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We show the classical q-Stirling numbers of the second kind
can be expressed compactly as a pair of statistics on a subset
of restricted growth words. The resulting expressions are
polynomials in q and 1+q. We extend this enumerative result
via a decomposition of a new poset Π(n, k) which we call the
Stirling poset of the second kind. Its rank generating function
is the q-Stirling number Sq [n, k]. The Stirling poset of the
second kind supports an algebraic complex and a basis for
integer homology is determined. A parallel enumerative, poset
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1. Introduction

The idea of q-analogues can be traced back to Euler in the 1700’s who was study-

ing q-series, especially specializations of theta functions. The Gaussian polynomial

or q-binomial is the familiar q-analogue of the binomial coefficient given by
[

n
k

]

q
=

[n]q!
[k]q ![n−k]q! , where [n]q = 1 + q+ · · · + qn−1 and [n]q! = [1]q · [2]q · · · [n]q. A combinatorial

interpretation due to MacMahon in 1916 [19, page 315] is

∑

π∈S(0n−k,1k)

qinv(π) =
[n

k

]

q
.

Here S(0n−k, 1k) denotes the set of 0-1 bit strings consisting of n− k zeroes and k ones,

and for π = π1 · · ·πn ∈ S(0n−k, 1k) the number of inversions is inv(π) = |{(i, j) : i <

j and πi > πj}|. The inversion statistic goes back to work of Cramer (1750), Bézout

(1764) and Laplace (1772). See the discussion in [22, page 92]. Netto enumerated the

elements of the symmetric group by the inversion statistic in 1901 [22, Chapter 4, Sec-

tions 54 and 57], and in 1916 MacMahon [19, page 318] gave the q-factorial expansion
∑

π∈Sn
qinv(π) = [n]q!.

Recent work of Fu–Reiner–Stanton–Thiem [9, Theorem 1] has expressed the classical

q-binomial in terms of a pair of statistics over a subset of S(0n−k, 1k) using powers of q

and 1 + q:

[n

k

]

q
=

∑

π∈Ω(n,k)′

qa(π) · (1 + q)p(π). (1.1)

They show this q-(1 + q)-binomial is related to Ennola duality for finite unitary groups

and that it counts unitary subspaces [9, Sections 4 and 6.2]. A two-variable version

exhibits a cyclic sieving phenomenon involving unitary spaces [9, Sections 4 and 5].

It is from the q-binomial result (1.1) that we springboard our work. Our first goal is

enumerative, that is, to discover compact encodings of classical q-analogues:

Goal 1. Given a q-analogue

f(q) =
∑

w∈S

qσ(w),

for some statistic σ(·), find a subset T ⊆ S and statistics A(·) and B(·) so that the

q-analogue may be expressed as

f(q) =
∑

w∈T

qA(w) · (1 + q)B(w). (1.2)

For the q-Stirling numbers of the first and second kinds, we develop their q-(1 +

q)-analogues. Furthermore, we are able to understand these q-(1 + q)-analogues via
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enumerative, poset theoretic and topological viewpoints. These lead to the following

expanded goal:

Goal 2. Given a q-analogue which can be written compactly as a q-(1 + q)-analogue as

in (1.2), find poset theoretic and homological reasons to explain this phenomenon.

This paper proceeds as follows. In Section 2 we recall the notion of restricted growth

words orRG-words to encode set partitions. A weighted version yields the usual q-Stirling

numbers of the second kind; see Lemma 2.3. In Section 3 we describe a subset of

RG-words, which we call allowable, whose weighting gives the q-Stirling numbers of

the second kind and hence a more compact presentation of the q-Stirling numbers of the

second kind; see Theorem 3.2.

We then take a poset theoretic viewpoint in Section 4 where we introduce the Stirling

poset of the second kind Π(n, k). Its rank generating function is precisely the q-Stirling

number Sq[n, k]. Using discrete Morse theory, we show in Theorem 4.3 that the Stirling

poset of the second kind has an acyclic matching. In Section 5 we give a decomposition

of the Stirling poset into Boolean algebras with the minimal element of each Boolean

algebra corresponding to an allowable RG-word; see Theorem 5.1. A generating function

for the q-analogue of critical cells is provided.

In Section 6 we review the notion of an algebraic complex supported on a poset. In

Theorem 6.3 we show that the Stirling poset Π(n, k) supports an algebraic complex and

give a basis for the integer homology, all of which occurs in even dimensions. We give

two proofs of this result. The first uses Hersh, Shareshian and Stanton’s homological

interpretation of Stembridge’s q = −1 phenomenon, while the second is an elementary

proof using the poset decomposition in Section 5.

In Section 7 we review the de Médicis–Leroux rook placement interpretation of the

q-Stirling numbers of the first kind. In Theorem 7.4 we show a subset of these boards,

with the appropriate weighting, yields a compact representation of the q-Stirling number

of the first kind. In Section 8 we introduce the Stirling poset of the first kind Γ(m,n)

whose rank generating function is precisely the q-Stirling number cq[n, k]. Again, a de-

composition of this graded poset is given. We show the Stirling poset of the first kind

supports an algebraic complex and describe a basis for the integer homology which occurs

in even dimensions. See Theorems 8.4 and 8.7. In Section 9 we introduce (q, t)-analogues

of the Stirling numbers of the first and second kinds and show orthogonality holds com-

binatorially. We end with concluding remarks.

2. RG-words

Recall a set partition of the n elements {1, 2, . . . , n} is a decomposition of this set into

mutually disjoint nonempty sets called blocks. Unless otherwise indicated, throughout

all set partitions will be written in standard form, that is, a partition into k blocks will
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be denoted by π = B1/B2/ · · · /Bk, where the blocks are ordered so that min(B1) <

min(B2) < · · · < min(Bk). We denote the set of all partitions of {1, 2, . . . , n} by Πn.

Given a partition π ∈ Πn, we encode it using a restricted growth word w(π) =

w1w2 · · ·wn, where wi = j if the element i occurs in the jth block Bj of π. For ex-

ample, the partition π = 14/236/57 has RG-word w = w(π) = 1221323. Restricted

growth words are also known as restricted growth functions. Recall a restricted growth

function f : {1, 2, . . . , n} −→ {1, 2, . . . , k} is a surjective map which satisfies f(1) = 1

and f(i) ≤ max(f(1), f(2), . . . , f(i− 1)) + 1 for i = 2, 3, . . . , n. They have been studied

by Hutchinson [13] and Milne [20,21].

Two facts about RG-words follow immediately from using the standard form for set

partitions.

Proposition 2.1. The following properties are satisfied by RG-words:

1. Any RG-word begins with the element 1.

2. For an RG-word w let ǫ(j) be the smallest index such that wǫ(j) = j. Then the ǫ(j)

form an increasing sequence, that is,

ǫ(1) < ǫ(2) < · · · .

The q-Stirling numbers of the second kind are defined by

Sq[n, k] = Sq[n− 1, k − 1] + [k]q · Sq[n− 1, k], for 1 ≤ k ≤ n, (2.1)

with boundary conditions Sq[n, 0] = δn,0 and Sq[0, k] = δ0,k, where δi,j is the usual Kro-

necker delta function. Setting q = 1 gives the familiar Stirling number of the second kind

S(n, k) which enumerates the number of partitions π ∈ Πn with exactly k blocks. There

is a long history of studying set partition statistics [10,17,25] and q-Stirling numbers [3,

5,11,21,32].

We begin by presenting a statistic on RG-words which generates the q-Stirling num-

bers of the second kind. Let R(n, k) denote the set of all RG-words of length n with

maximum letter k, which corresponds to set partitions of {1, 2, . . . , n} into k blocks. For

w ∈ R(n, k), let mi = max(w1, w2, . . . , wi) and form the weight wt(w) =
∏n

i=1 wti(w),

where wt1(w) = 1 and for 2 ≤ i ≤ n, let

wti(w) =

{

qwi−1 if mi−1 ≥ wi,

1 if mi−1 < wi.
(2.2)

For example, wt(1221323) = 1 · 1 · q1 · q0 · 1 · q1 · q2 = q4. In terms of set partitions, the

weight of π = B1/B2/ · · · /Bk is wt(π) =
∏k

j=1 q
(j−1)·(|Bj |−1).



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: Y. Cai, M.A. Readdy, q-Stirling numbers: A new view, Adv. in Appl.
Math. (2016), http://dx.doi.org/10.1016/j.aam.2016.11.007

JID:YAAMA AID:1739 /FLA [m1L; v1.194; Prn:9/12/2016; 1:20] P.5 (1-31)

Y. Cai, M.A. Readdy / Advances in Applied Mathematics ••• (••••) •••–••• 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

Table 1

Using RG-words to compute Sq[4, 2] = q2 + 3q + 3.

Partition RG-word w wt(w)

1/234 1222 1 · 1 · q · q = q2

12/34 1122 1 · 1 · 1 · q = q
13/24 1212 1 · 1 · 1 · q = q
14/23 1221 1 · 1 · q · 1 = q
134/2 1211 1 · 1 · 1 · 1 = 1
124/3 1121 1 · 1 · 1 · 1 = 1
123/4 1112 1 · 1 · 1 · 1 = 1

Proposition 2.2. For w = w1 · · ·wn ∈ R(n, k) the weight is given by

wt(w) = q
∑n

i=1 wi−n−
(

k

2

)

.

Lemma 2.3. The q-Stirling number of the second kind is given by

Sq[n, k] =
∑

w∈R(n,k)

wt(w).

