n − s)th homology of Mn,s is generated by any monomial with s c’s and n − s ⊗’s. By
direct summing the chain complexes over 0 ≤ s ≤ n, the result follows. 2

We now have the immediate corollary.

Corollary 4.5 The homology of the Newtonian chain complex Cn(Z2) is given by Hk(Cn(Z2)) ∼= Z2

for 0 ≤ k ≤ n.
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We now turn our attention to the ring Z4.

Theorem 4.6 The homology of the Newtonian chain complex Cn(Z4) is given by

Hi(Cn(Z4)) ∼=
{
Z4 if i = n,
Z2 if 0 ≤ i < n.

Proof: Tensor product the exact sequence 0 −→ Z2 −→ Z4 −→ Z2 −→ 0 with the chain complex Cn
to obtain the following exact sequence of chain complexes:

0 −→ Cn(Z2)
φ−→ Cn(Z4)

ψ−→ Cn(Z2) −→ 0.

By the zig-zag lemma, we have the following exact sequence of homology groups:

· · · −→ Hi+1(Cn(Z2)) ∂∗−→ Hi(Cn(Z2))
φ∗−→ Hi(Cn(Z4))

ψ∗−→ Hi(Cn(Z2)) ∂∗−→ Hi−1(Cn(Z2)) −→ · · ·
(4.3)

where ∂∗ is induced by the boundary map in Cn(Z4). Let us determine the map ∂∗ : Hi+1(Cn(Z2)) −→
Hi(Cn(Z2)). By Corollary 4.5 we know that both groups are isomorphic to Z2. The homology in
Hi+1(Cn(Z2)) is generated by m = ci+1⊗n−i−1 ∈ Vn,i+1(Z2). We can lift m to Vn,i+1(Z4) to obtain
ci+1⊗n−i−1. Applying the boundary map ∂ gives 2 ·

∑
i1+i2=i c

i1 ⊗ ci2⊗n−i−1 in Vn,i(Z4). Lastly, this
element can be lifted to Vn,i(Z2) to obtain ∂∗(m) =

∑
i1+i2=i c

i1 ⊗ ci2⊗n−i−1. If i is even then ∂∗(m)
is a sum of an odd number of generators of the homology group Hi(Cn(Z2)) ∼= Z2. Thus ∂∗(m) is a
generator and we conclude that ∂∗ is the identity map. When i is odd the argument follows the same
outline and we obtain that ∂∗ is the zero map.

Next consider the exact sequence (4.3) when i is even. By exactness at Hi(Cn(Z2)), we have that
im(ψ∗) ∼= Z2. Thus ψ∗ is surjective. By the exactness at Hi(Cn(Z2)), we know that ker(φ∗) ∼= Z2.
Hence φ∗ is the zero map, that is, im(φ∗) ∼= 0. By the exactness at Hi(Cn(Z4)), we have that ψ∗ is
injective and hence ψ∗ is an isomorphism. We conclude that Hi(Cn(Z4)) is isomorphic to Z2. A similar
argument holds when i is odd. 2

5 Integer homology of cd-polynomials

In this section we complete our analysis of the Newtonian chain complex Cn = Cn(Z) by computing
its homology.

Theorem 5.1 The homology of the Newtonian chain complex Cn is given by

Hi(Cn) ∼=


Z if i = n and i is even,
Z2 if 0 ≤ i < n and i is even,
0 if i is odd.
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Proof: The top homology, i = n, is given by Lemma 2.4. The case when i = 0 is a straightforward
calculation. By the universal coefficient theorem for homology, we have the short exact sequence

0 −→ Hi(Cn)⊗R −→ Hi(Cn(R)) −→ Hi−1(Cn) ∗R −→ 0, (5.4)

where ∗ denotes the torsion product. Recall that Za⊗Zb ∼= Za ∗Zb ∼= Zgcd(a,b) and Za⊗Z ∼= Za. Apply
(5.4) with R = Zp where p is an odd prime number. We obtain Hi(Cn) ⊗ Zp ∼= 0. Now Hi(Cn) is a
finitely generated group. However, the condition Hi(Cn)⊗Zp ∼= 0 implies that there are no generators
of infinite order. Moreover, the order of every generator is relatively prime to p. Since this holds for all
odd primes, we conclude that Hi(Cn) is a direct sum of finite cyclical groups whose orders are powers
of 2.