Proof. We show RG-words w ∈ R(n, k) satisfy the recurrence (2.1). Given an RG-word

w = w1w2 · · ·wn ∈ R(n, k), consider the map ϕ defined by removing the last letter of the

word, that is, ϕ(w) = w1w2 · · ·wn−1. Clearly ϕ : R(n, k) −→ R(n−1, k−1) ∪̇R(n−1, k).

If the only occurrence of the maximum letter k in the word w is the nth position, that

is, wn = k, then these words are in bijection with the set R(n − 1, k − 1). Otherwise,

ϕ(w) is of length n− 1 and all the letters from {1, 2, . . . , k} occur at least once in ϕ(w).

In the first case wt(ϕ(w)) = wt(w). In the second case the letter k occurs more than

once in w. Given w′ = w1w2 · · ·wn−1 ∈ R(n − 1, k) there are k possibilities for the nth

letter x in the inverse image ϕ−1(w′) = w1w2 · · ·wn−1x, namely, x ∈ {1, 2, . . . , k}. Each

possibility respectively contributes 1, q1, . . . , qk−1 to the weight, giving a total weighting

contribution of [k]q. ✷

See Table 1 for the RG-word computation of the q-Stirling number Sq[4, 2].

3. Allowable RG-words

Mirroring the q-(1 + q)-binomial, in this section we define a subset of RG-words and

two statistics A(·) and B(·) which generate the classical q-Stirling number of the second

kind as a polynomial in q and 1 + q. We will see in Sections 4 through 6 that this has

poset and topological implications.

Definition 3.1. An RG-word w ∈ R(n, k) is allowable if every even entry appears exactly

once. Denote by A(n, k) the set of all allowable RG-words in R(n, k).

Another way to state that w ∈ R(n, k) is an allowable RG-word is that it is an initial

segment of an infinite word of the form
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Table 2

Allowable RG-words in A(n, k) and their weights for 1 ≤ k ≤ n ≤ 5.

w wt′(w) w wt′(w)

A(1, 1) 1 1 A(5, 3) 12311 (1 + q)2

A(2, 1) 11 1 12131 (1 + q)2

A(2, 2) 12 1 12113 (1 + q)2

A(3, 1) 111 1 12133 (1 + q) · q2

A(3, 2) 121 1 + q 12313 (1 + q) · q2

112 1 12331 q2 · (1 + q)
A(3, 3) 123 1 12333 q2 · q2

A(4, 1) 1111 1 11213 (1 + q)
A(4, 2) 1211 (1 + q)2 11231 (1 + q)

1121 (1 + q) 11233 q2

1112 1 11123 1
A(4, 3) 1213 (1 + q) A(5, 4) 12341 (1 + q)

1231 (1 + q) 12343 q2(1 + q)
1233 q2 12134 (1 + q)
1123 1 12314 (1 + q)

A(4, 4) 1234 1 12334 q2

A(5, 1) 11111 1 11234 1
A(5, 2) 12111 (1 + q)3

A(5, 5) 12345 1
11211 (1 + q)2

11121 (1 + q)
11112 1

w = u1 · 2 · u3 · 4 · u5 · · · ,

where u2i−1 is a word on the alphabet of the odd integers {1, 3, . . . , 2i− 1}. In terms of

set partitions, an RG-word is allowable if in the corresponding set partition every even

indexed block is a singleton block. See Table 2.

For an RG-word w = w1 · · ·wn define wt′(w) =
∏n

i=1 wt′
i(w), where for mi =

max(w1, . . . , wi)

wt′
i(w) =







qwi−1 · (1 + q) if mi−1 > wi,

qwi−1 if mi−1 = wi,

1 if mi−1 < wi or i = 1.

(3.1)

For completeness, we decompose the wt′ statistic into two statistics on RG-words. Let

Ai(w) =

{

wi − 1 if mi−1 ≥ wi,

0 if mi−1 < wi or i = 1,
and

Bi(w) =

{

1 if mi−1 > wi,

0 otherwise.
(3.2)

Define

A(w) =
n∑

i=1

Ai(w) and B(w) =
n∑

i=1

Bi(w).
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Theorem 3.2. The q-Stirling numbers of the second kind can be expressed as a weighting

over the set of allowable RG-words as follows:

Sq[n, k] =
∑

w∈A(n,k)

wt′(w) =
∑

w∈A(n,k)

qA(w) · (1 + q)B(w). (3.3)

Hence evaluating the q-Stirling number at q = −1 gives the number of weakly increasing

allowable words in A(n, k).

Proof. We proceed by induction on n and k. Clearly the result holds for Sq[n, 1] and

Sq[n, n] as the corresponding allowable words are 11 · · · 1 and 12 · · ·n, each of weight 1.

For the general case it is enough to show that (3.3) satisfies the defining relation (2.1)

for the q-Stirling numbers of the second kind. We first consider the case when k is even.

We split the allowable words according to the value of the last letter, that is, we write

w = u · wn. Observe that wt′(w) = wt′(u) · wt′
n(w). We have

∑

w∈A(n,k)

wt′(w) =
∑

u∈A(n−1,k−1)
wn=k

mn−1=k−1

wt′(u) · wt′
n(w) +

∑

u∈A(n−1,k)
wn<k

mn−1=k

wt′(u) · wt′
n(w)

= 1 · Sq[n− 1, k − 1] + ((1 + q) + q2 · (1 + q) + · · ·

+ qk−2 · (1 + q)) · Sq[n− 1, k]

= Sq[n− 1, k − 1] + [k]q · Sq[n− 1, k],

where in the second sum the last letter wn is odd. For the case when k is odd there is a

similar computation, except then there are three cases:

∑

w∈A(n,k)

wt′(w) =
∑

u∈A(n−1,k−1)
wn=k

mn−1=k−1

wt′(u) · wt′
n(w) +

∑

u∈A(n−1,k−1)
wn=k

mn−1=k

wt′(u) · wt′
n(w)

+
∑

u∈A(n−1,k−1)
wn<k

mn−1=k

wt′(u) · wt′
n(w).

Here in the second and third sums the last letter wn is odd. In both parity cases for k,

the result is equal to the q-Stirling number of the second kind Sq[n, k], as desired. ✷

See Table 2 for the allowable RG-words for 1 ≤ n ≤ 5.

Denote by a(n, k) = |A(n, k)| the cardinality of allowable words, and call it the allow-

able Stirling number of the second kind. The following holds.
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Table 3

The allowable Stirling numbers of the second kind a(n, k), the allowable Bell numbers a(n) and the classical
Bell numbers b(n) for 0 ≤ n ≤ 10.

n\k 0 1 2 3 4 5 6 7 8 9 10 a(n) b(n)

0 1 1 1
1 0 1 1 1
2 0 1 1 2 2
3 0 1 2 1 4 5
4 0 1 3 4 1 9 15
5 0 1 4 11 6 1 23 52
6 0 1 5 26 23 9 1 65 203
7 0 1 6 57 72 50 12 1 199 877
8 0 1 7 120 201 222 86 16 1 654 4140
9 0 1 8 247 522 867 480 150 20 1 2296 21147

10 0 1 9 502 1291 3123 2307 1080 230 25 1 8569 115975

Proposition 3.3. The allowable Stirling numbers of the second kind satisfy the recurrence

a(n, k) = a(n− 1, k − 1) + ⌈k/2⌉ · a(n− 1, k) for n ≥ 1 and 1 ≤ k ≤ n,

with the boundary conditions a(n, 0) = δn,0.

Proof. By definition each allowable word w ∈ A(n, k) corresponds to a set partition of

{1, 2, . . . , n} into k nonempty subsets where each block with an even label has exactly

one element in it. Let p(w) be the corresponding set partition.

There are two cases. If n occurs as a singleton block in p(w), then after deleting the

element n we obtain a set partition of the elements {1, 2, . . . , n − 1} into k − 1 blocks.

This corresponds to a word in A(n − 1, k − 1). Otherwise assume the element n occurs

in a block with more than one element. We can first build an allowable set partition of

{1, 2, . . . , n−1} into k blocks and then put the element n into one of the k blocks. Notice

that n can only be placed into an odd numbered block, so we have ⌈k/2⌉ possible blocks

to assign the element n. This gives ⌈k/2⌉ · a(n− 1, k) possibilities. ✷

We call the sum a(n) =
∑n

k=0 a(n, k) the nth allowable Bell number. See Table 3. The

following properties are straightforward to verify.

Proposition 3.4. The allowable Stirling numbers of the second kind satisfy

a(n, 2) = n− 1 , (3.4)

a(n, n− 1) =
⌊n

2

⌋

·
⌈n

2

⌉

. (3.5)

Proof. By definition any w ∈ A(n, 2) is a word of length n consisting of exactly n − 1

1’s and one 2. Since the initial letter must be 1, there are n − 1 choices to assign the

location of 2. Thus (3.4) follows.

For identity (3.5) we wish to count allowable words of length n with maximal entry

n − 1. By definition of an allowable word, there will be exactly one odd integer that

appears twice and all other integers appear exactly once in such a word. In other words,
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Fig. 1. The matching of the Stirling poset Π(5, 2).

given the word 12 · · · (n− 1), we need to insert an odd integer less than or equal to n− 1

so that the resulting word is still allowable. There are ⌈(n − 1)/2⌉ = ⌊n/2⌋ choices for

such an odd integer. We can place this odd integer anywhere after its initial appearance

in the word 12 · · · (n−1). Thus we have in total (n−1)+(n−3)+ · · ·+(n− (2 · ⌈(n−1)/

2⌉ − 1)) = ⌊n/2⌋ · ⌈n/2⌉ ways to obtain a word in A(n, n− 1). ✷

Homological underpinnings of Theorem 3.2 will be discussed in Section 6.

4. The Stirling poset of the second kind

In order to understand the q-Stirling numbers more deeply, we give a poset structure

on R(n, k), which we call the Stirling poset of the second kind, denoted by Π(n, k), as

follows. For v, w ∈ R(n, k) let v = v1v2 · · · vn ≺ w if w = v1v2 · · · (vi + 1) · · · vn for some

index i. It is clear that if v ≺ w then wt(w) = q · wt(v), where the weight is as defined

in (2.2). The Stirling poset of the second kind is graded by the degree of the weight

function wt. Thus the rank of the poset Π(n, k) is (n− k)(k− 1) and its rank generating

function is given by Sq[n, k]. For basic terminology regarding posets, we refer the reader

to Stanley’s treatise [27, Chapter 3]. See Figs. 1 and 2 for two examples of the Stirling

poset of the second kind.

We next review the notion of a Morse matching [15,16]. This will enable us to find

a natural decomposition of the Stirling poset of the second kind, and to later be able

to draw homological conclusions. A partial matching on a poset P is a matching on the

underlying graph of the Hasse diagram of P , that is, a subset M ⊆ P × P satisfying

(i) the ordered pair (a, b) ∈ M implies a ≺ b, and (ii) each element a ∈ P belongs to

at most one element in M . When (a, b) ∈ M , we write u(a) = b and d(b) = a. A partial

matching on P is acyclic if there does not exist a cycle

a1 ≺ u(a1) ≻ a2 ≺ u(a2) ≻ · · · ≻ an ≺ u(an) ≻ a1

with n ≥ 2, and the elements a1, a2, . . . , an are distinct.

An alternate manner is to orient all the edges in the Hasse diagram of a poset down-

wards and then reorient all the edges occurring in the matching upwards. The acyclic
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Fig. 2. The Stirling poset Π(5, 3) and its discrete Morse matching. The rank generating function is the
q-Stirling number Sq[5, 3] = q4 + 3q3 + 7q2 + 8q + 6. The matched elements are indicated by arrows. The
unmatched elements are 11123, 11233 and 12333, and the sum of their weights is 1 + q2 + q4.

condition is simply that there is no cycle on the directed Hasse diagram. For the matched

edge (a, b) the notation u(a) = b and d(b) = a denotes the fact that in the edge oriented

from a to b the element b is “upwards” from a and similarly the element a is “downwards”

from b. One can use the terminology of a gradient path or V -path consisting alternatively

of matched and unmatched elements from the poset [7]. See Fig. 3. A discrete Morse

matching is one where no gradient path forms a cycle.

We define a matching M on the Stirling poset Π(n, k) in the following manner. Let

wi be the first entry in w = w1w2 · · ·wn ∈ R(n, k) such that w is weakly decreasing,

that is, w1 ≤ w2 ≤ · · · ≤ wi−1 ≥ wi and where we require the inequality wi−1 ≥ wi to

be strict unless both wi−1 and wi are even. We have two subcases. If wi is even then let

d(w) = w1w2 · · ·wi−1(wi − 1)wi+1 · · ·wn. In this case we have wt(d(w)) = q−1 · wt(w).

Otherwise, if wi is odd then let u(w) = w1w2 · · ·wi−1(wi + 1)wi+1 · · ·wn and we have

wt(u(w)) = q · wt(w). If w is an allowable word which is weakly increasing, then w is

unmatched in the poset. Again, we refer to Figs. 1 and 2.

Lemma 4.1. For the partial matching M described on the poset Π(n, k) the unmatched

words U(n, k) are of the form

w =

{

u1 · 2 · u3 · 4 · u5 · 6 · · ·uk−1 · k for k even,

u1 · 2 · u3 · 4 · u5 · 6 · · · (k − 1) · uk for k odd,

where u2i−1 = (2i − 1)ji , that is, u2i−1 is a word consisting of ji ≥ 1 copies of the odd

integer 2i− 1.

Proof. The result follows by observing the unmatched elements of the Stirling poset

w(n, k) consist of RG-words in R(n, k) which are always increasing and have no repeated

even-valued entries. ✷
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Fig. 3. First three steps of a gradient path.

Lemma 4.2. Let a and b be two distinct elements in the Stirling poset of the second kind

Π(n, k) such that a ≺ u(a) ≻ b ≺ u(b). Then the element a is lexicographically larger

than the element b.

Proof. Suppose on the contrary that a <lex b with a = a1 · · · an. Assume that u(a) =

a1a2 · · · (ai + 1) · · · an. Then ai is odd and the strict inequality ai−1 > ai holds. Since a

is lexicographically smaller than b and the element b is obtained by decreasing an entry

in u(a) by one, the element b must be of the form b = a1 · · · (ai + 1) · · · (aj − 1) · · · an

for some index j > i. The first i entries in b satisfy a1 ≤ a2 ≤ · · · ≤ ai−1 ≥ (ai + 1) and

ai + 1 is even, so by definition the element b is matched to an element of lower rank,

contradicting the fact that (b, u(b)) is a matched pair in M . ✷

Theorem 4.3. The matching M described for Π(n, k) is an acyclic matching, that is, it

is a discrete Morse matching.

Proof. By Lemma 4.2 one cannot find a gradient cycle of the form

x1 ≺ u(x1) ≻ x2 ≺ u(x2) ≻ · · · ≻ xk ≺ u(xk) ≻ x1

since the elements x1, . . . , xk must satisfy x1 >lex x2 >lex · · · >lex xk >lex x1, which is

impossible. ✷

We end this section with enumeration of the words which are left unmatched in the

discrete Morse matching. We will see in Section 6 that the unmatched words will provide

a basis for the integer homology of the algebraic complex supported by the Stirling poset

of the second kind.

Lemma 4.4. The weighted generating function of the unmatched words U(n, k) in Π(n, k)

is given by the q2-binomial coefficient

∑

u∈U(n,k)

wt(u) =

[

n− 1 − ⌊ k
2 ⌋

⌊ k−1
2 ⌋

]

q2

.

Proof. Let u = u1 · · ·un ∈ U(n, k) be an unmatched word. Recall the weight is given

by reading the word from left to right and gaining a multiplicative factor qui−1 for all

values of i with ui−1 = ui. Since ui−1 = ui can only appear when ui is odd, the weight

of an unmatched word is always q2m for some non-negative integer m.
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We claim that each u ∈ U(n, k) of weight q2m corresponds to an integer partition of

2m with at most n − k parts where each part is even and where each part is at most

ρ = ⌊(k − 1)/2⌋ · 2. The correspondence is as follows. For each word u satisfying the

condition with the odd integer j appearing mj times, map these odd integers to mj − 1

copies of j − 1. The resulting partition of 2m is of the form

2m = 2 + · · · + 2
︸ ︷︷ ︸

m3−1

+ 4 + · · · + 4
︸ ︷︷ ︸

m5−1

+ · · · + ρ+ · · · + ρ
︸ ︷︷ ︸

mσ−1

,

where σ is the largest occurring odd integer in the original RG-word u and ρ = σ − 1.

For example, the word 112333455 corresponds to the partition 8 = 2 + 2 + 4. Note that

the unmatched word 1 corresponds to the empty partition ∅.

An alternate way to describe these partitions is to form a partition of m into at most

n − k parts with each part at most ⌊(k − 1)/2⌋. By doubling each part, we obtain the

above-mentioned partition. However, by [27, Proposition 1.7.3] the sum of the weight of

partitions that fit into a rectangle of size n− k by ⌊(k − 1)/2⌋ is given by the Gaussian

polynomial
[

n−k+⌊ k−1
2 ⌋

⌊ k−1
2 ⌋

]

q
. By the substitution q 7→ q2, the result follows. ✷

Corollary 4.5. The number of unmatched words of length n, that is, U(n) =
∑n

k=1 |U(n, k)|

is given by the Fibonacci number Fn, where Fn = Fn−1 + Fn−2 for n ≥ 2 and F0 =

F1 = 1.

Proof. Substituting q2 = 1, that is, q = −1 in Lemma 4.4 gives the number of unmatched

words |U(n, k)| in the Stirling poset of the second Π(n, k). Hence,

U(n) =
n∑

k=1

|U(n, k)| =

⌊ n
2 ⌋

∑

i=0

(
n− i

i

)

= Fn,

where the last equality is a well-known binomial coefficient expansion for the Fibonacci

number Fn arising from compositions of n using 1’s and 2’s. ✷

5. Decomposition of the Stirling poset of the second kind

We next decompose the Stirling poset Π(n, k) into Boolean algebras indexed by the

allowable words. This gives a poset explanation for the factorization of the q-Stirling

number Sq[n, k] in terms of powers of q and 1 + q.