Now apply (5.4) with R = Z4. We obtain the short exact sequence

0 −→ Hi(Cn)⊗ Z4 −→ Z2 −→ Hi−1(Cn) ∗ Z4 −→ 0.

Either Hi(Cn)⊗Z4
∼= Z2 or Hi(Cn)⊗Z4

∼= 0. In the first case we have Hi(Cn) ∼= Z2 and Hi−1(Cn) ∼= 0.
In the second case Hi(Cn) ∼= 0 and Hi−1(Cn) ∼= Z2. Thus we have the two implications Hi−1(Cn) ∼=
0 =⇒ Hi(Cn) ∼= Z2 and Hi−1(Cn) ∼= Z2 =⇒ Hi(Cn) ∼= 0. Now by induction on i, where the base case is
i = 1, the result follows. 2

In order to get a better understanding of the homology at Wn,i when i is even, we introduce a ring
homomorphism λ from the tensor ring T (Z〈c,d〉) to Z2 by λ(1) = λ(c) = λ(⊗) = 1 and λ(d) = 0.
Observe that λ restricts to the linear map λn,i : Wn,i −→ Z2.

Theorem 5.2 Let i be a non-negative integer less than n. At Wn,i in the Newtonian chain complex
Cn we have

im(∂i+1) = ker(∂i) ∩ ker(λn,i).

Proof: Observe that λn,i ◦ ∂i+1 = 0, that is, im(∂i+1) ⊆ ker(λn,i). Hence when i is odd the statement
is directly true since im(∂i+1) = ker(∂i). Thus it remains to prove ker(∂i)∩ ker(λn,i) ⊆ im(∂i+1) when
i is even.

Tensor product the exact sequence 0 −→ Z −→ Z −→ Z2 −→ 0 with the chain complex Cn to
obtain the following exact sequence of chain complexes:

0 −→ Cn
φ−→ Cn

ψ−→ Cn(Z2) −→ 0.

By the zig-zag lemma and Hi+1(Cn) ∼= Hi−1(Cn) ∼= 0 we have the following exact sequence of homology
groups:

0 −→ Hi+1(Cn(Z2)) ∂∗−→ Hi(Cn)
φ∗−→ Hi(Cn)

ψ∗−→ Hi(Cn(Z2)) −→ 0.

Observe that all four groups are isomorphic to Z2. Since there is only one surjective map from Z2 to
itself, we know that ψ∗ is an isomorphism. (In fact, ∂∗ is also an isomorphism and φ∗ is the zero map.)
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Let w be an element of Wn,i such that w ∈ ker(∂i) ∩ ker(λn,i). Since λn,i counts modulo 2 the
number of monomials in w that do not contain any d’s, λn,i(w) = 0 implies that ψ(w) is a sum of
an even number of generators of the homology group Hi(Cn(Z2)). However, since Hi(Cn(Z2)) ∼= Z2, it
must be that ψ(w) is mapped to the zero element in Hi(Cn(Z2)). Since ψ∗ is an isomorphism we know
that w is mapped to the zero element in Hi(Cn). In other words, w belong to the image of ∂i+1. 2

6 An application to Eulerian posets

As an application of the computation of the homology groups of Cn = Cn(Z), we give a homological
proof of the existence of the cd-index for Eulerian posets.

Let P be a graded posets of rank n + 1 with rank function ρ. For S = {s1 < s2 < · · · < sk} a
subset of {1, . . . , n}, define fS to be the number of chains 0̂ < x1 < x2 < · · · < xk < 1̂ in the poset
P such that ρ(xi) = si. The 2n values fS constitute the flag f-vector of the poset. An equivalent
vector is the flag h-vector which is defined by the two equivalent relations hS =

∑
T⊆S(−1)|S−T | · fT

and fS =
∑

T⊆S hT . For S a subset of {1, . . . , n} define uS to be the ab-monomial of degree n given
by uS = u1 · · ·un where ui = a if i 6∈ S and ui = b if i ∈ S. The ab-index of the poset P is the
ab-polynomial

Ψ(P ) =
∑
S

hS · uS .

Observe that the ab-index is homogeneous of degree n.

A graded poset is Eulerian if every interval [x, y] = {z : x ≤ z ≤ y}, where x < y, contains the
same number elements of even rank as elements of odd rank. This condition is equivalent to that the
Möbius function µ(x, y) is given by (−1)ρ(y)−ρ(x). For Eulerian posets the following results holds. The
original proof is due to Bayer and Klapper [6].

Theorem 6.1 The ab-index of an Eulerian poset P can be written in terms of c = a + b and
d = ab + ba. In other words, for Eulerian posets the cd-index exists.

Proof: We proceed by induction on the rank of the poset. In the case the rank of the poset is 1, the
ab-index is 1 which lies in Z〈c,d〉. Assume the result is true for Eulerian posets of rank at most n.
Let P be an Eulerian poset of rank n+ 1 and let Ψ(P ) denote its ab-index. Using that the ab-index
is a Newtonian coalgebra homomorphism [11, Proposition 3.1], we have

∆(Ψ(P )) =
∑

0̂<x<1̂

Ψ([0̂, x])⊗Ψ([x, 1̂]).

By the induction hypothesis we obtain that ∆(Ψ(P )) ∈ Wn,n−1. Since the Eulerian poset P consists
of an even number of elements we have that λ(∆(Ψ(P )) = 0. Moreover, we have ∂n−1(∆(Ψ(P ))) = 0.
Thus by Theorem 5.2 we have that there is an element w ∈ Z〈c,d〉 such that ∆(w) = ∆(Ψ(P )).
However, since Hn(Z〈a,b〉n) is spanned by (a− b)n, we know that Ψ(P ) = w + β · (a− b)n for some
integer β.
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If n is even then (a − b)n = (c2 − 2d)n/2 and the result follows. Hence let us assume that n is
odd. Observe that the coefficient of an in w is 1. By Philip Hall’s theorem on the Möbius function
we have that [bn]Ψ(P ) = h{1,...,n} = (−1)n+1 · µ(P ) = 1. Now consider the coefficients of an and bn

in w + β · (a − b)n. By the symmetry of c and d in terms of the variables a and b, we know that
the coefficients of an and bn in w are the same, say α. Hence comparing coefficients we obtain that
1 = α+ β and 1 = α− β. Thus β = 0 and we conclude that Ψ(P ) belongs to Z〈c,d〉, completing the
induction. 2

As a remark, we could have proven the weaker statement that the coefficients of the cd-index have
the form r/2s using Theorem 4.1. Namely, use the ring R = {r/2s : r, s ∈ Z}, that is, the integers
localized at 2, in Theorem 4.1.

The first proof of the existence of the cd-index is due to Bayer and Klapper [6] using a shelling
argument. Stanley [16] used Möbius inversion and the fact that (a + (−1)n · b) · (a − b)n is a cd-
polynomial for all non-negative integers n. Two similar proofs are by Aguiar [2] and Billera and
Liu [9], where Aguiar’s proof takes place in a general Newtonian coalgebra setting. The proof by
Ehrenborg [10] uses the Laplace pairing between Z〈a,b〉 and the Billera-Liu flag algebra. Using the
L-vector results of Bayer and Hetyei, a proof of the existence can be extracted from [4]. Another proof
by Bayer and Hetyei appears in [5].
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