To state this decomposition, we need two definitions. For w ∈ A(n, k) an allowable

word let Invr(w) = {i : wj > wi for some j < i} be the set of all indices in w that

contribute to the right-hand element of an inversion pair. For i ∈ Invr(w) such an entry

wi must be odd since in a given allowable word any entry occurring to the left of an even

entry must be strictly less than it. Finally, for w ∈ A(n, k) let α(w) be the word formed

by incrementing each of the entries indexed by the set Invr(w) by one. Additionally, for
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Fig. 4. The decomposition of the Stirling poset Π(5, 2) into Boolean algebras Bi for i = 0, 1, 2, 3. Arrows
indicate the elements matched from the discrete Morse matching. Based on the ranks of the minimal
elements in each Boolean algebra, one obtains the weight of the poset is Sq[5, 2] = 1 + (1 + q) + (1 + q)2 +
(1 + q)3.

w ∈ A(n, k) and any I ⊆ Invr(w), the word formed by incrementing each of the entries

indexed by the set I by one are elements of R(n, k) since if i ∈ Invr(w) then there is an

index h < i with wh = wi. This follows from Proposition 2.1 part (ii).

Theorem 5.1. The Stirling poset of the second kind Π(n, k) can be decomposed as the

disjoint union of Boolean intervals

Π(n, k) =
�⋃

w∈A(n,k)

[w,α(w)].

Furthermore, if an allowable word w ∈ A(n, k) has weight wt′(w) = qi · (1 + q)j, then

the rank of the element w is i and the interval [w,α(w)] is isomorphic to the Boolean

algebra on j elements.

Proof. Let w ∈ A(n, k) with wt′(w) = qi · (1 + q)j and | Invr(w)| = m. It directly follows

from the definitions that the interval [w,α(w)] is isomorphic to the Boolean algebra Bm.

With the exception of the element w, all the other elements in the interval [w,α(w)] are

not allowable words in Π(n, k) since all of the newly incremented entries will have at

least two equal even entries. We also claim m = j, since wt′(w) picks up a factor of 1 + q

for each index i satisfying wi < mi−1 = max(w1, . . . , wi−1). These indices are exactly

the set Invr(w).

We claim every element of Π(n, k) occurs in some Boolean algebra in the decomposi-

tion. This is vacuously true if w ∈ A(n, k). Otherwise since w is not an allowable word,

it has even entries which are repeated. Decrease all occurrences of these repeated entries

by one except for the first occurrence of each even integer. This is the allowable RG-word

associated to w. ✷

See Figs. 4 and 5 for examples of this decomposition for the posets in Figs. 1 and 2,

respectively.
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Fig. 5. The decomposition of the Stirling poset Π(5, 3) into Boolean algebras. Again, the matched elements
are indicated with arrows. The weight of the poset is Sq[5, 3] = 1+2(1+ q)+3(1+q)2 +q2 +3q2(1+q)+q4.

6. Homological q = −1 phenomenon

Stembridge’s q = −1 phenomenon [28,29] and the more general cyclic sieving phe-

nomenon of Reiner, Stanton and White [24] count symmetry classes in combinatorial

objects by evaluating their q-generating series at a primitive root of unity. Recently

Hersh, Shareshian and Stanton [12] have given a homological interpretation of the q = −1

phenomenon by viewing it as an Euler characteristic computation on a chain complex

supported by a poset. In the best scenario, the homology is concentrated in dimensions

of the same parity and one can identify a homology basis. For further information about

algebraic discrete Morse theory, see [14,15,26].

We will see the graded poset Π(n, k) supports an algebraic complex (C, ∂). The afore-

mentioned matching for Π(n, k) (Theorem 4.3) is a discrete Morse matching for this

complex and the unmatched elements occur in even ranks of the poset. Hence using

standard discrete Morse theory [8], we can give a basis for the homology.

We now review the relevant background. We follow [12] here. See also [14,26]. Let P

be a graded poset and Wi denote the rank i elements. We say the poset P supports a

chain complex (C, ∂) of F-vector spaces Ci if each Ci has basis indexed by the rank i

elements Wi and ∂i : Wi → Wi−1 is a boundary map. Furthermore, for x ∈ Wi and

y ∈ Wi−1 the coefficient ∂x,y of y in ∂i(x) is zero unless y <P x.

For w ∈ Π(n, k), let

E(w) = {i : wi is even and wj = wi for some j < i}

be the set of all indices of repeated even entries in the word w. Define the boundary

map ∂ on the elements of Π(n, k) by

∂(w) =
r∑

j=1

(−1)j−1 · w1 · · ·wij−1 · (wij
− 1) · wij+1 · · ·wn, (6.1)
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where E(w) = {i1 < i2 < · · · < ir}. For example, if w = 122344 then E(122344) = {3, 6}

and ∂(122344) = 121344 − 122343. With this definition of the boundary operator ∂, we

have the following lemma.

Lemma 6.1. The map ∂ is a boundary map on the algebraic complex (C, ∂) with the poset

Π(n, k) as support.

Proof. By definition of ∂, we have

∂2(w) =
∑

ir<ij

(−1)j−1 · (−1)r−1 · w1w2 · · ·wir−1 · · · (wij
− 1) · · ·wn

+
∑

ir>ij

(−1)j−1 · (−1)r−2 · w1w2 · · ·wij−1 · · · (wir
− 1) · · ·wn,

where the sum is over indices ir and ij with wij
, wir

∈ E(w). These two summations

cancel since after switching r and j in the second summation, the resulting expression

becomes the negative of the first. Hence we have that ∂2(w) = 0. ✷

We have shown the graded poset Π(n, k) supports an algebraic complex (C, ∂). We will

need a lemma due to Hersh, Shareshian and Stanton [12, Lemma 3.2]. This is part (ii)

of the original statement of the lemma.

Lemma 6.2 (Hersh–Shareshian–Stanton). Let P be a graded poset supporting an algebraic

complex (C, ∂). Assume the poset P has a Morse matching M such that for all matched

pairs (y, x) with y ≺ x one has ∂y,x ∈ F∗. If all unmatched poset elements occur in ranks

of the same parity, then dim(Hi(C, ∂)) = |P un M
i |, that is, the number of unmatched

elements of rank i.

We can now state our result.

Theorem 6.3. For the algebraic complex (C, ∂) supported by the Stirling poset of the

second kind Π(n, k), a basis for the integer homology is given by the weakly increasing

allowable RG-words in A(n, k). Furthermore, we have

∑

i≥0

dim(Hi(C, ∂;Z)) · qi =

[

n− 1 − ⌊ k
2 ⌋

⌊ k−1
2 ⌋

]

q2

.

Proof. By definition of the boundary map ∂, if (x, y) ∈ M then ∂y,x = 1 and all of

the unmatched words in Π(n, k) occur in even ranks. The conditions in Lemma 6.2 are

satisfied. So
∑

i≥0 dim(Hi(C, ∂;Z)) · qi is the q2-binomial coefficient in Lemma 4.4. ✷

Remark 6.4. (A second proof of Theorem 6.3.) Theorem 6.3 can be proved without

resorting to Lemma 6.2 as follows. The boundary map ∂ is supported on the Boolean
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algebras in the poset decomposition given in Theorem 5.1. Furthermore, the restriction

to one of these Boolean algebras is the natural boundary map on that Boolean algebra.

Hence the algebraic complex is a direct sum of algebraic complexes of Boolean algebras.

The only summands that contribute any homology are the rank 0 Boolean algebras, that

is, the unmatched elements.

7. q-Stirling numbers of the first kind

The (unsigned) q-Stirling numbers of the first kind are defined by the recurrence

formula

cq[n, k] = cq[n− 1, k − 1] + [n− 1]q · cq[n− 1, k], (7.1)

where cq[n, 0] = δn,0. When q = 1, the Stirling number of the first kind c(n, k) enumerates

permutations in the symmetric group Sn having exactly k disjoint cycles. A combina-

torial way to express q-Stirling numbers of the first kind is via rook placements; see

de Médicis and Leroux [4]. Throughout a staircase chessboard of length m is a board

with m − i squares in the ith row for i = 1, . . . ,m − 1 and each row of squares is left-

justified.

Definition 7.1. Let P(m,n) be the set of all ways to place n rooks onto a staircase

chessboard of length m so that no two rooks are in the same column. For any rook

placement T ∈ P(m,n), denote by s(T ) the number of squares to the south of the rooks

in T .

Theorem 7.2 (de Médicis–Leroux). The q-Stirling number of the first kind cq[n, k] is given

by

cq[n, k] =
∑

T ∈P(n,n−k)

qs(T ),

where the sum is over all rook placements of n−k rooks on a staircase board of length n.

We now define a subset Q(n, n − k) of rook placements in P(n, n − k) so that the

q-Stirling number of the first kind cq[n, k] can be expressed as a statistic on the subset

involving q and 1 + q. The key is given any staircase chessboard, assign it a certain

alternating shaded pattern.

Definition 7.3. Given any staircase chessboard, assign it a chequered pattern such that

every other antidiagonal strip of squares is shaded, beginning with the lowest antidiag-

onal. Let

Q(m,n) = {T ∈ P(m,n) : all rooks are placed in shaded squares}.
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Fig. 6. Computing the q-Stirling number of the first kind cq[4, 2] using Q(4, 2).

For any rook placement T ∈ Q(m,n), let r(T ) denote the number of rooks in T that are

not in the first row. Define the weight to be wt(T ) = qs(T ) · (1 + q)r(T ).

Theorem 7.4. The q-Stirling number of the first kind is given by

cq[n, k] =
∑

T ∈Q(n,n−k)

wt(T ) =
∑

T ∈Q(n,n−k)

qs(T ) · (1 + q)r(T ),

where the sum is over all rook placements of n−k rooks on an alternating shaded staircase

board of length n.

Proof. We proceed by induction on n. It is straightforward to see the result holds for

n = k = 0. Suppose the result is true for alternating shaded staircase boards of length

n− 1. Then we have

∑

T ∈Q(n,n−k)

wt(T ) =
∑

T ∈Q(n,n−k)
leftmost column is empty

wt(T ) +
∑

T ∈Q(n,n−k)
leftmost column is not empty

wt(T )

=
∑

T ∈Q(n−1,n−k)

wt(T ) +
∑

T ∈Q(n−1,n−k−1)

[n− 1]q · wt(T )

= cq[n− 1, k − 1] + [n− 1]q · cq[n− 1, k]

= cq[n, k].

In the second equality, the first term follows from the fact that one can remove the

leftmost column from the board, leaving a rook placement of n − k rooks on a length

n− 1 shaded board. For the second term, we first consider where the rook occurs in the

leftmost column. If the rook occurs in the (2i+1)st entry from the bottom of the leftmost

column, where 0 ≤ i < ⌊(n−1)/2⌋, it contributes a weight of q2i ·(1+q) since there are 2i

squares below it and the rook does not occur in the first row. The only way a rook in the

first column can also occur in the first row of a shaded staircase board is if the leftmost

column has an odd number of squares, that is, n is even. In this case the rook would

contribute a weight of qn−2. For n even the overall weight contribution from a rook in

the first column is 1 · (1 + q) + q2 · (1 + q) + · · · + qn−4 · (1 + q) + qn−2 = [n− 1]q and for n

odd the weight contribution is 1 ·(1+q)+q2 ·(1+q)+ · · ·+qn−3 ·(1+q) = [n−1]q. Hence

removing the first column from the staircase board along with the rook that occurs in
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Table 4

The allowable Stirling numbers of the first kind d(n, k), their row sum r(n) and n! for 0 ≤ n ≤ 10.

n\k 0 1 2 3 4 5 6 7 8 9 10 r(n) n!

0 1 1 1
1 0 1 1 1
2 0 1 1 2 2
3 0 1 2 1 4 6
4 0 2 5 4 1 12 24
5 0 4 12 13 6 1 36 120
6 0 12 40 51 31 9 1 144 720
7 0 36 132 193 144 58 12 1 576 5040
8 0 144 564 904 769 376 106 16 1 2880 40320
9 0 576 2400 4180 3980 2273 800 170 20 1 14400 362880

10 0 2880 12576 23300 24080 15345 6273 1650 270 25 1 86400 3628800

it leaves a shaded staircase board of length n− 1 with n− k− 1 rooks. The total weight

lost is [n− 1]q. Finally, the last equality is recurrence (7.1). ✷

See Fig. 6 for the computation of cq[4, 2] using allowable rook placements on length 4

shaded staircase boards.

When we substitute q = −1 into the q-Stirling number of the first kind, the weight

wt(T ) of a rook placement T will be 0 if there is a rook in T that is not in the first

row. Hence the Stirling number of the first kind cq[n, k] evaluated at q = −1 counts the

number of rook placements in Q(n, n − k) such that all of the rooks occur in shaded

squares of the first row.

Corollary 7.5. The q-Stirling number of the first kind cq[n, k] evaluated at q = −1 gives

the number of rook placements in Q(n, n − k) where all of the rooks occur in shaded

squares in the first row, that is,

cq[n, k]
∣
∣
q=−1

=

(
⌊n/2⌋

n− k

)

.

Let d(n, k) = |Q(n, n − k)|. We call d(n, k) the allowable Stirling number of the first

kind. See Table 4 for values.

Proposition 7.6. The allowable Stirling numbers of the first kind d(n, k) satisfy the re-

currence

d(n, k) = d(n− 1, k − 1) +

⌈
n− 1

2

⌉

· d(n− 1, k)

with boundary conditions d(n, 0) = δn,0, d(n, n) = 1 for n ≥ 0 and d(n, k) = 0 when

k > n.

Proof. For each T ∈ Q(n, n−k), there are two cases. If the leftmost column in T is empty,

then after deleting this column we obtain an allowable rook placement T ′ ∈ Q(n−1, n−k).

Otherwise assume there is a rook in the leftmost column. We can first build an allowable

rook placement T ′ ∈ Q(n−1, n−k−1) and then add a column of n−1 squares with a rook

in it to the left of T ′ to form a rook placement in Q(n, n−k). Notice that the rook in the
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leftmost column can only be placed into a shaded square, so there are ⌈(n−1)/2⌉ possible

squares to place the rook. Overall this case gives ⌈(n−1)/2⌉ ·d(n−1, k) possibilities. ✷

Certain allowable Stirling numbers of the first kind have closed forms as follows. Here

we let r(n) =
∑n

k=0 d(n, k) denote the row sum of the allowable Stirling numbers of the

first kind.

Proposition 7.7. The allowable Stirling numbers of the first kind satisfy

d(n, 1) =

{(
n−1

2

)
!2 for n odd,

n
2 ·

(
n−1

2

)
!2 for n even,

(7.2)

d(n, n− 1) =
⌊n

2

⌋

·
⌈n

2

⌉

, (7.3)

r(n) = d(n+ 2, 1). (7.4)

Proof. We first prove (7.4). Let T ∈ Q(n + 2, 1) be a rook placement on a shaded

board. Since rooks are only allowed to be placed in shaded squares, the two rooks in the

rightmost two columns must be in the bottommost antidiagonal. Delete the two longest

anti-diagonals from T to obtain T ′. Since the shaded squares are preserved, T ′ is still

allowable with the longest column length n. The rightmost two rooks in T are deleted

to form T ′, giving at most n− 1 rooks in T ′. Hence d(n+ 2, 1) ≤ r(n).

On the other hand, for any rook placement T with at most n− 1 rooks on a shaded

staircase board of length n, we can add two anti-diagonals to T and place a rook in

the bottom row for each empty column in the new chessboard to obtain T ′. The board

T ′ has n + 1 rooks and n + 1 columns, hence r(n) ≤ d(n + 2, 1). Hence we have the

equality (7.4).

The expression d(n, n− 1) counts the number of rook placements of length n using 1

rook. This is the same as counting the number of shaded squares in a length n staircase

chessboard. Counting column by column, beginning from the right, gives 1 + 1 + 2 + 2 +

· · · + ⌊n/2⌋ = ⌊n/2⌋ · ⌈n/2⌉.

Finally, the expression d(n, 1) counts the number of rook placements with n − 1

columns and n − 1 rooks. Thus each column must have a rook. For each column with

k squares, there are ⌈k/2⌉ shaded squares, hence ⌈k/2⌉ choices for the rook. This gives

((n− 1)/2)!2 ways when n is odd and (n/2) · ((n− 1)/2)!2 ways when n is even. ✷

8. Structure and topology of the Stirling poset of the first kind

We define a poset structure on rook placements on a staircase shape board. For rook

placements T and T ′ in P(m,n), let T ≺ T ′ if T ′ can be obtained from T by either moving

a rook to the left (west) or up (north) by one square. We call this poset the Stirling poset

of the first kind and denote it by Γ(m,n). It is straightforward to check that the poset
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Fig. 7. Example of Γ(4, 2) with its matching. There is one unmatched rook placement in rank 2. The rank
generating function of this poset is cq[4, 2] = 3 + 4q + 3q2 + q3.

Γ(m,n) is graded of rank (m− 2) + (m− 3) · · · + (m− n− 1) = (m− 1) · n−
(

n+1
2

)
and

its rank generating function is cq[m,m− n]. See Fig. 7 for an example.

We wish to study the topological properties of the Stirling poset of the first kind.

To do so, we define a matching M on the poset as follows. Given any rook placement

T ∈ Γ(m,n), let r be the first rook (reading from left to right) that is not in a shaded

square of the first row. Match T to T ′ where T ′ is obtained from T by moving the rook r

one square down if r is not in a shaded square, or one square up if r is in a shaded

square but not in the first row. It is straightforward to check that the unmatched rook

placements are the ones where all of the rooks occur in the shaded squares of the first

row.

As an example, the matching for Γ(4, 2) is shown in Fig. 7, where an upward arrow

indicates a matching and other edges indicate the remaining cover relations. Observe

the unmatched rook placements are the ones with all the rooks occurring in the shaded

squares in the first row. By the way a chessboard is shaded, the unmatched rook place-

ments only appear in even ranks in the poset.

We have a q-analogue of Corollary 7.5.

Theorem 8.1. For the Stirling poset of the first kind Γ(m,n) the generating function for

the unmatched rook placements is

∑

T ∈Γ(m,n)
T unmatched

wt(T ) = qn(n−1) ·

[
⌊ m

2 ⌋

n

]

q2

.

Proof. The number of unmatched rook placements in rank 2j in the poset Γ(m,n) is

the same as the number of integer partitions λ = (λ1, . . . , λn) of 2j into n distinct

non-negative even parts, with each λi ≤ m − 1 − (2i − 1). Alternatively, this is the
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Fig. 8. A rook placement T with rook word wT = 3320.

number of partitions δ = (δ1, . . . , δn) of 2j− (0 + 2 + · · · + (2n− 2)) = 2j−n(n− 1) into

n non-negative even parts, where each part δi satisfies δi = λi − (2n− (2i− 2)) ≤ m− 2n

for i = 1, . . . , n. Thus we have

∑

T ∈Γ(m,n)
T unmatched

wt(T ) =
∑

j≥0

∑

(λ1,...,λn)⊢2j
0≤λi≤m−1−(2i−1)

λi distinct even integers

q|λ|

= qn(n−1) ·
∑

2j−n(n−1)≥0

∑

λ⊢2j−n(n−1)
0≤λi≤m−2n

i=1,...,n
λi even integers

q|λ|

= qn(n−1) ·
∑

j− n(n−1)
2 ≥0

∑

λ⊢j− n(n−1)
2

0≤λi≤⌊ m
2 ⌋−n

i=1,...,n

(q2)|λ| .

The last (double) sum is over all integer partitions into at most n parts where each

part is at most ⌊m/2⌋−n. Hence this sum is given by the Gaussian polynomial
[

⌊m/2⌋
n

]

q2
,

proving the desired identity. ✷

Given a rook placement T ∈ P(m,n), we can associate to it a rook word wT =

w1w2 . . . wm−1 where wi is one plus the number of squares below the column i rook. If

column i is empty, let wi = 0. See Fig. 8 for an example.

Lemma 8.2. Let T and T ′ be two distinct elements in the Stirling poset of the first kind

such that T ≺ u(T ) ≻ T ′ ≺ u(T ′) is a gradient path. Then the rook words satisfy the

inequality wT <lex wT ′ .

Proof. Let wT = w1 · · ·wn. Since u(T ) is obtained from T by shifting a rook a in column i

up by one square, we have wu(T ) = w1 · · · (wi + 1) · · ·wn. By definition of the matching,

in the rook placement T the rook a was in a shaded square not in the first row. In the

rook placement u(T ) the rook a is now in an unshaded square. Furthermore, all of the

rooks in the leftmost i− 1 columns of T are in shaded squares in the first row.

The rook placement T ′ is obtained from u(T ) by shifting a rook to the right or down.

We first show that T ′ cannot be obtained by shifting a rook in u(T ) down by one square.

Suppose a rook b in column j 6= i of u(T ) is shifted down to form T ′. If j < i since

all of the rooks in columns 1 through i− 1 occur in shaded squares of the first row, the
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rook b is now in an unshaded square in the rook placement T ′. Hence if it is matched

with another rook placement, it will be of one rank lower, contradicting the fact that

we assumed T ′ was part of a gradient path T ≺ u(T ) ≻ T ′ ≺ u(T ′). If j > i then the

rook a in column i of T ′ is in an unshaded square and hence T ′ should be matched to a

rook placement in one lower rank. Again, this contradicts our gradient path assumption.

Hence this case cannot occur.

The remaining case is when a rook in u(T ) occurring in the jth column for some index

j < n is shifted to the right to form T ′. Note this implies the (j + 1)st column of T had

no rooks in it. If j < i, then since b in column j in u(T ) is in a shaded square of the

first row, it is shifted to an unshaded square in T ′ and hence T ′ is matched to a rook

placement in one lower rank. If j > i then a in T ′ is the first rook that does not appear

in a shaded square of the first row. Hence T ′ is matched to some rook placement of one

rank lower, contradicting the gradient path assumption.

The only remaining possibility is when j = i. Then the rook a in u(T ) is shifted to a

shaded square in T ′, and hence wT = w1 · · ·wi−1 ·wi · 0 ·wi+2 · · ·wn >lex w1 · · ·wi−1 · 0 ·

(wi − 1) · wi+2 · · ·wn = wT ′ , as desired. ✷

Theorem 8.3. The matching M on the Stirling poset of the first kind Γ(m,n) is an acyclic

matching, that is, the Stirling poset has a discrete Morse matching.

The proof is similar to that of Theorem 4.3, and thus omitted.

Next we give a decomposition of the Stirling poset of the first kind Γ(m,n) into

Boolean algebras indexed by the allowable rook placements. This will lead to a boundary

map on the algebraic complex with Γ(m,n) as the support. For any T ∈ Q(m,n), let

α(T ) be the rook placement obtained by shifting every rook that is not in the first row

up by one. Then we have the following theorem.

Theorem 8.4. The Stirling poset of the first kind Γ(n, k) can be decomposed as the disjoint

union of Boolean intervals

Γ(m,n) =

�⋃

T ∈Q(m,n)

[T, α(T )].

Furthermore, if T ∈ Q(m,n) has weight wt(T ) = qi ·(1+q)j, then the rank of the element

T is i and the interval [T, α(T )] is isomorphic to the Boolean algebra on j elements.

Proof. We first show for any T ∈ Q(m,n) with wt(T ) = qi · (1 + q)j that the interval

[T, α(T )] ∼= Bj . Since wt(T ) = qi · (1 + q)j , the rank of T is i and there are j rooks in T

that are not in the first row. The rank i+ l elements in the interval [T, α(T )] correspond

to shifting l of those rooks up by one. It is straightforward to see that in the interval

[T, α(T )] all of the elements except T are in P(m,n) − Q(m,n) since the rook that is

shifted up by one will not be in a shaded square.
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We next need to show that every element T ∈ Γ(m,n) occurs in some Boolean interval

in this decomposition. This is vacuously true if T ∈ Q(m,n). Otherwise there are some

rooks in T that are not in shaded squares. Shift all such rooks down by one to obtain an

allowable rook placement associated to T . ✷

Given a rook placement T ∈ Γ(m,n), let N(T ) = {r1, r2, . . . , rs} be the set of all

rooks in T that are not in shaded squares, where the rooks ri are labeled from left to

right. We define the map ∂ as follows.

Definition 8.5. Let ∂ : Γ(m,n) −→ Z[Γ(m,n)] be the map defined by

∂(T ) =
∑

ri∈N(T )

(−1)i−1 · Tri
,

where Tri
is obtained by moving the rook ri in T down by one square.

Lemma 8.6. The map ∂ in Definition 8.5 is a boundary map on the algebraic complex

with Γ(m,n) as the support.

Proof. The boundary map ∂ is supported on the Boolean algebra decomposition of the

Stirling poset of the first kind appearing in Theorem 8.4. The second proof of Theorem 6.3

applies again to show ∂ is a boundary map. ✷

Theorem 8.7. For the algebraic complex (C, ∂) supported by the Stirling poset of the first

kind Γ(m,n), a basis for the integer homology is given by the rook placements in P(m,n)

having all of the rooks occur in shaded squares in the first row. Furthermore,

∑

i≥0

dim(Hi(C, ∂;Z)) · qi = qn(n−1) ·

[
⌊ m

2 ⌋

n

]

q2

.

Proof. The proof follows by applying Theorems 8.1 and 8.3 and Lemmas 6.2 and 8.6. ✷

9. (q, t)-Stirling numbers and orthogonality

In [31] Viennot has some beautiful results in which he gave combinatorial bijections for

orthogonal polynomials and their moment generating functions. One well-known relation

between the ordinary signed Stirling numbers of the first kind and Stirling numbers of

the second kind is their orthogonality. A bijective proof of the orthogonality of their

q-analogues via 0-1 tableaux was given by de Médicis and Leroux [4, Proposition 3.1].

There are a number of two-variable Stirling numbers of the second kind using bis-

tatistics on RG-words and rook placements. See [32] and the references therein. Letting

t = 1 + q we define (q, t)-analogues of the Stirling numbers of the first and second kinds.

We show orthogonality holds combinatorially for the (q, t)-version of the Stirling numbers

via a sign-reversing involution on ordered pairs of rook placements and RG-words.
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Definition 9.1. Define the (q, t)-Stirling numbers of the first and second kinds by

sq,t[n, k] = (−1)n−k ·
∑

T ∈Q(n,n−k)

qs(T ) · tr(T ) (9.1)

and

Sq,t[n, k] =
∑

w∈A(n,k)

qA(w) · tB(w). (9.2)

For what follows, let

[k]q,t =

{

(qk−2 + qk−4 + · · · + 1) · t when k is even,

qk−1 + (qk−3 + qk−5 + · · · + 1) · t when k is odd.
(9.3)

Corollary 9.2. The (q, t)-analogues of Stirling numbers of the first and second kinds sat-

isfy the following recurrences:

sq,t[n, k] = sq,t[n− 1, k− 1] − [n− 1]q,t · sq,t[n− 1, k] for n ≥ 1 and 1 ≤ k ≤ n, (9.4)

and

Sq,t[n, k] = Sq,t[n− 1, k − 1] + [k]q,t · Sq,t[n− 1, k] for n ≥ 1 and 1 ≤ k ≤ n, (9.5)

with initial conditions sq,t[n, 0] = δn,0 and Sq,t[n, 0] = δn,0. For k > n, we set sq,t[n, k] =

Sq,t[n, k] = 0.

Proof. Immediate from Theorem 3.2 and Theorem 7.4. ✷

Recall the generating polynomials for the q-Stirling numbers are

(x)n,q =

n∑

k=0

sq[n, k] · xk and xn =

n∑

k=0

Sq[n, k] · (x)k,q, (9.6)

where the q-analogue of the kth falling factorial of x is given by

(x)k,q =
k−1∏

m=0

(x− [m]q).

The expressions in (9.6) are due to Carlitz [3, Section 3]. The case q = 1 is due to Stirling

in 1730 and was his original definition for the Stirling numbers of the first and second

kinds; see [30, pages 8 and 11]. We can generalize (9.6) to (q, t)-polynomials.
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Theorem 9.3. The generating polynomials for the (q, t)-Stirling numbers are

(x)n,q,t =

n∑

k=0

sq,t[n, k] · xk , (9.7)

and

xn =

n∑

k=0

Sq,t[n, k] · (x)k,q,t , (9.8)

where (x)k,q,t =
k−1∏

m=0

(x− [m]q,t).

Proof. Both identities follow by induction on n. It is straightforward to check the case

n = 0, so suppose the identities are true for n− 1. Multiply the recurrence (9.4) for the

signed (q, t)-Stirling numbers of the first kind by xk and sum over all 0 ≤ k ≤ n to give

n∑

k=0

sq,t[n, k] · xk =
n∑

k=0

(sq,t[n− 1, k − 1] − [n− 1]q,t · sq,t[n− 1, k]) · xk

= x ·
n−1∑

k=0

sq,t[n− 1, k] · xk − [n− 1]q,t ·
n−1∑

k=0

sq,t[n− 1, k] · xk

= (x)n−1,q,t · (x− [n− 1]q,t)

= (x)n,q,t ,

which is the first identity. For the second identity, multiply the recurrence (9.5) for the

(q, t)-Stirling number of the second kind by (x)k,q,t and sum over all 0 ≤ k ≤ n to give

n∑

k=0

Sq,t[n, k] · (x)k,q,t =

n∑

k=0

(Sq,t[n− 1, k − 1] + [k]q,t · Sq,t[n− 1, k]) · (x)k,q,t

=
n∑

k=0

Sq,t[n− 1, k − 1] · (x)k−1,q,t · (x− [k − 1]q,t)

+
n∑

k=0

[k]q,t · Sq,t[n− 1, k] · (x)k,q,t

= x ·
n−1∑

k=0

Sq,t[n− 1, k] · (x)k,q,t

−
n∑

k=0

[k − 1]q,t · Sq,t[n− 1, k − 1] +
n∑

k=0

[k]q,t · Sq,t[n− 1, k] .
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The last two summations cancel each other by shifting indices. Apply the induction

hypothesis on the remaining summation yields the desired result. ✷

Theorem 9.4. The (q, t)-Stirling numbers are orthogonal, that is, for m ≤ n

n∑

k=m

sq,t[n, k] · Sq,t[k,m] = δm,n (9.9)

and

n∑

k=m

Sq,t[n, k] · sq,t[k,m] = δm,n. (9.10)

Furthermore, this orthogonality holds bijectively.

Notice that orthogonality of the (q, t)-Stirling numbers follows immediately from The-

orem 9.3 which gives the change of basis matrices between the ordered bases (1, x,

x2, x3, . . .) and ((x)0,q,t, (x)(1,q,t), x(2,q,t), x(3,q,t), . . .) for the polynomial ring Q(q, t)[x].

We now instead provide a bijective proof.

Proof. When m = n since sq,t[n, n] = Sq,t[n, n] = 1, both identities are trivial. Suppose

now that n > m. The left-hand side of (9.9) is the total weight of the set

C =

n⋃

k=m

Q(n, n− k) × A(k,m),

where the weight of (T,w) ∈ C is defined by

wt(T,w) = (−1)n−k · wt(T ) · wt(w).

Here wt(w) = qA(w) · tB(w) and wt(T ) = qs(T ) · tr(T ) where the statistics A(·),

B(·), s(·) and r(·) are defined in Sections 3 and 7. We wish to show that wt(C) =
∑

(T,w)∈C wt(T,w) = 0 by constructing a weight-preserving sign-reversing involution ϕ

on C with no fixed points.

For any pair (T,w) ∈ Q(n, n − k) × A(k,m), define the map ϕ as follows. Label the

columns of T ∈ Q(n, n − k) from right to left with 1 through n − 1. Let l1 be the label

of the rightmost column in T that has a rook. If T has no rooks, let l1 = ∞. Denote by

rb(T ) the number of squares below the rightmost rook in T . If l1 = ∞, let rb(T ) = 0.

For w ∈ A(k,m), let r be the first repeating (odd) integer reading the entries of w from

left to right, and let l2 denote the number appearing to the left of the entry r in the

RG-word w. If there is no repeating integer, let l2 = ∞. Note that rb(T ) must be even.

If l1 ≤ l2, remove the rightmost rook in T to form the rook placement T ′. Insert

the entry rb(T ) + 1 to the right of the entry l1 to obtain the word w′. Since l1 ≤ l2,
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rb(T ) + 1 ≤ l1 ≤ l2 and rb(T ) + 1 is odd, so we have w′ is an allowable word of

length k + 1. Hence (t′, w′) ∈ Q(n, n − k − 1) × A(k + 1,m). Also since we removed

the rightmost rook in T to obtain T ′, we know wt(T ) = ql1 · wt(T ′) if rb(T ) + 1 = l1,

that is, the rightmost rook is in the first row, or that wt(T ) = qrb(T ) · t · wt(T ′) if

rb(T ) + 1 < l1, that is, the rightmost rook is not in the first row. We also know that

wt(w′) = ql1−1 · wt(w) if l1 = rb(T ) + 1, or wt(w′) = qrb(T ) · t · wt(w) if rb(T ) + 1 < l1.

Thus wt(T ′, w′) = (−1)n−k−1 · wt(T ′) · wt(w′) = − wt(T,w).

On the other hand, if l1 > l2, delete the entry r in w to obtain w′. In column l2 of T

add a rook so that there are r− 1 empty squares below it. Similarly, one can check that

(T ′, w′) ∈ Q(n, n− k + 1) × A(k − 1,m) and wt(T ′, w′) = − wt(T,w).

Since all pairs (T,w) ∈ Q(n, n− k) ×A(k,m) are mapped under ϕ, there are no fixed

points in C, hence (9.9) is true.

The proof of the second identity (9.10) follows in a similar fashion. The left-hand side

of (9.10) is the total weight of the set

D =
n⋃

k=m

A(n, k) × Q(k, k −m) ,

where wt(w, T ) = (−1)k−m ·wt(w) ·wt(T ). We show that wt(D) =
∑

(w,T )∈D wt(w, T ) =

0 by constructing a weight-preserving sign-reversing involution ψ on D with no fixed

points.

For (w, T ) ∈ A(n, k) × Q(k, k − m), define the following. Let wi = r1 be the last

repeated odd integer in w reading from left to right, and let l1 be the maximum entry in

w occurring before wi. If there is no repeated entry in w, let l1 = 0. Let l2 be the label

of the leftmost column in T with a rook in it and let r2 be the number of squares above

that rook. If there are no rooks in T let l2 = 0. As before, we are labeling the columns

right to left with 1 through n− 1.

The bijection is built as follows. If l1 > l2, raise wi = r1 to l1 +1 and increase all of the

entries to the right of wi by 1. Denote the new word by w′. Since wi is the last repeated

odd entry, the RG-word w is of the form w = · · · l1 · · · r1(l1 + 1)(l1 + 2) · · · k. Then by

definition, the new word w′ is of the form w′ = · · · l1 · · · (l1 + 1)(l1 + 2)(l1 + 3) · · · (k+ 1).

This still is an allowable word since the first i − 1 entries in w′ are the same as those

in w and the remaining entries form an increasing sequence. So w′ ∈ A(n, k + 1). Also,

in w the entries after wi do not contribute to wt(w) since there are no repeated entries.

When wi is raised to l1 + 1, the weight loss is qr1−1 if r1 = l1 or qr1−1 · t if r1 < l1. In the

staircase board T , form a new rook placement T ′ by first adding a column of length k to

the left, and then placing a rook in column l1 counting from right to left such that there

are r1 − 1 squares below the rook. Clearly T ′ has k columns and k+ 1 −m rooks. Since

the new rook was placed so that there are now an even number of squares below it, this

rook is in a shaded square. Also since l1 > l2, there is no other rook in column l1. Hence

T ′ ∈ Q(k + 1, k + 1 − m). Observe when we add a rook to obtain T ′, if the new rook

is added in the first row, that is, r1 = l1 then the weight is increased by qr1−1. If the



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: Y. Cai, M.A. Readdy, q-Stirling numbers: A new view, Adv. in Appl.
Math. (2016), http://dx.doi.org/10.1016/j.aam.2016.11.007

JID:YAAMA AID:1739 /FLA [m1L; v1.194; Prn:9/12/2016; 1:20] P.28 (1-31)

28 Y. Cai, M.A. Readdy / Advances in Applied Mathematics ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

Fig. 9. Examples of the bijection proving the identity (9.9).

new rook is not in the first row, that is, r1 < l1 then the weight is increased by qr1−1 · t.

Hence wt(w′, T ′) = − wt(w, T ).

If l1 ≤ l2, replace the entry wj = l2 + 1 in w by l2 − r2 and subtract 1 from all

of the entries to the right of wj to obtain w′. Since w = · · · l1 · · · r1(l1 + 1) · · · k and

l1 ≤ l2 ≤ k − 1, we have that wj = l2 + 1 appears to the right of wi and hence such an

entry is unique. Also r2 + 1 ≤ l2 gives l2 − r2 ≥ 1. This difference is always odd by the

fact that the rook is in a shaded square. So w′ = · · · l1 · · · l2(l2 − r2)(l2 + 1) · · · (k − 1) is

an RG-word with even integers appearing just once, hence w′ ∈ A(n, k − 1). The entry

w′
j−1 = l2, and w′

j = l2 −r2 contributes a weight of ql2−r2−1 if l2 = l2 −r2, that is, r2 = 0

or ql2−r2−1 · t if r2 > 0. Delete the column l2 in T and delete one square from the bottom

in all columns to the left of column l2 to make the new staircase chessboard T ′. It is

straightforward to check that T ′ ∈ Q(k−1, k−1−m). Deleting the rook in T will decrease

its weight by ql2−(r2+1) if the rook is in the first row, that is, r2 = 0 or by ql2−r2−1 · t

if the rook is not in the first row, that is, r2 > 0. Hence wt(w′, T ′) = − wt(w, T ). The

map we described is a weight-preserving sign-reversing involution with no fixed points,

so the orthogonality in (9.10) follows. ✷

See Figs. 9 and 10 for examples of the bijections occurring in the proof of Theorem 9.4.

10. Concluding remarks

The Stirling numbers of the first kind and second kind are specializations of the

homogeneous and elementary symmetric functions:

S(n, k) = hn−k(x1, . . . , xk), c(n, k) = en−k(x1, . . . , xn−1), (10.1)
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Fig. 10. Examples of the bijection proving the identity (9.10).

where xm = m. The q-Stirling numbers are also specializations of these symmetric func-

tions with xm = [m]q. See [18, Chapter I, Section 2, Example 11]. For the (q, t)-versions

take xm = [m]q,t as defined in (9.3). A more general statement of orthogonality is

n∑

k=j

(−1)n−k · en−k(x1, . . . , xn−1) · hk−j(x1, . . . , xj) = δn,j . (10.2)

The specializations imply orthogonality of the (q, t)-Stirling numbers, though not com-

binatorially as in Theorem 9.4. It remains to find a combinatorial proof of Theorem 9.3.

Stembridge’s q = −1 phenomenon [28,29], and the more general cyclic sieving phe-

nomenon of Reiner, Stanton and White [24] count symmetry classes in combinatorial

objects by evaluating their q-generating series at a primitive root of unity. Is there a

cyclic sieving phenomenon for the q-Stirling numbers of the first and second kinds?

Are there other classical q-analogues which can be viewed naturally as q-(1 +

q)-analogues as in Goals 1 and 2? Ehrenborg and Readdy [6] have recently discovered a

symmetric q-(1 + q)-analogue of the q-binomial which is more compact than the Fu et

al. construction.

Garsia and Remmel [10] have a more general notion of the q-Stirling number of the

second kind as enumerating non-attacking rooks on a general Ferrers’ board. This will

be the subject of another paper.

It would be interesting to look deeper into the poset structure of the Stirling posets

of the first and second kinds, such as the interval structure and the f - and h-vectors

of each poset. Park has a notion of the Stirling poset which arises from the theory of

P -partitions [23]. It has no connection with the Stirling posets in this paper.

The q-binomial has the combinatorial interpretation of counting certain subspaces over

a finite field with q elements as well as the corresponding subspace lattice. Milne [20]

has an interpretation of the q-Stirling number of the second kind as sequences of lines in

a vector space over the finite field with q elements. Is there an analogous interpretation
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for the (q, t)-Stirling numbers of the second kind? Bennett, Dempsey and Sagan [1]

construct families of posets which include Milne’s construction. One would like a similar

construction for the q-Stirling numbers of the first kind.

In [32] Wachs and White have discovered many other statistics on RG-words which

generate the q-Stirling numbers. In particular, their ls and lb statistics are defined by

ls(w) =
∏n

i=1 q
wi−1 and lb(w) =

∏n
i=1 lbi(w) where lbi(w) = qmi−1−wi if mi−1 ≥ wi

and lbi(w) = 1 if mi−1 < wi. The ls statistic and the wt statistic in (2.2) are related

by ls(w) = q
(

k

2

)

· wt(w). The authors are currently looking at these statistics, as well as

White’s interpolations [33] between these statistics, in view of the first Goal 1, as well as

poset theoretic and homological consequences of Goal 2. The first author has considered

the q-binomial via the major index in terms of this research program [2].

Acknowledgments

The authors thank Dennis Stanton for conversations when this project was being ini-

tiated, and Richard Ehrenborg, who provided many helpful comments on the exposition.

Thanks also to Jim Haglund, Vic Reiner, Dennis Stanton, Michelle Wachs and Dennis

White for their comments regarding future research directions, and to Doron Zeilberger

for giving historical references for q-analogues.

References

[1] C. Bennett, K. Dempsey, B. Sagan, Partition lattice q-analogs related to q-Stirling numbers, J. Al-
gebraic Combin. 3 (1994) 261–283.

[2] Y. Cai, A new q-analogue for the major index, preprint, 2016.
[3] L. Carlitz, On abelian fields, Trans. Amer. Math. Soc. 35 (1933) 122–136.
[4] A. de Médicis, P. Leroux, A unified combinatorial approach for q- (and p, q-) Stirling numbers,

J. Statist. Plann. Inference 34 (1993) 89–105.
[5] R. Ehrenborg, M. Readdy, Juggling and applications to q-analogues, Discrete Math. 157 (1996)

107–125.
[6] R. Ehrenborg, M. Readdy, The Gaussian coefficient revisited, J. Integer Seq. 19 (2016), Article

16.7.8.
[7] R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90–145.
[8] R. Forman, A user’s guide to discrete Morse theory, Sém. Lothar. Combin. 48 (2002), Art. B48c,

35 pp.
[9] S. Fu, V. Reiner, D. Stanton, N. Thiem, The negative q-binomial, Electron. J. Combin. 19 (2012),

Paper P36, 24 pp.
[10] A.M. Garsia, J.B. Remmel, Q-counting rook configurations and a formula of Frobenius, J. Combin.

Theory Ser. A 41 (1986) 246–275.
[11] H.W. Gould, The q-Stirling numbers of the first and second kinds, Duke Math. J. 28 (1961) 281–289.
[12] P. Hersh, J. Shareshian, D. Stanton, The q = −1 phenomenon via homology concentration, J. Comb.

5 (2014) 167–194.
[13] G. Hutchinson, Partitioning algorithms for finite sets, Commun. ACM 6 (1963) 613–614.
[14] M. Jöllenbeck, V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer.

Math. Soc. 197 (923) (2009), 74 pp.
[15] D. Kozlov, Discrete Morse theory for free chain complexes, C. R. Math. Acad. Sci. Paris 340 (12)

(2005) 867–872.
[16] D. Kozlov, Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics,

vol. 21, Springer, 2008.
[17] P. Leroux, Reduced matrices and q-log-concavity properties of q-Stirling numbers, J. Combin. The-

ory Ser. A 54 (1990) 64–84.



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: Y. Cai, M.A. Readdy, q-Stirling numbers: A new view, Adv. in Appl.
Math. (2016), http://dx.doi.org/10.1016/j.aam.2016.11.007

JID:YAAMA AID:1739 /FLA [m1L; v1.194; Prn:9/12/2016; 1:20] P.31 (1-31)

Y. Cai, M.A. Readdy / Advances in Applied Mathematics ••• (••••) •••–••• 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

[18] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford Mathematical
Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New
York, 1995.

[19] P.A. MacMahon, Two applications of general theorems in combinatory analysis, Proc. Lond. Math.
Soc. 15 (1916) 314–321; in: Collected Papers, Vol. I. Combinatorics. Mathematicians of Our Time,
MIT Press, Cambridge, MA–London, 1978, pp. 556–563, edited and with a preface by George E.
Andrews, with an introduction by Gian-Carlo Rota.

[20] S. Milne, Restricted growth functions and incidence relations of the lattice of partitions of an n-set,
Adv. Math. 26 (1977) 290–305.

[21] S. Milne, A q-analog of restricted growth functions, Dobinski’s equality, and Charlier polynomials,
Trans. Amer. Math. Soc. 245 (1978) 89–118.

[22] E. Netto, Lehrbuch der Combinatorik, Chelsea, New York, 1901.
[23] S. Park, P -partitions and q-Stirling numbers, J. Combin. Theory Ser. A 68 (1994) 33–52.
[24] V. Reiner, D. Stanton, D. White, The cyclic sieving phenomenon, J. Combin. Theory Ser. A 108

(2004) 17–50.
[25] G.-C. Rota, The number of partitions of a set, Amer. Math. Monthly 71 (1964) 498–504.
[26] E. Sköldberg, Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358 (2006)

115–129.
[27] R.P. Stanley, Enumerative Combinatorics, Vol. I, 2nd edition, Cambridge Studies in Advanced

Mathematics, No. 49, Cambridge University Press, 2012.
[28] J. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Com-

bin. Theory Ser. A 68 (1994) 372–409.
[29] J. Stembridge, Canonical bases and self-evacuating tableaux, Duke Math. J. 82 (1996) 585–606.
[30] J. Stirling, Methodus differentialis: sive Tractatus de Summatione et Interpolatione Serierum In-

finitarum, Londini, 1730.
[31] G. Viennot, A combinatorial theory for general orthogonal polynomials with extensions and ap-

plications, in: Polynômes Orthogonaux et Applications, Bar-le-Duc, 1984, in: Lecture Notes in
Mathematics, vol. 1171, Springer, Berlin, 1985, pp. 139–157.

[32] M. Wachs, D. White, p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A
56 (1991) 27–46.

[33] D. White, Interpolating set partition statistics, J. Combin. Theory Ser. A 68 (1994) 262–295.



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: Y. Cai, M.A. Readdy, q-Stirling numbers: A new view, Adv. in Appl.
Math. (2016), http://dx.doi.org/10.1016/j.aam.2016.11.007

JID:YAAMA AID:1739 /FLA [m1L; v1.194; Prn:9/12/2016; 1:20] P.32 (1-31)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

National Security Agency, country=United States, grants=H98230-13-1-0280

Simons Foundation, country=United States, grants=206001


